
MicroEmacs '02

Table of Contents
MicroEmacs '02...1

me(1)..3
Acknowledgments..10
Copyright...11
Origins...25
Contact Information...31
Help!..35
Installation(1)...36
User Profiles(2)..47
CompanyProfiles(2)...53
MainMenu(3)...56
Essential Commands..67
Help Information..68
Bindings(2)..69
File Handling Commands..74
Dialogs and Menus..76
Cursor Movement Commands...77
Insertion and Deletion Commands...78
Paragraph and Text Formatting Commands..79
Capitalization and Transposition Commands..80
Searching and Replacing..81
Macro Commands..82
Buffer Manipulation Commands...83
Window Commands..84
Keyboard Binding Commands...86
Operating Modes..88
Shell and Command Controls..90
Spelling Commands...92
Hilighting, Color and Screen Appearance...93
Comparison and Differencing..95
Short Cuts and Abbreviations..96
Message Line Commands..97
Printing Commands...98
Macro Development Commands...99
Registry..101
Command Line Filters...102
Games..103
languageTemplates(2)..104
fileHooks(2)...115
Editor File Types...123
Compatibility(2)...124
Interfacing(2)...127
Supported File Types...129
Client−Server(2)..131
RegularExpressions(2)...134
Build(2)..141

MicroEmacs '02

i

Table of Contents
Command Glossary..144

Split Command Glossary...151
abort−command(2)...159
about(2)..160
add−color(2)...162
add−dictionary(2)...166
add−file−hook(2)...169
global−mode(2)..176
buffer−mode(2)..178
add−next−line(2)..180
add−spell−rule(2)...183
alarm(3)..186
nroff(9)...187
append−buffer(2)...190
ascii−time(3)..192
auto−spell(3)..194
forward−char(2)...196
forward−delete−char(2)...197
backward−delete−tab(2)..198
forward−kill−word(2)..199
forward−line(2)..200
forward−paragraph(2)..201
forward−word(2)..202
beginning−of−buffer(2)...203
beginning−of−line(2)...204
global−abbrev−file(2)..205
buffer−bind−key(2)..208
buffer−help(3)..209
buffer−info(2)..210
buffer−setup(3)..211
c−hash−eval(3)...214
calc(3)..216
capitalize−word(2)...218
change−buffer−name(2)...219
change−directory(2)...220
change−file−name(2)...221
change−font(2)...222
change−frame−depth(2)...228
change−window−depth(2)...230
change−window−width(2)...232
charset−change(3)..234
check−line−length(3)...235
clean(3)..236
command−apropos(2)..238
command−wait(2)..239
compare−windows(2)..240

MicroEmacs '02

ii

Table of Contents
Command Glossary

compile(3)..241
copy−region(2)...242
count−words(2)..244
create−callback(2)..245
create−frame(2)..247
cvs(3)..248
cygnus(3)..252
define−help(2)..256
define−macro(2)...258
define−macro−file(2)...261
delete−blank−lines(2)..263
delete−buffer(2)...264
delete−dictionary(2)...265
delete−frame(2)..266
delete−indentation(3)...267
delete−window(2)..268
delete−registry(2)...269
delete−some−buffers(2)...270
describe−bindings(2)...271
describe−key(2)...276
describe−variable(2)..277
describe−word(3)...278
diff(3)...281
directory−tree(2)..283
display−white−chars(3)...285
draw(3)...286
edit−dictionary(3)..288
start−kbd−macro(2)...289
etfinsrt(3)..290
exchange−point−and−mark(2)...292
execute−buffer(2)...293
execute−file(2)...294
execute−kbd−macro(2)..295
execute−named−command(2)..296
execute−string(2)...297
execute−tool(3)..299
exit−emacs(2)...302
expand−abbrev(2)..303
expand−abbrev−handle(3)...304
expand−look−back(3)..306
expand−word(3)...307
file−attrib(3)...308
file−browser(3)..310
file−op(2)...312
fill−paragraph(2)..314

MicroEmacs '02

iii

Table of Contents
Command Glossary

filter−buffer(2)...316
find−bfile(3)...317
next−buffer(2)..318
find−file(2)...319
find−registry(2)..323
find−tag(2)...325
spell−buffer(3)...327
find−zfile(3)...332
fold−current(3)...336
ftp(3)..340
gdiff(3)...343
generate−tags−file(3)...346
get−next−line(2)...348
get−registry(2)...349
global−bind−key(2)...351
goto−alpha−mark(2)..353
goto−line(2)...354
goto−matching−fence(2)..355
set−position(2)...356
grep(3)..359
help(2)..361
hilight(2)..363
hunt−forward(2)...374
ifill−paragraph(3)...375
indent(2)...377
info(3)..382
insert−file(2)..384
insert−file−name(2)...385
insert−macro(2)..386
insert−newline(2)...387
insert−space(2)...388
insert−string(2)...389
insert−tab(2)...390
ipipe−shell−command(2)...391
isearch−forward(2)...394
ishell(3)..396
kbd−macro−query(2)...399
kill−line(2)...400
kill−paragraph(2)...401
kill−rectangle(2)...402
kill−region(2)...404
line−scheme−search(3)..406
list−buffers(2)..408
list−commands(2)..410
list−registry(2)...412

MicroEmacs '02

iv

Table of Contents
Command Glossary

list−variables(2)...413
Mahjongg(3)..415
MainMenu(3)...417
Match−It(3)..428
Metris(3)..431
vm(3)..433
man(3)..437
mark−registry(2)..438
ml−bind−key(2)...440
ml−clear(2)...443
ml−write(2)..444
name−kbd−macro(2)..445
narrow−buffer(2)...446
newline(2)..448
next−frame(2)..449
next−window(2)...450
next−window−find−buffer(2)..452
next−window−find−file(2)...453
normal−tab(3)..455
organizer(3)..456
osd(2)...466
osd−bind−key(2)..478
osd−dialog(3)...479
osd−help(3)..482
Patience(3)...484
paragraph−to−line(3)...486
pipe−shell−command(2)..487
popup−window(2)..489
prefix(2)...490
print−buffer(2)...492
print−color(2)...497
print−setup(3)...499
query−replace−all−string(3)..504
query−replace−string(2)...506
quick−exit(2)..508
quote−char(2)...509
rcs−file(2)...510
read−file(2)..511
read−history(2)...512
read−registry(2)...513
recenter(2)..516
regex−forward(3)...517
replace−all−pairs(3)...519
replace−all−string(3)..521
replace−string(2)..523

MicroEmacs '02

v

Table of Contents
Command Glossary

reread−file(3)...524
resize−all−windows(2)...525
restyle−buffer(3)..526
reyank(2)..527
save−all(3)...528
save−buffer(2)..529
save−dictionary(2)...531
save−history(2)..532
save−registry(2)...533
save−some−buffers(2)...534
scheme−editor(3)...535
screen−poke(2)...539
screen−update(2)..541
scroll−down(2)...543
scroll−left(2)..544
scroll−next−window−down(2)...547
search−forward(2)..548
set−alpha−mark(2)...550
set−char−mask(2)...551
set−cursor−to−mouse(2)..556
set−encryption−key(2)...557
set−mark(2)..558
set−scroll−with−mouse(2)...559
set−variable(2)...561
shell(2)...562
shell−command(2)...563
show−cursor(2)..564
show−region(2)..565
start−up(3)..567
sort−lines(2)...568
sort−lines−ignore−case(3)...570
spell(2)...571
spell−add−word(3)...574
split−window−horizontally(2)...575
split−window−vertically(2)...576
suspend−emacs(2)..577
symbol(3)...578
Triangle(3)...579
tab(2)..581
tabs−to−spaces(3)..582
time(3)..583
translate−key(2)...584
transpose−chars(2)...589
undo(2)...590
uniq(3)..591

MicroEmacs '02

vi

Table of Contents
Command Glossary

universal−argument(2)...592
user−setup(3)...593
view−file(2)...614
void(2)..615
which(3)...616
wrap−word(2)..617
write−buffer(2)...618
yank(2)...620

Variable Glossary..622
info(3)..625
$MENAME(5)...627
$buffer−backup(5)...629
$search−path(5)...631
ishell(3)..633
pipe−shell−command(2)..636
$auto−time(5)...638
$box−chars(5)..640
$buffer−fhook(5)...642
$buffer−bname(5)..644
$buffer−fmod(5)..645
$buffer−hilight(5)..647
$buffer−indent(5)...648
$buffer−input(5)...650
$buffer−ipipe(5)...651
$buffer−mask(5)..652
$buffer−mode−line(5)..654
$buffer−names(5)...655
$buffer−scheme(5)...657
$c−brace(5)..658
$c−case(5)..660
$c−contcomm(5)..662
$c−continue(5)...663
$c−margin(5)...665
$c−statement(5)...666
$command−names(5)...667
$cursor−blink(5)..669
$cursor−x(5)...670
$debug(5)...671
$delay−time(5)...672
$file−ignore(5)...674
$file−names(5)...676
$file−template(5)...678
$fill−bullet(5)...679
$fill−col(5)...681

MicroEmacs '02

vii

Table of Contents
Variable Glossary

$fill−eos(5)...682
$fill−ignore(5)..683
$fill−mode(5)...684
$find−words(5)..687
$fmatchdelay(5)...689
$frame−depth(5)..690
$global−scheme(5)...691
$home(5)..692
$idle−time(5)...693
$kept−versions(5)..695
$line−scheme(5)...696
$line−template(5)...698
$ml−scheme(5)..699
$mode−line(5)..700
$mode−line−scheme(5)...702
$mode−names(5)...703
$mouse(5)..704
$mouse−pos(5)...706
$mouse−x(5)..709
$osd−scheme(5)...710
$platform(5)...711
$progname(5)...714
$random(5)...715
$rcs−file(5)...716
$recent−keys(5)...719
$result(5)..720
$scroll(5)..722
$scroll−bar(5)...724
$scroll−bar−scheme(5)..726
$show−modes(5)..727
$show−region(5)..728
$status(5)..729
$system(5)..731
$tabsize(5)..737
$tabwidth(5)...738
$temp−name(5)..739
$time(5)..740
$timestamp(5)..742
$trunc−scheme(5)..744
$variable−names(5)...745
$version(5)...747
$window−col(5)...748
$window−chars(5)...750
$window−depth(5)...754
$window−flags(5)..755

MicroEmacs '02

viii

Table of Contents
Variable Glossary

$window−mode−line(5)...757
$window−x−scroll(5)...759
%compile−com(5)...761
cygnus(3)..762
diff(3)...766
%ftp−flags(5)...768
gdiff(3)...770
%grep−com(5)...773
%http−proxy−addr(5)..775
%tag−file(5)...776
.calc.result(5)..778

Macro Language Glossary...779
&abs(4)..783
&and(4)..786
&atoi(4)..788
&band(4)..791
&cat(4)...792
&cbind(4)...795
&cond(4)..796
&find(4)...797
&rep(4)...799
&sequal(4)..801
&sin(4)...804
&ldel(4)..806
&opt(4)...808
®(4)...812
&set(4)...813
&sprintf(4)...814
&stat(4)..816
!return(4)..818
!bell(4)..820
!while(4)...822
!emacro(4)..823
!if(4)...825
!force(4)...827
!goto(4)..829
!jump(4)...831
!nmacro(4)..833
!repeat(4)..835
MacroArguments(4)...836
CommandVariables(4)...839
@fs(4)..843
MessageLineVariables(4)..845
SearchGroups(4)..849

MicroEmacs '02

ix

Table of Contents
Macro Language Glossary

CurrentBufferVariables(4)...851
@y(4)...853
Variables(4)..854
MacroNumericArguments(4)...859

Global Glossary...861
!return(4)..877
!bell(4)..879
!while(4)...881
!emacro(4)..882
!if(4)...884
!force(4)...886
!goto(4)..888
!jump(4)...890
!nmacro(4)..892
!repeat(4)..894
info(3)..895
$MENAME(5)...897
$buffer−backup(5)...899
$search−path(5)...901
ishell(3)..903
pipe−shell−command(2)..906
$auto−time(5)...908
$box−chars(5)..910
$buffer−fhook(5)...912
$buffer−bname(5)..914
$buffer−fmod(5)..915
$buffer−hilight(5)..917
$buffer−indent(5)...918
$buffer−input(5)...920
$buffer−ipipe(5)...921
$buffer−mask(5)..922
$buffer−mode−line(5)..924
$buffer−names(5)...925
$buffer−scheme(5)...927
$c−brace(5)..928
$c−case(5)..930
$c−contcomm(5)..932
$c−continue(5)...933
$c−margin(5)...935
$c−statement(5)...936
$command−names(5)...937
$cursor−blink(5)..939
$cursor−x(5)...940
$debug(5)...941

MicroEmacs '02

x

Table of Contents
Global Glossary

$delay−time(5)...942
$file−ignore(5)...944
$file−names(5)...946
$file−template(5)...948
$fill−bullet(5)...949
$fill−col(5)...951
$fill−eos(5)...952
$fill−ignore(5)..953
$fill−mode(5)...954
$find−words(5)..957
$fmatchdelay(5)...959
$frame−depth(5)..960
$global−scheme(5)...961
$home(5)..962
$idle−time(5)...963
$kept−versions(5)..965
$line−scheme(5)...966
$line−template(5)...968
$ml−scheme(5)..969
$mode−line(5)..970
$mode−line−scheme(5)...972
$mode−names(5)...973
$mouse(5)..974
$mouse−pos(5)...976
$mouse−x(5)..979
$osd−scheme(5)...980
$platform(5)...981
$progname(5)...984
$random(5)...985
$rcs−file(5)...986
$recent−keys(5)...989
$result(5)..990
$scroll(5)..992
$scroll−bar(5)...994
$scroll−bar−scheme(5)..996
$show−modes(5)..997
$show−region(5)..998
$status(5)..999
$system(5)..1001
$tabsize(5)..1007
$tabwidth(5)...1008
$temp−name(5)..1009
$time(5)..1010
$timestamp(5)..1012
$trunc−scheme(5)..1014

MicroEmacs '02

xi

Table of Contents
Global Glossary

$variable−names(5)...1015
$version(5)...1017
$window−col(5)...1018
$window−chars(5)...1020
$window−depth(5)...1024
$window−flags(5)..1025
$window−mode−line(5)...1027
$window−x−scroll(5)...1029
etfinsrt(3)..1031
%compile−com(5)...1033
cygnus(3)..1034
diff(3)...1038
%ftp−flags(5)...1040
gdiff(3)...1042
%grep−com(5)...1045
%http−proxy−addr(5)..1047
%tag−file(5)...1048
&abs(4)..1050
&and(4)..1053
&atoi(4)..1055
&band(4)..1058
&cat(4)...1059
&cbind(4)...1062
&cond(4)..1063
&find(4)...1064
&rep(4)...1066
&sequal(4)..1068
&sin(4)...1071
&ldel(4)..1073
&opt(4)...1075
®(4)...1079
&set(4)...1080
&sprintf(4)...1081
&stat(4)..1083
.calc.result(5)..1085
which(3)...1086
nroff(9)...1087
MacroArguments(4)...1090
CommandVariables(4)...1093
@fs(4)..1097
MessageLineVariables(4)..1099
SearchGroups(4)..1103
CurrentBufferVariables(4)...1105
@y(4)...1107
abort−command(2)...1108

MicroEmacs '02

xii

Table of Contents
Global Glossary

about(2)..1109
add−color(2)...1111
add−dictionary(2)...1115
add−file−hook(2)...1118
global−mode(2)..1125
buffer−mode(2)..1127
add−next−line(2)..1129
add−spell−rule(2)...1132
alarm(3)..1135
append−buffer(2)...1136
ascii−time(3)..1138
asm(9)..1140
asn.1(9)...1141
auto(2m)...1142
auto−spell(3)..1144
autosv(2m)...1146
awk(9)..1148
Bindings(2)..1149
Variables(4)..1154
Build(2)..1159
backup(2m)..1162
forward−char(2)...1164
forward−delete−char(2)...1165
backward−delete−tab(2)..1166
forward−kill−word(2)..1167
forward−line(2)..1168
forward−paragraph(2)..1169
forward−word(2)..1170
vb(9)...1171
bat(9)..1172
beginning−of−buffer(2)...1173
beginning−of−line(2)...1174
benchmrk(3f)..1175
binary(2m)..1176
bnf(9)..1178
global−abbrev−file(2)..1179
buffer−bind−key(2)..1182
buffer−help(3)..1183
buffer−info(2)..1184
buffer−setup(3)..1185
Client−Server(2)..1188
CompanyProfiles(2)...1191
Compatibility(2)...1194
c(9)...1197
c−hash−eval(3)...1200

MicroEmacs '02

xiii

Table of Contents
Global Glossary

calc(3)..1202
capitalize−word(2)...1204
cbl(9)..1205
change−buffer−name(2)...1206
change−directory(2)...1207
change−file−name(2)...1208
change−font(2)...1209
change−frame−depth(2)...1215
change−window−depth(2)...1217
change−window−width(2)...1219
charset−change(3)..1221
check−line−length(3)...1222
clean(3)..1223
cmode(2m)...1225
command−apropos(2)..1226
command−wait(2)..1227
comment−line(3)..1228
compare−windows(2)..1231
compile(3)..1232
copy−region(2)...1233
count−words(2)..1235
create−callback(2)..1236
create−frame(2)..1238
crlf(2m)..1239
crypt(2m)..1240
sh(9)...1241
ctags(3f)...1243
ctrlz(2m)...1245
cvs(3)..1246
gdb(3)...1250
define−help(2)..1251
define−macro(2)...1253
define−macro−file(2)...1256
del(2m)...1258
delete−blank−lines(2)..1259
delete−buffer(2)...1260
delete−dictionary(2)...1261
delete−frame(2)..1262
delete−indentation(3)...1263
delete−window(2)..1264
delete−registry(2)...1265
delete−some−buffers(2)...1266
describe−bindings(2)...1267
describe−key(2)...1272
describe−variable(2)..1273

MicroEmacs '02

xiv

Table of Contents
Global Glossary

describe−word(3)...1274
dir(2m)...1277
directory−tree(2)..1278
display−matching−fence(3)...1280
display−white−chars(3)...1282
txt(9)...1283
dos2unix(3f)...1287
draw(3)...1288
eaf(8)..1290
edf(8)..1294
edit(2m)..1295
edit−dictionary(3)..1296
ehf(8)..1297
ehf(9)..1302
ehftools(3f)...1303
emf(8)...1304
emf(9)...1306
emftags(3f)...1308
start−kbd−macro(2)...1310
erf(8)..1311
erf(9)..1313
etf(8)...1314
exact(2m)...1316
exchange−point−and−mark(2)...1317
execute−buffer(2)...1318
execute−file(2)...1319
execute−kbd−macro(2)..1320
execute−named−command(2)..1321
execute−string(2)...1322
execute−tool(3)..1324
exit−emacs(2)...1327
expand−abbrev(2)..1328
expand−abbrev−handle(3)...1329
expand−iso−accents(3)..1331
expand−look−back(3)..1333
expand−word(3)...1334
f(9)..1335
fence(2m)...1336
file−attrib(3)...1337
file−browser(3)..1339
file−op(2)...1341
fileHooks(2)...1343
fill−paragraph(2)..1351
filter−buffer(2)...1353
find−bfile(3)...1354

MicroEmacs '02

xv

Table of Contents
Global Glossary

next−buffer(2)..1355
find−file(2)...1356
find−registry(2)..1360
find−tag(2)...1362
spell−buffer(3)...1364
find−zfile(3)...1369
fold−current(3)...1373
ftp(3)..1377
fvwm(9)..1380
gdiff(3f)..1381
generate−tags−file(3)...1382
get−next−line(2)...1384
get−registry(2)...1385
global−bind−key(2)...1387
goto−alpha−mark(2)..1389
goto−line(2)...1390
goto−matching−fence(2)..1391
set−position(2)...1392
grep(3)..1395
help(2)..1397
hide(2m)...1399
hilight(2)..1400
ini(9)...1411
html(9)...1412
hunt−forward(2)...1414
Installation(1)...1415
Interfacing(2)...1426
ifill−paragraph(3)...1428
imakefile(9)..1430
indent(2)...1431
indent(2m)..1436
info(9)..1437
insert−file(2)..1438
insert−file−name(2)...1439
insert−macro(2)..1440
insert−newline(2)...1441
insert−space(2)...1442
insert−string(2)...1443
insert−tab(2)...1444
ipipe−shell−command(2)...1445
isearch−forward(2)...1448
item−list(3)...1450
java(9)..1453
javatags(3f)..1456
justify(2m)...1458

MicroEmacs '02

xvi

Table of Contents
Global Glossary

kbd−macro−query(2)...1459
keyNames(2)..1460
kill−line(2)...1464
kill−paragraph(2)...1465
kill−rectangle(2)...1466
kill−region(2)...1468
languageTemplates(2)..1470
latex(9)...1481
letter(2m)..1483
line(2m)..1484
line−scheme−search(3)..1485
list−buffers(2)..1487
list−commands(2)..1489
list−registry(2)...1491
list−variables(2)...1492
localeSupport(2)...1494
lock(2m)...1499
MacroNumericArguments(4)...1500
Mahjongg(3)..1502
MainMenu(3)...1504
Match−It(3)..1515
MetaFont(9)...1518
Metris(3)..1519
m4(9)..1521
magic(2m)..1522
vm(3)..1526
makefile(9)...1530
man(3)..1532
man(9)..1533
mark−registry(2)..1534
me(1)..1536
me32.ini(8)...1543
memsdev(1)..1546
ml−bind−key(2)...1549
ml−clear(2)...1552
ml−write(2)..1553
nact(2m)...1554
name−kbd−macro(2)..1555
narrow(2m)..1556
narrow−buffer(2)...1557
newline(2)..1559
next−frame(2)..1560
next−window(2)...1561
next−window−find−buffer(2)..1563
next−window−find−file(2)...1564

MicroEmacs '02

xvii

Table of Contents
Global Glossary

normal−tab(3)..1566
ntags(3f)...1567
occur(3)..1569
organizer(3)..1570
osd(2)...1580
osd−bind−key(2)..1592
osd−dialog(3)...1593
osd−help(3)..1596
over(2m)...1598
Patience(3)...1599
p(9)...1601
paragraph−to−line(3)...1602
perl(9)...1603
perldb(3)...1605
pipe(2m)...1606
popup−window(2)..1607
prefix(2)...1608
print−buffer(2)...1610
print−color(2)...1615
print−setup(3)...1617
printall(3f)..1622
python(9)..1623
query−replace−all−string(3)..1624
query−replace−string(2)...1626
quick−exit(2)..1628
quiet(2m)..1629
quote−char(2)...1630
RegularExpressions(2)...1631
rbin(2m)...1638
rcs−file(2)...1640
read−file(2)..1641
read−history(2)...1642
read−registry(2)...1643
recenter(2)..1646
regex−forward(3)...1647
replace−all−pairs(3)...1649
replace−all−string(3)..1651
replace−string(2)..1653
reread−file(3)...1654
resize−all−windows(2)...1655
restyle−buffer(3)..1656
reyank(2)..1657
rul(9)..1658
save(2m)...1660
save−all(3)...1661

MicroEmacs '02

xviii

Table of Contents
Global Glossary

save−buffer(2)..1662
save−dictionary(2)...1664
save−history(2)..1665
save−registry(2)...1666
save−some−buffers(2)...1667
scheme(9)...1668
scheme−editor(3)...1669
screen−poke(2)...1673
screen−update(2)..1675
scroll−down(2)...1677
scroll−left(2)..1678
scroll−next−window−down(2)...1681
search−forward(2)..1682
set−alpha−mark(2)...1684
set−char−mask(2)...1685
set−cursor−to−mouse(2)..1690
set−encryption−key(2)...1691
set−mark(2)..1692
set−scroll−with−mouse(2)...1693
set−variable(2)...1695
shell(2)...1696
shell−command(2)...1697
show−cursor(2)..1698
show−region(2)..1699
start−up(3)..1701
sort−lines(2)...1702
sort−lines−ignore−case(3)...1704
spell(2)...1705
spell−add−word(3)...1708
split−window−horizontally(2)...1709
split−window−vertically(2)...1710
sql(9)..1711
suspend−emacs(2)..1712
symbol(3)...1713
Triangle(3)...1714
tab(2)..1716
tab(2m)...1717
tabs−to−spaces(3)..1718
tcl(9)...1719
tcltags(3f)...1721
texinfo(9)..1723
textags(3f)..1724
time(2m)...1726
time(3)..1727
translate−key(2)...1728

MicroEmacs '02

xix

Table of Contents
Global Glossary

transpose−chars(2)...1733
User Profiles(2)..1734
undo(2)...1740
undo(2m)..1741
uniq(3)..1742
universal−argument(2)...1743
user−setup(3)...1744
usr(2m)...1765
vhdl(9)..1766
view(2m)..1767
view−file(2)...1768
void(2)..1769
vrml(9)...1770
wrap(2m)..1772
wrap−word(2)..1773
write−buffer(2)...1774
x86(9)...1776
yank(2)...1778

Frequently Asked Questions..1780
FAQs(0f)..1782
FAQ(00) − New functionality; what is useful to me as an old MicroEmacs user ??........................1783
FAQ(01) − Languages; Are any foreign languages supported other than English ??.......................1784
FAQ(02) − C++ is not default, C is − how do I change this ??...1785
FAQ(03) − GNU Emacs; are there any GNU Emacs bindings. ?..1786
FAQ(04) − Icons are not displayed correctly in Microsoft Windows environments !!.....................1787
FAQ(05) − ipipes not working on Microsoft Windows network drives ?...1788
FAQ(06) − Language not supported − will it be ??...1789
FAQ(07) − Language file is incomplete..1790
FAQ(08) − Input locked up and not accepting keys; how do I unlock ?...1791
FAQ(09) − MicroEmacs Bindings; How do I get the original MicroEmacs bindings ?...................1792
FAQ(10) − Microsoft Windows Locks up after killing an ipipe...1793
FAQ(11) − Mouse support under Microsoft windows is strange !!..1794
FAQ(12) − Scroll bars too narrow !!...1795
FAQ(13) − Tab key; Why does the tab key not operate in some windows ??..................................1796
FAQ(14) − Termcap; On a color terminal why is there no color ??..1797
FAQ(15) − Termcap; Some of the keys do not work − how can I bind them ?................................1798
FAQ(16) − Timestamp; Format incorrect, how can I change to MMDDYY.hhmm ?......................1799
FAQ(17) − Windows; Component characters rendered incorrectly, how do I fix ?.........................1800
FAQ(18) − Windows Autosave and Backup files; are these potentially a problem ?.......................1801
FAQ(19) − Printing; Why in Windows does the output come out in a buffer ??..............................1802
FAQ(20) − Printing; On Windows which font should I use ??...1803
FAQ(21) − Printing; My printer is not supported ?...1804
FAQ(22) − Alt key maps to the Menu, how do I change ?..1805
FAQ(23) − me32.ini − Where does it go, how do I know it's being processed ??............................1806

MicroEmacs '02

xx

Table of Contents
Frequently Asked Questions

FAQ(24) − Windows − Where is app850.fon ?...1807
FAQ(25) − Time; mode line is showing the date in DD/MM/YY format how do I change ?..........1808
FAQ(26) − C or C++ indentation and effects; how can I turn off ?..1809
FAQ(27) − fill−paragraph function does not fill ??...1811
FAQ(28) − Key modifier which acts as the ESC key; what is it ?..1812
FAQ(29) − find−file start location; where is it ?...1813
FAQ(30) − Re−using a MicroEmacs session; how to ??...1814
FAQ(31) − Microsoft Drag and Drop; is it supported ??..1815
FAQ(32) − Cut and Paste to/from other applications; is it supported ??...1816
FAQ(33) − Fonts; how can I change the font ??..1817
FAQ(34) − Colors; how can I change screen colors ??...1818
FAQ(35) − File Types; how do I interchange between UNIX, Windows and DOS files ??.............1819
FAQ(36) − Non−English Languages; What font should I select ??..1820
FAQ(37) − MicroEmacs '99; How do I up−grade from MicroEmacs'98 ??......................................1821
FAQ(38) − Some keys on my foreign keyboard do not work properly, how do I get them
 working ??...1822
FAQ(39) − Tabs; How to change the tab width ??..1823
FAQ(40) − Windows/DOS; Where do I get grep/diff etc. ??..1825
FAQ(41) − Home/End Keys; How do I change the default bindings ??...1826
FAQ(42) − tags; How do I generate a MicroEmacs compatible tags file ??.....................................1827

MicroEmacs '02

xxi

MicroEmacs '02
MICROEMACS

MicroEmacs '02, JASSPA Distribution, is defined as follows, refer to me(1) for a description of the
command line variables.

The following sections describe the topics that are available as part of the on−line MicroEmacs '02
manual pages.

Acknowledgments, Copyright, Origins and Contact Information.
Frequently Asked Questions.

See Help! for some information on using the hypertext manual pages.

Installation Information
Setting Up A User Profile
Setting Up a Company Profile

Top Main Menu
Essential Commands
Help Information
Key Bindings

File Handling Commands
Dialogs and Menus
Cursor Movement Commands
Insertion and Deletion Commands
Paragraph and Text Formatting Commands
Capitalization and Transposition Commands
Searching and Replacing
Macro Commands
Buffer Manipulation Commands
Window Commands

Keyboard Binding Commands
Operating Modes
Shell and Command Controls
Spelling Commands
Hilighting, Color and Screen Appearance
Comparison and Differencing Commands
Short Cuts and Abbreviations
Message Line Commands
Printing Commands
Macro Development Commands
Registry Commands
Command Line Filters

MicroEmacs '02 1

Games

Glossaries

Command Glossary
Variable Glossary
Macro Language Glossary
Global Glossary

Miscellaneous Information

The following topics provide more in depth information:−

Language Templates
File Hooks
Editor Files
Compatibility with the original MicroEMACS
Interfacing to external components
Supported File Types
Client−Server Interface
Regular Expressions
Building the source

MicroEmacs '02

MicroEmacs '02 2

me(1)

NAME

me − MicroEmacs '02 text editor

SYNOPSIS

me [options] [files ...]

me [@startupFile] [−b] [−c] [−d] [−h] [−i] [−llineNo] [−mcommand] [−n] [−0file] [−p] [−r]
[−sstring] [−uusername] [−vvariable=string] [−x] files...

DESCRIPTION

MicroEmacs '02 is a cut down version of the EMACS text editor, based on Danial Lawrences
MicroEmacs. MicroEmacs '02 is a tool for creating and changing documents, programs, and other
text files. It is both relatively easy for the novice to use, but also very powerful in the hands of an
expert. MicroEmacs '02 can be extensively customized for the needs of the individual user.

MicroEmacs '02 allows multiple files to be edited at the same time. The screen may be split into
different windows and screens, and text may be moved freely from one window on any screen to the
next. Depending on the type of file being edited, MicroEmacs '02 can change how it behaves to
make editing simple. Editing standard text files, program files and word processing documents are all
possible at the same time.

There are extensive capabilities to make word processing and editing easier. These include commands
for string searching and replacing, paragraph reformatting and deleting, automatic word wrapping,
word move and deletes, easy case controlling, and automatic word counts.

For complex and repetitive editing tasks editing macros can be written. These macros allow the user a
great degree of flexibility in determining how MicroEmacs '02 behaves. Also, any and all the
commands can be used by any key stroke by changing, or rebinding, what commands various keys
invoke.

Special features are also available to perform a diverse set of operations such as file encryption,
automatic backup file generation, entabbing and detabbing lines, executing operating system
commands and filtering of text through other programs.

The command line options to MicroEmacs '02 are defined as follows:−

@startFile

Initialize MicroEmacs '02 using startFile[.emf]. The default when omitted is me.emf. See start−up(3)
and Command Line Filters for more information.

MicroEmacs '02

me(1) 3

−b

Load next file as a binary file (binary editor mode, uses binary(2m) buffer mode).

−c

Continuation mode. Load MicroEmacs '02 last edit session, restoring the buffers to their previous
loaded state and position. Note that history mode must be enabled. The −c option is generally used
with windowing interfaces (X−Windows/Microsoft Windows) as the shortcut icon invocation.

−d

Enable debug mode (for macro files).

−h

Show the help page (does not start the editor).

−i

MS−DOS versions of MicroEmacs '02 only. Insert the contents of the current screen into the
scratch buffer

−k[key]

Load next file as an encrypted file (uses crypt(2m) buffer mode). The optional adjoining argument can
be used to specify the decrypting key, if this argument is not specify the user will be prompted for it
on start−up.

−llineNo

Go to line lineNo in the next given file. Typically used with utilities such a more(1) where an external
editor may be invoked from other viewer.

−mcommand

Sends a client−server command to an existing MicroEmacs session. The command takes the
form "C:<client>:<command>" i.e. to write "Hello World" on the message line then a
client may issue the command:−

; launch server
me &
; send message
me −m "C:ME:ml−write \"Hello world\"

Note that the <command> is a MicroEmacs macro command, the escape sequences must be
adhered to. The client−server interface is typically used to load a file, this may be performed
as follows:−

me −m "C:myutility:find−file \"/path/foo.bar\""

MicroEmacs '02

me(1) 4

The absolute path is specified in this type of transaction as the current working directory of
the active MicroEmacs session is unknown. The −m option de−iconize's the existing editor
session and bring it to the foreground.

−n

UNIX X−Windows environments only and MicroSoft Windows NT console versions. Execute
MicroEmacs '02 using termcap rather than X−Windows for UNIX; typically used within an xterm
shell to fire up MicroEmacs '02 for a quick edit. For Microsoft Windows, a console window is
started as opposed to a GUI window.

−o<file>

Use already running version of MicroEmacs '02 to load the <file>, if it exists, otherwise start a new
editor session. This uses the client−server interface to push the new file into the existing editor
session. Refer to the Client−Server Interface for details.

−p

Pipe stdin into buffer *stdin*, when saved output to stdout, following is a simple example
which changes 'a's to 'b's:

 define−macro start−up
 find−buffer "*stdin*"
 beginning−of−buffer
 replace−string "a" "b"
 save−buffer
 quick−exit
 !emacro

This can be used in the following manner:

 me "@testpipe.emf" < foo.a > foo.b

−r

Read−only, all buffers will be in view mode

−sstring

Search for string "string" in the current buffer. e.g. me −sfoo bar starts MicroEmacs '02, loads
file bar and initiates a search for foo. The cursor is left at the end of the string if located, otherwise at
the top of the buffer.

−uusername

Set the current user name to username before MicroEmacs is initialized. This is done by setting the
environment variable MENAME(5) to the given value.

−vvariable=string

MicroEmacs '02

me(1) 5

Assign the MicroEmacs '02 variable with string. The assignment is performed before the buffers are
loaded. Typically used to change the start−up characteristics of the startup file(s).

−x

UNIX environments. Disable the capture of signals. MicroEmacs '02 by default captures an handles
all illicit signal interrupts. The option is enabled when debugging the source code allowing exception
conditions to be trapped within the debugger.

−y

Load next file as a reduced binary file (uses rbin(2m) buffer mode). ENVIRONMENT

The following environment variables are used by MicroEmacs '02.

DISPLAY

UNIX environments running X−Windows only. The identity of the X−Windows server. Typically set
to unix:0.0, refer to the X−Windows documentation for details of this environment variable.

MENAME and LOGNAME

The identity of the user, $MENAME takes precedence over $LOGNAME. $LOGNAME variable is
generally defined within UNIX as part of the login script. The variables are used to determine which
start−up configuration to use in the initialization of MicroEmacs '02 ($MENAME.erf).

Non−UNIX platforms usually need to explicitly set the $MENAME environment variable to
identify the aforementioned files. for MS−DOS and Microsoft Windows this is typically
performed in the AUTOEXEC.BAT file.

PATH

The $PATH environment variable is used on most operating systems as a search path for
executable files. This $PATH environment variable must be defined with MicroEmacs '02
on the search path. Under UNIX this is set in the .login, .cshrc or .profile file i.e.

export PATH $PATH:/usr/name/me

Within MS−DOS or Microsoft Windows environments it is defined in the AUTOEXEC.BAT
file. e.g.

set PATH=%PATH%;c:\me

MicroEmacs '02 utilizes information in the $PATH environment variable to locate the
start−up files, dictionaries etc.

TERM

MicroEmacs '02

me(1) 6

The terminal identification sting. In UNIX environments the environment variable $TERM is set to
"vt...", in this case it is assumed that the machine is a server, and the host cannot support X (see
command line option −n).

In MS−DOS the environment variable is usually set to define the graphics adapter mode.
%TERM is assigned a string, understood by the me.emf start−up file, to set the graphics
mode. Predefined strings include:−

E80x50

Initiates an 80 column by 50 line screen.

E80x25

Initiates an 80 column by 25 line screen.

userDefined

A user defined string to set an explicit graphics card mode. The operation is dependent upon the
support offered by the graphics adapter.

MEPATH

MicroEmacs '02 uses the environment variable $MEPATH as the directory(s) used to search
for the macro files (see emf(8)). Within the UNIX $MEPATH is a semi−colon separated list of
directories which are used to search for the MicroEmacs '02 macro files. The path is searched
from left to right. The environment variable is typically defined in the in the .login,
.cshrc or .profile file i.e.

export MEPATH /usr/name/me/macros:/usr/local/microemacs

The default when omitted is /usr/local/microemacs.

Within MS−DOS or Microsoft Windows environments it is defined in the AUTOEXEC.BAT
file. e.g.

set MEPATH=c:\me\username;\me\macros

There is no default location in these environments. For Microsoft Windows environments
refer to me32.ini(8) for a method of setting up the $MEPATH from the windows configuration
file.

INFOPATH

MicroEmacs '02 uses the environment variable $INFOPATH as the directory(s) used to
search for GNU Info files. Within the UNIX $INFOPATH is a semi−colon separated list of
directories which are used to search for the MicroEmacs '02 macro files. The path is searched
from left to right. The environment variable is typically defined in the in the .login,
.cshrc or .profile file i.e.

MicroEmacs '02

me(1) 7

export INFOPATH /usr/local/info:$HOME/info

The default when omitted is /usr/local/info.

Within MS−DOS or Microsoft Windows environments it is defined in the AUTOEXEC.BAT
file. e.g.

set MEPATH=c:\usr\local\info

There is no default location in these environments. For Microsoft Windows environments
refer to me32.ini(8) for a method of setting up the $INFOPATH from the windows
configuration file.

FILES

All of the macro files and dictionaries are located in the MicroEmacs home directory. The standard
file extensions that are utilized are:−

.eaf

MicroEmacs '02 abbreviation file, defines completion definitions for buffer dependent text
expansion.

.edf

A MicroEmacs '02 spelling dictionary. <language>.edf provide language specific dictionaries;
$LOGNAME.edf is personal spelling dictionary.

.ehf

MicroEmacs '02 help file information. On−line help information for emacs, the main file is me.ehf.

.emf

A MicroEmacs '02 macro file. The following classes of macro file exist:

me.emf

The default startup file.

<platform>.emf

A platform specify startup file, these include UNIX generic (unixterm.emf), UNIX
specific (irix.emf, hpux.emf, unixwr1.emf, linux.emf, sunos.emf etc),
Microsoft Windows (win32.emf), MS−DOS (dos.emf).

hkxxxxxx.emf

MicroEmacs '02

me(1) 8

Buffer context specific hook files to initialize a buffer with macros and highlighting appropriate to the
contents of the file type. e.g. 'C' language editing (hkc.emf), N/Troff typesetting (hknroff.emf),
UNIX Manual page display (hkman.emf), Makefiles (hkmake.emf), etc.

.erf

Registry files, used to retain personal information, users history in the file etc.

.etf

Template files used to seed new files. Typically contains standard header information, copyright notices etc.
that are placed at the head of files. The 'C' programming language is called c.etf MICROSOFT
WINDOWS

Microsoft Windows environments should refer to me32.ini(8) for a method of setting up the
environment variables without editing the AUTOEXEC.BAT configuration file.

SEE ALSO

emf(8), erf(8), emacs(1) [GNU], more(1), vi(1).
Client−Server Interface.
Command Line Filters.

MicroEmacs '02

me(1) 9

Acknowledgments

ACKNOWLEDGMENTS

The following persons contributed to this release of MicroEmacs '02 over the last decade, roughly in
the order of participation. This list represents the main developers:−

Danial M. Lawrence (Original Author)
Martin House
Jon Green − Current Maintainer
Callen McNally
Steven Phillips − Current Maintainer

Additional contributions have been made as follows, in chrononlogical order:−

Detlef Groth [June 1999]

Setting up and validating the German environment.
Latex features and excellent feedback.

Pedro Gomes [May 1999]

Portuguese Dictionary.
Cobol and Intel x86 language templates.
Metapost/Meta Font templates.

Matthew Robinson [Feburary 1999]

Developed the WinConsole version for Windows NT.

Thanks to everybody else that has used and abused it locally feeding back comments and preferences,
wishes and desires.

MicroEmacs '02

Acknowledgments 10

Copyright

COPYRIGHT

GNU General Public License (GPL)

All source and macro code is covered by the GPL.

 GNU GENERAL PUBLIC LICENSE
 Version 2, June 1991

 Copyright (C) 1989, 1991 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

 Preamble

 The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software−−to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Library General Public License instead.) You can apply it to
your programs, too.

 When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

 To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

 For example, if you distribute copies of such a program, whether
gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

 We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

 Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

MicroEmacs '02

Copyright 11

 Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

 The precise terms and conditions for copying, distribution and
modification follow.

 GNU GENERAL PUBLIC LICENSE
 TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

 0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

 1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

 2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

 a) You must cause the modified files to carry prominent notices
 stating that you changed the files and the date of any change.

 b) You must cause any work that you distribute or publish, that in
 whole or in part contains or is derived from the Program or any
 part thereof, to be licensed as a whole at no charge to all third
 parties under the terms of this License.

 c) If the modified program normally reads commands interactively
 when run, you must cause it, when started running for such
 interactive use in the most ordinary way, to print or display an
 announcement including an appropriate copyright notice and a
 notice that there is no warranty (or else, saying that you provide

MicroEmacs '02

Copyright 12

 a warranty) and that users may redistribute the program under
 these conditions, and telling the user how to view a copy of this
 License. (Exception: if the Program itself is interactive but
 does not normally print such an announcement, your work based on
 the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

 3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

 a) Accompany it with the complete corresponding machine−readable
 source code, which must be distributed under the terms of Sections
 1 and 2 above on a medium customarily used for software interchange; or,

 b) Accompany it with a written offer, valid for at least three
 years, to give any third party, for a charge no more than your
 cost of physically performing source distribution, a complete
 machine−readable copy of the corresponding source code, to be
 distributed under the terms of Sections 1 and 2 above on a medium
 customarily used for software interchange; or,

 c) Accompany it with the information you received as to the offer
 to distribute corresponding source code. (This alternative is
 allowed only for noncommercial distribution and only if you
 received the program in object code or executable form with such
 an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering

MicroEmacs '02

Copyright 13

access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

 4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

 5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

 6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

 7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty−free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

MicroEmacs '02

Copyright 14

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

 8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

 9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

 10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

 NO WARRANTY

 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

 END OF TERMS AND CONDITIONS

 How to Apply These Terms to Your New Programs

 If you develop a new program, and you want it to be of the greatest

MicroEmacs '02

Copyright 15

possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

 To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

 <one line to give the program's name and a brief idea of what it does.>
 Copyright (C) <year> <name of author>

 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation; either version 2 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 GNU General Public License for more details.

 You should have received a copy of the GNU General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

 Gnomovision version 69, Copyright (C) year name of author
 Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
 This is free software, and you are welcome to redistribute it
 under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse−clicks or menu items−−whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

 Yoyodyne, Inc., hereby disclaims all copyright interest in the program
 `Gnomovision' (which makes passes at compilers) written by James Hacker.

 <signature of Ty Coon>, 1 April 1989
 Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Library General
Public License instead of this License.

GNU Free Documentation License (GFDL)

MicroEmacs '02

Copyright 16

All documentation is covered by the GFDL.

 GNU Free Documentation License
 Version 1.1, March 2000

 Copyright (C) 2000 Free Software Foundation, Inc.
 59 Temple Place, Suite 330, Boston, MA 02111−1307 USA
 Everyone is permitted to copy and distribute verbatim copies
 of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other
written document "free" in the sense of freedom: to assure everyone
the effective freedom to copy and redistribute it, with or without
modifying it, either commercially or noncommercially. Secondarily,
this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for
modifications made by others.

This License is a kind of "copyleft", which means that derivative
works of the document must themselves be free in the same sense. It
complements the GNU General Public License, which is a copyleft
license designed for free software.

We have designed this License in order to use it for manuals for free
software, because free software needs free documentation: a free
program should come with manuals providing the same freedoms that the
software does. But this License is not limited to software manuals;
it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License
principally for works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work that contains a
notice placed by the copyright holder saying it can be distributed
under the terms of this License. The "Document", below, refers to any
such manual or work. Any member of the public is a licensee, and is
addressed as "you".

A "Modified Version" of the Document means any work containing the
Document or a portion of it, either copied verbatim, or with
modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front−matter section of
the Document that deals exclusively with the relationship of the
publishers or authors of the Document to the Document's overall subject
(or to related matters) and contains nothing that could fall directly
within that overall subject. (For example, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any
mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal,
commercial, philosophical, ethical or political position regarding

MicroEmacs '02

Copyright 17

them.

The "Invariant Sections" are certain Secondary Sections whose titles
are designated, as being those of Invariant Sections, in the notice
that says that the Document is released under this License.

The "Cover Texts" are certain short passages of text that are listed,
as Front−Cover Texts or Back−Cover Texts, in the notice that says that
the Document is released under this License.

A "Transparent" copy of the Document means a machine−readable copy,
represented in a format whose specification is available to the
general public, whose contents can be viewed and edited directly and
straightforwardly with generic text editors or (for images composed of
pixels) generic paint programs or (for drawings) some widely available
drawing editor, and that is suitable for input to text formatters or
for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file
format whose markup has been designed to thwart or discourage
subsequent modification by readers is not Transparent. A copy that is
not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain
ASCII without markup, Texinfo input format, LaTeX input format, SGML
or XML using a publicly available DTD, and standard−conforming simple
HTML designed for human modification. Opaque formats include
PostScript, PDF, proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or
processing tools are not generally available, and the
machine−generated HTML produced by some word processors for output
purposes only.

The "Title Page" means, for a printed book, the title page itself,
plus such following pages as are needed to hold, legibly, the material
this License requires to appear in the title page. For works in
formats which do not have any title page as such, "Title Page" means
the text near the most prominent appearance of the work's title,
preceding the beginning of the body of the text.

2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either
commercially or noncommercially, provided that this License, the
copyright notices, and the license notice saying this License applies
to the Document are reproduced in all copies, and that you add no other
conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further
copying of the copies you make or distribute. However, you may accept
compensation in exchange for copies. If you distribute a large enough
number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and
you may publicly display copies.

3. COPYING IN QUANTITY

If you publish printed copies of the Document numbering more than 100,

MicroEmacs '02

Copyright 18

and the Document's license notice requires Cover Texts, you must enclose
the copies in covers that carry, clearly and legibly, all these Cover
Texts: Front−Cover Texts on the front cover, and Back−Cover Texts on
the back cover. Both covers must also clearly and legibly identify
you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and
visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve
the title of the Document and satisfy these conditions, can be treated
as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit
legibly, you should put the first ones listed (as many as fit
reasonably) on the actual cover, and continue the rest onto adjacent
pages.

If you publish or distribute Opaque copies of the Document numbering
more than 100, you must either include a machine−readable Transparent
copy along with each Opaque copy, or state in or with each Opaque copy
a publicly−accessible computer−network location containing a complete
Transparent copy of the Document, free of added material, which the
general network−using public has access to download anonymously at no
charge using public−standard network protocols. If you use the latter
option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this
Transparent copy will remain thus accessible at the stated location
until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to
the public.

It is requested, but not required, that you contact the authors of the
Document well before redistributing any large number of copies, to give
them a chance to provide you with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under
the conditions of sections 2 and 3 above, provided that you release
the Modified Version under precisely this License, with the Modified
Version filling the role of the Document, thus licensing distribution
and modification of the Modified Version to whoever possesses a copy
of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct
 from that of the Document, and from those of previous versions
 (which should, if there were any, be listed in the History section
 of the Document). You may use the same title as a previous version
 if the original publisher of that version gives permission.
B. List on the Title Page, as authors, one or more persons or entities
 responsible for authorship of the modifications in the Modified
 Version, together with at least five of the principal authors of the
 Document (all of its principal authors, if it has less than five).
C. State on the Title page the name of the publisher of the
 Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications
 adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice

MicroEmacs '02

Copyright 19

 giving the public permission to use the Modified Version under the
 terms of this License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections
 and required Cover Texts given in the Document's license notice.
H. Include an unaltered copy of this License.
I. Preserve the section entitled "History", and its title, and add to
 it an item stating at least the title, year, new authors, and
 publisher of the Modified Version as given on the Title Page. If
 there is no section entitled "History" in the Document, create one
 stating the title, year, authors, and publisher of the Document as
 given on its Title Page, then add an item describing the Modified
 Version as stated in the previous sentence.
J. Preserve the network location, if any, given in the Document for
 public access to a Transparent copy of the Document, and likewise
 the network locations given in the Document for previous versions
 it was based on. These may be placed in the "History" section.
 You may omit a network location for a work that was published at
 least four years before the Document itself, or if the original
 publisher of the version it refers to gives permission.
K. In any section entitled "Acknowledgements" or "Dedications",
 preserve the section's title, and preserve in the section all the
 substance and tone of each of the contributor acknowledgements
 and/or dedications given therein.
L. Preserve all the Invariant Sections of the Document,
 unaltered in their text and in their titles. Section numbers
 or the equivalent are not considered part of the section titles.
M. Delete any section entitled "Endorsements". Such a section
 may not be included in the Modified Version.
N. Do not retitle any existing section as "Endorsements"
 or to conflict in title with any Invariant Section.

If the Modified Version includes new front−matter sections or
appendices that qualify as Secondary Sections and contain no material
copied from the Document, you may at your option designate some or all
of these sections as invariant. To do this, add their titles to the
list of Invariant Sections in the Modified Version's license notice.
These titles must be distinct from any other section titles.

You may add a section entitled "Endorsements", provided it contains
nothing but endorsements of your Modified Version by various
parties−−for example, statements of peer review or that the text has
been approved by an organization as the authoritative definition of a
standard.

You may add a passage of up to five words as a Front−Cover Text, and a
passage of up to 25 words as a Back−Cover Text, to the end of the list
of Cover Texts in the Modified Version. Only one passage of
Front−Cover Text and one of Back−Cover Text may be added by (or
through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or
by arrangement made by the same entity you are acting on behalf of,
you may not add another; but you may replace the old one, on explicit
permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License
give permission to use their names for publicity for or to assert or
imply endorsement of any Modified Version.

MicroEmacs '02

Copyright 20

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this
License, under the terms defined in section 4 above for modified
versions, provided that you include in the combination all of the
Invariant Sections of all of the original documents, unmodified, and
list them all as Invariant Sections of your combined work in its
license notice.

The combined work need only contain one copy of this License, and
multiple identical Invariant Sections may be replaced with a single
copy. If there are multiple Invariant Sections with the same name but
different contents, make the title of each such section unique by
adding at the end of it, in parentheses, the name of the original
author or publisher of that section if known, or else a unique number.
Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections entitled "History"
in the various original documents, forming one section entitled
"History"; likewise combine any sections entitled "Acknowledgements",
and any sections entitled "Dedications". You must delete all sections
entitled "Endorsements."

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents
released under this License, and replace the individual copies of this
License in the various documents with a single copy that is included in
the collection, provided that you follow the rules of this License for
verbatim copying of each of the documents in all other respects.

You may extract a single document from such a collection, and distribute
it individually under this License, provided you insert a copy of this
License into the extracted document, and follow this License in all
other respects regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate
and independent documents or works, in or on a volume of a storage or
distribution medium, does not as a whole count as a Modified Version
of the Document, provided no compilation copyright is claimed for the
compilation. Such a compilation is called an "aggregate", and this
License does not apply to the other self−contained works thus compiled
with the Document, on account of their being thus compiled, if they
are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these
copies of the Document, then if the Document is less than one quarter
of the entire aggregate, the Document's Cover Texts may be placed on
covers that surround only the Document within the aggregate.
Otherwise they must appear on covers around the whole aggregate.

8. TRANSLATION

MicroEmacs '02

Copyright 21

Translation is considered a kind of modification, so you may
distribute translations of the Document under the terms of section 4.
Replacing Invariant Sections with translations requires special
permission from their copyright holders, but you may include
translations of some or all Invariant Sections in addition to the
original versions of these Invariant Sections. You may include a
translation of this License provided that you also include the
original English version of this License. In case of a disagreement
between the translation and the original English version of this
License, the original English version will prevail.

9. TERMINATION

You may not copy, modify, sublicense, or distribute the Document except
as expressly provided for under this License. Any other attempt to
copy, modify, sublicense or distribute the Document is void, and will
automatically terminate your rights under this License. However,
parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such
parties remain in full compliance.

10. FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions
of the GNU Free Documentation License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns. See
http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number.
If the Document specifies that a particular numbered version of this
License "or any later version" applies to it, you have the option of
following the terms and conditions either of that specified version or
of any later version that has been published (not as a draft) by the
Free Software Foundation. If the Document does not specify a version
number of this License, you may choose any version ever published (not
as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of
the License in the document and put the following copyright and
license notices just after the title page:

 Copyright (c) YEAR YOUR NAME.
 Permission is granted to copy, distribute and/or modify this document
 under the terms of the GNU Free Documentation License, Version 1.1
 or any later version published by the Free Software Foundation;
 with the Invariant Sections being LIST THEIR TITLES, with the
 Front−Cover Texts being LIST, and with the Back−Cover Texts being LIST.
 A copy of the license is included in the section entitled "GNU
 Free Documentation License".

If you have no Invariant Sections, write "with no Invariant Sections"
instead of saying which ones are invariant. If you have no
Front−Cover Texts, write "no Front−Cover Texts" instead of

MicroEmacs '02

Copyright 22

"Front−Cover Texts being LIST"; likewise for Back−Cover Texts.

If your document contains nontrivial examples of program code, we
recommend releasing these examples in parallel under your choice of
free software license, such as the GNU General Public License,
to permit their use in free software.

License History

JASSPA MicroEmacs is derived from the MicroEmacs 3.8 source base of 1998. As such, all of the
software has been under a commercially restrictive license. JASSPA has upheld the original license
terms laid down my the original author and copyright holder Danial M Lawrence.

JASSPA is the collective name given to the maintainers of JASSPA MicroEmacs. The current
maintainers at the 1st January 2002 are Steven Phillips and Jon Green.

On Wednesday 19th January 2001 JASSPA applied for, and was granted, permission by Danial M
Lawrence to move to the less restrictive licensing terms of GPL. As of 1st January 2002 the JASSPA
distribution of MicroEmacs shall be supplied under this licensing arrangement. The licence is not
transferable to earlier versions of the distribution or to the original program from which is was derived
known as MicroEmacs.

License Terms to 1988

The following copyrights apply from the original source code of version 3.8. No explicit copyrights
were found with the original distribution apart from the following found in the main source code,

(C)opyright 1987 by Daniel M. Lawrence
MicroEMACS can be copied and distributed freely for any non−commercial purposes.
Commercial users may use MicroEMACS inhouse. Shareware distributors may redistribute
MicroEMACS for media costs only. MicroEMACS can only be incorporated into commercial
software or resold with the permission of the current author.

License Terms 1998−2001

The following notices apply after 1988 to 31st December 2001

Copyright (C) 1988 − 2001, JASSPA
JASSPA MicroEmacs can be copied and distributed freely for any non−commercial purposes.
Commercial users may use JASSPA MicroEmacs inhouse. Shareware distributors may
redistribute JASSPA MicroEmacs for media costs only. JASSPA MicroEmacs can only be
incorporated into commercial software or resold with the permission of the current author.

License Terms 2002 and subsequent years

MicroEmacs '02

Copyright 23

GNU Public License (GPL) for all source material. GNU Free Documentation License (GFDL) for all
documentation material.

MicroEmacs '02

Copyright 24

Origins

ORIGINS

This version of MicroEmacs is based on an early MicroEmacs release of 3.8 in 1988, the origins of
which are unknown, except to say it was delivered on a unmarked 5 1/2" floppy disk.

The program was originally ported to a Motorola MVME147 UNIX box as an alternative to vi.
Reliability of the program proved to be a problem as it constantly crashed. In an attempt to rectify the
problems the development of MicroEmacs '02 commenced.

Development has continued from 1988 through to today, on the whole oblivious to further
developments of the existing MicroEmacs program. This was due to no Internet access. It was not
until 1996 the next version of MicroEmacs and mewin (Microsoft Windows (TM) port of the same
program) was downloaded from the Internet and compared. By this time MicroEmacs '02 was
radically different and we were not about to mesh the two together − that would be a step backwards.

Development of MicroEmacs '02 has been biased towards the UNIX platform, as most of the early
development was performed in the UNIX domain. The first of the window servers was X−Windows,
which in turn has shaped the implementation of the Microsoft Windows port. Latterly, we have seen
the resurgence of the IBM−PC platform which is now commonplace. For the return port to the DOS
environment, and subsequent development of the Microsoft Windows port, a UNIX like interface was
required. Most existing users could not abide the primitive editors found on these machines;
Microsoft Windows was an alien and hostile environment when compared with UNIX. Hence, the
MicroEmacs '02 interface utilizes UNIX style cut and paste across all platforms.

For portability, MicroEmacs '02 utilizes character rendering on all platforms regardless of the window
manager. Under X−Windows and Microsoft Windows, the display is still treated as a character based
display, the subtle difference is that the display pane is re−sizable. This means that the scroll bars,
fonts etc. are not as slick as they could be, certainly under Microsoft Windows MicroEmacs '02 looks
positively primitive!! Regardless of the look, the goal of a common editor across all working
platforms has been achieved!

Development History

1988−92

Ported to MVME147, UNIX using curses.◊
Fire fighting to get a stable version.◊
Expanded regular expression syntax.◊

1992−1993

Ported to IBM AIX◊
Ported to Silicon Graphics◊

MicroEmacs '02

Origins 25

1994

DOS built with djgpp, allowed large files to be edited.◊
Color hi−lighting.◊
Re−implemented the macro language. Allowed separately named macros.◊
Get−next−line support.◊
File hooks added.◊
Implemented Electric C.◊
RCS support.◊
Re−implemented backups and auto−saves.◊
Re−implemented isearch.◊
Re−implemented of keyboard macros.◊
Binary file reading support.◊

1995

Integral speller.◊
Ported to HP−UX.◊
Multiple ipipes supported on Unix.◊
Poke−screen support.◊
Call−back macro support.◊
Metris created.◊
Abbreviation and completion.◊
First implementation of mailing and View Mail.◊
Isearch expanded to support magic mode.◊
Session history support.◊
First ported to X−Terminal.◊
Mouse support.◊
Initial printer support.◊

1996

Ported to Slackware Linux.◊
First menu system (implemented in macros).◊
Undo support.◊
First ported to Microsoft Windows 95.◊
Re−implementation of get−next−line.◊
Auto mode support.◊
Magic file hooks added.◊
Proper key name support.◊
Key bindings support numeric arguments.◊

1997

Re−implementation of ipipes to enable terminal support.◊
Initial Directory−Tree support.◊
First implementation of the On Screen Display (OSD) menus and dialogues.◊
Horizontal split window support.◊
Scroll bar support.◊

MicroEmacs '02

Origins 26

Added menu bar.◊
Cursor position correction for hilights with invisible character.◊
Indentation scheme support.◊
Ported to Microsoft NT◊
Ipipes supported on NT.◊

1998

Registry features for configuration.◊
Re−implementation of OSD.◊
Re−implementation of termcap extended key support.◊
Narrow support.◊
Re−implementation of the session history.◊
Re−implemented the speller based on ispell dictionaries.◊
Re−worked the printer interface for Windows.◊
Rationalised mouse key bindings.◊
Added $system variable to configure MicroEmacs.◊
Added random hilight−token addition and removal support.◊
1st Release − September 1998.◊
Support True−type fonts under windows, font selection dialog.◊
Minor Patch − October 1998.◊
Enhanced the operation of the Window pipe's◊
Undo past the last save operation.◊
Added Tabbed entries to OSD.◊
Enhanced user setup using OSD.◊

1999

Introduction of the address and date organizer(3) (replacing the existing cal interface)◊
Generic buffer folding using narrow−buffer(2)◊
Rendered cursor support on all platforms.◊
Smooth scrolling mode.◊
Win32s port, for Microsoft 3.1/3.11 O/S.◊
Re−worked translate−tcap−key to generic translate−key(2) to solve many of the
foreign language problems.

◊

Re−worked the ALT key mapping to allow conventional Emacs meta key bindings.◊
Implemented Auto−Spell utility.◊
Introduction of private macro variables of the form .name and .macro.name.◊
Port to Sun Solaris Intel platform (2.6)◊
Merged the init−hilight and hilight−token into the single hilight(2) command.
Similarly for indent(2).

◊

Enhanced the regexp support in hilight tokens, vastly improving it capability and
usability. Similarly for indent tokens.

◊

Reorganized the hilighting files. Introduction of the scheme−editor(3) and Hilight
Search OSD's.

◊

Implemented box character override support ($system(5) bit 0x10000) on Win32 and
Xterm platforms.

◊

Microsoft Windows native console support.◊
2nd Release − Beta #1 − May 1999.◊

MicroEmacs '02

Origins 27

Bug fixes with multi−language support and spelling dictionaries.◊
Fixed fill−paragraph(2) such that it retains the cursor position in the paragraph when
invoked without arguments.

◊

Moved to GNU regex for search/replace engine.◊
Enhanced isearch such that it operates in *shell* buffers (again).◊
gdiff(3) macro implementation of a graphical diff to allow color annotation of
differences and difference selection. Uses the output of a standard diff(1) utility.

◊

2nd port to IBM AIX.◊
2nd Release − Beta #2 − November 1999◊
Enhanced the latex(9) support macros following various contributions from users.◊
Added Favorites to the File pull down menu. This is a simple mechanism to allow the
user to add a file to a favorites list.

◊

Ground up implementation of the regular expression pattern matcher, following
licensing problems with the GNU regex. The resultant pattern matcher is now a little
faster than GNU regex and is capable of all of the standard regular expression pattern
matches. The pattern matcher has diverged from GNU in that double backslashes are
required in the character classes [..] to allow for escape sequence short cuts such as
'\n' (newline), '\t' (tab) etc. It was felt that this compromise was better than having
to quote the more obscure search characters.

◊

Changed the hilighting and indenting syntax to be GNU regex compliant.◊
Modified compare−windows(2) to ignore white space by default,
compare−windows−exact(3) performs an exact character for character comparison.

◊

Enhanced the tags support to handle multiple tags and recursive directory tree
searching.

◊

Implemented osd−help, a gui front end to the on−line help. Required changes to the
help system which gives macros access to the on−line help buffer, needed for the
index and search.

◊

Over−hauled the hilighting scheme files and editor to support the disabling of buffer
hilighting.

◊

Many bugs fixed on all platforms, in particular unix cutting and pasting (crashes
exceed) and focus problems and NT exit delay.

◊

Added tab and newline character printing in buffers.◊
Introduced message line variables @mx and @mxa.◊
Added ftp support with a new ftp 'file−browser' interface to give easy to use ftp
capability.

◊

2000

Fixed several millennium bugs :)◊
Revamped the printing interface to support colors◊
Started using CVS(1) at last, much better history from now on.◊
Got the emain #define's properly supported again so options so MicroEmacs can be
successfully compiled without options like SPELL and OSD etc. This can reduce the
binary size by up to 37%.

◊

Improved the macro based tag generators to support source code trees and many new
items of information, added new generation GUI.

◊

Greatly improved the OSD based search and replace dialog, also added the line
hilight into this dialog.

◊

Added new −k and −u command−line options and improved −s option.◊

MicroEmacs '02

Origins 28

Greatly improved and increase the file system operations via the new file−op(2)
command, created better menus in the file−browser(3).

◊

Added new set−position(2) which can be used to store all information about the
current window and goto−position(2) which will then restore them. Allowed macros
to use non−letter characters for alpha marks and positions so they no longer need to
clobber user ones.

◊

Greatly improved ipipe−shell−command efficiency on windows by introducing a new
thread approach to listen for activity. Implemented a shell command−line in an ipiped
environment so ishell(3) command is now usable on Windows platforms.

◊

Revamped the main ftp GUI to make it work much more rationally.◊

2001

Changed buffer variables to except the form :<buffer−name>:<variable>, like
command variables. This allows macros to access variable not defined in the current
buffer.

◊

Added new command−wait(2) command to enable macros to wait for user dependent
completion, used in gdiff.

◊

Added support for new $buffer−backup(5) variable for setting the back−up file
location.

◊

Major work to enable the complete rebinding of all keys so the user interface to
MicroEmacs can be completely changed, this allows for example a Windows feel to
be created. This required many internal ghosts to be exorcised and add new macro
functions

◊

Added new generic buffer setup, menu and help macros, creating the new
buffer−setup(3) command. Ported all existing file hooks to this new interface greatly
reducing the buffer hook size while increasing its functionality and consistency.

◊

Added generic commands for the creation, deletion and reformatting of comments
now used by most of the file hooks.

◊

3rd Release − July 2001. Fixed many bugs in the last 12 months as well as adding
the above features. &cbind(4), &kbind(4) and &nbind(4).

◊

Work In Progress or Planned

Development of MicroEmacs '02 is an on−going process, follows is a list of work items which is
currently being undertaken or planned:−

Support for multiple frames.♦
Horizontal scroll bars.♦
On−line tutorial to help beginners get up and running.♦
Native printer support for the generation of postscript.♦
GNU Emacs compatibility macro file.♦

Release History

May 1999

MicroEmacs '02

Origins 29

2nd Major Release − MicroEmacs '99.

October 1998

Minor patch to MicroEmacs '98 to correct a font problem on Windows platforms.

September 1998

1st Major Release − MicroEmacs '98. Documentation

The documentation is all written in UNIX nroff(1) and converted to HTML, Microsoft Windows
Help File format and MicroEmacs Help file format.

MicroEmacs '02

Origins 30

Contact Information

Spelling Dictionary Copyrights

The spelling dictionaries are converted from ispell dictionaries, each spelling dictionary has it's own
copyright which is reproduced within the appropriate language spelling macro file.

NO WARRANTY

THIS PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS
WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR
DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL
DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM
(INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF
THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER
OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

THIS NOTICE MUST BE CARRIED IN ALL COPIES OF THE DISTRIBUTION

CONTACT INFORMATION

The following contact point may be used to report all problems and request information:−

Email:support@jasspa.com

Also visit our web site's on the Internet:−

http://www.jasspa.com
http://www.geocities.com/jasspa

This page carries the latest information and patches on the distribution.

E−Mail Reflector

MicroEmacs '02

Contact Information 31

A E−Mail reflector is available onto which questions, suggestions and code fragments may be posted.
This is an un−moderated E−Mail group. The mailing list archives may be found at:−

http://groups.yahoo.com/group/jasspa/

These should be referenced before posting any questions, as an answer may have already been given.
This mailing list is likely to contain the most up−to−date information available, as JASSPA will use
this for any notifications.

If you want to join the E−Mail reflector then mail a request, with an empty message body to:−

jasspa−subscribe@yahoogroups.com

This should add you to the mailing list. If you want to be subsequently removed from the mailing list
then mail an empty message to:−

jasspa−unsubscribe@yahoogroups.com

and you will be removed from the lists. There are facilities on the site to allow you to receive digests,
rather than multiple posts to the group once you have subscribed.

The mailing list is hosted by YAHOO! Groups. General help information on the mailgroup is
available at their site:−

http://groups.yahoo.com

Help, FAQ and other queries

Please use YAHOO! Groups help information for any queries about the mailing lists, JASSPA have
simply registered and E−Mail group at the site and have not investigated fully all of the facilities that
may be available.

Please check the Frequently Asked Questions. list and the home page FAQ before you submit any
information to JASSPA, your problem may have already been addressed in these pages.

Every effort will be made to deal with your problem as soon as possible. Please send mail with the
titles indicated below so that it maybe filtered. Unless explicitly requested (or appropriate) JASSPA
will only respond through the FAQ lists on the Internet site. It will not be possible to answer
individual enquiries and questions.

Any sites that wish to mirror the JASSPA distribution should contact JASSPA first (use PORT), we
will then include details of the mirror on the home page.

Reporting Problems

MicroEmacs '02

Contact Information 32

Mail as:−

Title: BUG
Message Body: Description of the problem

Problems should be reported such that they may be reproduced, this may not be that easy. The
information that is required is:−

Platform

The host platform which is exhibiting a problem

Version

The version of MicroEmacs '02. Use the esc x about to retrieve the information e.g.

MicroEmacs 01 − Date 01/01/01 − win32

Description

A description of the problem. Try to include as much information as possible. Include any material necessary
to reproduce the problem (i.e. macro files, text file that demonstrates problem etc). Suggestions

Mail as:−

Title: SUGGEST
Message Body: Your suggestion, macro code fragment etc.

We always appreciate suggestions, new macro code fragments etc. We do not have support for all
languages, e.g. Perl, Latex... If you wish have developed new macro templates, or games (we get a
bit bored with the ones that we have developed ourselves) then please mail them to SUGGEST and we
will incorporate them into the release.

Feedback

Mail as:−

Title: FEEDBACK
Message Body: Your feedback.

Any general comments (which are not suggestions), your feelings about this version of MicroEmacs
or any other non−technical dialogue.

Porting

Mail as:−

MicroEmacs '02

Contact Information 33

Title: PORT
Message Body: Details

If you wish to port MicroEmacs '02 to another platform and are willing to undertake responsibility for
maintenance of that platform then we would like to here from you. Send us some details.

MicroEmacs '02

Contact Information 34

Help!

Help!

The on−line manual pages are defined as follows:−

[logo] Title
[link1][link2]..[linkn]

The components of the header are defined as follows:−

[logo]

The MicroEmacs '02 Logo in the top left hand corner of the screen exists on every page and hides a
hypertext link. Selecting this item will take you back to the main MicroEmacs '02 page (Only present
on HTML and Windows help pages).

Title

The title identifies the title of the topic that you are viewing.

[link]

The link line provides quick links to other related material in the on−line manual pages. Use these to take you
to a chosen topic. The [home] link returns to the contents page of the currently viewed topic, this is equivalent
to the Contents button when viewing Microsoft Windows help files. Section Numbering

The section numbering conventions used in these pages is defined as follows:−

(1) − Executable command line.
(2) − Editor built in commands.
(2m) − Editor built in modes.
(3) − Editor commands implemented as macros.
(4) − Editor macro language syntax
(5) − Editor variables
(8) − Editor specific file formats

MicroEmacs '02

Help! 35

Installation(1)

INSTALLATION

This page describes introductory notes for the installation and setup of MicroEmacs '02.

Quick Install

The quickest way to install MicroEmacs without reading the rest of this document is to:−

Create a new directory i.e. me or microemacs.♦
Unpack the macros archive into this directory.♦
Unpack any spelling dictionaries into this directory.♦
Unpack the executable into this directory.♦
Run me from this directory.♦

On starting, use the mouse and configure the user from the menu bar:−

Help−>User Setup

This allows the user and screen settings to be altered. On becoming more accustomed to the editor
then a fuller installation may be performed.

Getting Help

See Contact Information for full contact information. A mail archive exists at:−

http://groups.yahoo.com/group/jasspa/

If you wish to participate in the list then you must first register by sending an empty mail
message body to:−

jasspa−subscribe@yahoogroups.com

You will then be able to mail any questions into the group. Registration is required in order to
prevent spam mailings from entering into the lists.

Distribution

MicroEmacs is distributed in the following files:−

Complete Installations

The Microsoft '95/'98/NT platforms may be installed using the Install Shield installation utility and
do not require the components specified in later sections.
jasspame.exe − '95/'98/NT Self Extracting Install Shield Installation

MicroEmacs '02

Installation(1) 36

Executable Source Code

The source code release for MicroEmacs '02 contains makefiles (*.mak) for all supported platforms.
Microsoft '95/'98/NT makefiles contain options at the top of the makefile to enable/disable console
and URL support. mesrc.zip − Source code for all platforms
mesrc.tar.gz − Source code

Executable Images

medos.zip − DOS Executable
mewin32.zip − Windows 32' (95/98/NT) Executable
mewin32s.zip − Windows win32s (Win3.1/3.11) Executable
meirix6.gz − Silicon Graphics Irix 6 Executable
meaix43.gz − IBM's AIX 4.3 Executable
mehpux10.gz − Hewlett Packard HP−UX 10 Executable
mehpux11.gz − Hewlett Packard HP−UX 11 Executable
mesunos55.gz − Sun OS 5.5 Executable
mesunos56.gz − Sun OS 5.6 Executable
mesolx86.gz − Sun Solaris 2.6 Intel Platform Executable
melinux20.gz − Linux 2.0.0 Executable
mefreebsd.gz − Free BSD Executable

Help File Images (all platforms)

mewinhlp.zip − Windows Help file
mehtm.zip − HTML Help files for 8.3 file systems (.htm)
mehtml.tar.gz − HTML Help files (.html)

Macro File Images (all platforms)

memacros.zip − Macro files
memacros.tar.gz − Macro files

Spelling Dictionaries (all platforms)

One of the following base dictionaries is required for spelling. The extended dictionaries require the
base dictionary and are recommended for a more comprehensive spelling list. Other languages are
supported.

lsdmenus.zip − American rules and base dictionary.
lsdxenus.zip − American extended dictionary.
lsdmengb.zip − British rules and base dictionary.
lsdxengb.zip − British extended dictionary.
lsdmfifi.zip − Finnish rules and dictionary.
lsdmfrfr.zip − French rules and dictionary.
lsdmdede.zip − German rules and base dictionary.
lsdxdede.zip − German extended dictionary.
lsdmitit.zip − Italian rules and dictionary
lsdmplpl.zip − Polish rules and dictionary.

MicroEmacs '02

Installation(1) 37

lsdmptpt.zip − Portuguese rules and dictionary.
lsdmeses.zip − Spanish rules and dictionary.

lsdmenus.tar.gz − American rules and base dictionary.
lsdxenus.gz − American extended dictionary.
lsdmengb.tar.gz − British rules and base dictionary.
lsdxengb.gz − British extended dictionary.
lsdmfifi.tar.gz − Finnish rules and dictionary.
lsdmfrfr.tar.gz − French rules and dictionary.
lsdmdede.tar.gz − German rules and base dictionary.
lsdxdede.gz − German extended dictionary.
lsdmitit.tar.gz − Italian rules and dictionary
lsdmplpl.tar.gz − Polish rules and dictionary.
lsdmptpt.tar.gz − Portuguese rules and dictionary.
lsdmeses.tar.gz − Spanish rules and dictionary.

NOTE: The binary versions of the executables held on the site include the platform name as
part of the executable name i.e. me for DOS is called medos.exe. On installing the binaries
onto the target machine, you should rename the executable to me or me.exe, whatever is
appropriate. The ONLY exception to this rule is the Microsoft Windows executable where
mewin32.exe should be renamed to me32.exe. Our reason for this naming is to allow the
executables to be unpacked in the same directory and not be confused with each other.

Quick Start Guild For All Platforms

Simply create a directory, down−load the files required (see list for each platform below) and extract
into this directory. From a shell or command prompt, change to the directory, making it the current
one (i.e. cd to it), and run the executable. MicroEmacs '02 should open with the on−line help page
visible.

On Windows based systems this can also be achieved by creating a short−cut and setting the Working
Directory in Properties to this path.

To enable MicroEmacs to be run from any directory, simply include this directory in you PATH
environment variable. Alternatively, copy the executable to somewhere in your PATH and set the
environment variable MEPATH to point to this directory.

MicroEmacs '02 will function normally in this environment, but in multi−user environments and for
up−dating purposes, it is strongly recommended that a proper installation is used, see below.

Installation

DOS

Executable:

Compiled with DJGPP V1.0

MicroEmacs '02

Installation(1) 38

Distribution components required:

medos.zip
memacros.zip
<spelling>.zip

mewinhlp.zip if you are using windows 3.1/3.11

Recommended installed components:

4dos − Command shell (giving stderr redirection).
grep − Version of grep (djgpp recommended)
make − Version of make (djgpp recommended)
diff − Version of diff (djgpp recommended)

Installation:

Create the directory c:\me (or other location)

Unzip the MicroEmacs components into c:\me

Edit "c:\autoexec.bat" and add the following lines:−

SET MENAME=<name>
SET PATH=%PATH%;c:\me
SET MEPATH="c:\me"

Reboot the system.

MicroEmacs may be run from the command line using

me

Graphics Cards:

MicroEmacs may be configured to the text modes of your graphics card. Refer to you
graphics card DOS text modes to identify the text modes supported by your monitor. The text
mode number may be entered into the user monitor configuration, defined in Help−>User
Setup.

Running From Windows (3.x)

The DOS version of MicroEmacs may be executed from a .pif file. Use the pif editor
to create a new .pif file to launch MicroEmacs. The size of the DOS window may be
configured from the command line, set the terminal size using one of the following
command lines:−

me −c −v$TERM=E80x50 − 80 x 50 window
me −c −v$TERM=E80x25 − 80 x 25 window.

MicroEmacs '02

Installation(1) 39

We usually add the −c option so that MicroEmacs is executed with history
information. This may be omitted if required.

Windows 3.1/3.11

Executable:

Compiled with Microsoft Developer 2.0

Helper DLL:

Under Win32s a helper DLL methnk16.dll is required to perform the
pipe−shell−command(2) in a synchronous manner. This should be installed into the
C:\WINDOWS\SHELL directory. This (rather inelegantly) gets around the problems of
spawning a process under win32s due to a number of Microsoft bugs in the operating system.
Note: that on a spawn operation a MS−DOS window is visible, this is due to the nature of the
command shell on this platform which has a tendency to prompt the user at every opportunity,
hence a certain amount of interaction (which is out of our control) is necessary.

The helper DLL is compiled with a 16−bit Windows compiler − MSVC 1.5.

Distribution components required:

mewin32s.zip
memacros.zip
mewinhlp.zip
<spelling>.zip

Recommended installed components:

4dos − command shell (giving stderr redirection)
grep − Version of grep (GNU port of grep recommended)
diff − Version of diff (GNU port of grep recommended)
make − use nmake or GNU port of make.

win32s

win32s is a requirement on this platform, typically taken from pw1118.exe which freely
available on the Internet.

Installation:

This version of Windows does not have a install directory as '95/'98 and it is expected that the
MS−DOS version will coexist. No Install Shield installation is provided. Install in a directory
structure similar to MS−DOS. Install the helper DLL methnk16.dll in the
C:\WINDOWS\SHELL directory. Create a me32.ini(8) file in the C:\WINDOWS directory to
identify the location of the MicroEmacs '02 components, this much the same as the '95/'98
file, change the directory paths to suite the install base.

MicroEmacs '02

Installation(1) 40

Support Status:

The win32s release has not been used with vengeance, although no specific problems have been
reported with this release.

Windows '95/'98/NT

Executable:

Compiled with Microsoft Developer 5.0

Install Shield

An Install Shield version of MicroEmacs is available which includes all of the distribution
components.

Distribution components required:

mewin32.zip
memacros.zip
<spelling>.zip
mewinhlp.zip (optional)

Recommended installed components:

4dos or 4nt − command shell
grep − Version of grep (GNU port of grep recommended)
diff − Version of diff (GNU port of grep recommended)
make − use nmake or GNU port of make.

Installation:

Create the directory "C:\Program Files\Jasspa\MicroEmacs" (or other location)

Unzip the MicroEmacs components into "C:\Program
Files\Jasspa\MicroEmacs"

Create the file "c:\windows\me32.ini" and add the following lines:−

[Defaults]
mepath=C:\Program Files\Jasspa\MicroEmacs
userPath=C:\Program Files\Jasspa\MicroEmacs
fontfile=dosapp.fon

Create a short cut to MicroEmacs for the Desktop

Right click on the desk top

=> New
=> Short

MicroEmacs '02

Installation(1) 41

=> Command Line: "c:\Program Files\Jasspa\MicroEmacs\me.exe −c"
=> Short Cut Name: "MicroEmacs"

MicroEmacs may be executed from the shortcut.

Open Actions

Microsoft Windows 95/98/NT provide short cut actions, assigning an open action to a file.
The short cuts may be installed from the Install Shieled installation, but may alternativelly be
explictly defined by editing the registry file with regedit(1).

A file open action in the registry is bound to the file file extension, to bind a file
extension .foo to the editor then the following registry entries should be defined:−

[HKEY_CLASSES_ROOT\.foo]
"MicroEmacs_foo"
[HKEY_CLASSES_ROOT\MicroEmacs_foo\DefaultIcon]
"C:\Program File\JASSPA\MicroEmacs\meicons,23"
[HKEY_CLASSES_ROOT\MicroEmacs_foo\Shell\open]
"&Open"
[HKEY_CLASSES_ROOT\MicroEmacs_foo\Shell\open\command]
"C:\Program File\JASSPA\MicroEmacs\me32.exe −o "%1""

In the previous exaple the DefaultIcon entry is the icon assigned to the file. This may
be an icon taken from meicons.exe (in this case icon number 23), or may be some
other icon. The open action in the example uses the −o option of the client−server,
which loads the file into the current MicroEmacs '02 session, alternatively the −c
option may be used to retain the previous context, or no option if a new session with
no other files loaded is started.

A generic open for ALL files may be defined using a wildcard, this may be used to
place a MicroEmacs edit entry in the right−click popup menu, as follows:−

[HKEY_CLASSES_ROOT*\shell]
[HKEY_CLASSES_ROOT*\shell\MicroEmacs]
"&MicroEmacs"
[HKEY_CLASSES_ROOT*\shell\MicroEmacs\command]
"C:\Program File\JASSPA\MicroEmacs\me32.exe −o "%1""

UNIX

Executable:

Compiled with native compilers.

Distribution Components Required:

me<unix>.gz
memacros.tar.gz
<spelling>.gz
html.tar.gz (optional)

MicroEmacs '02

Installation(1) 42

Installation:

It is recommended that all files are placed in /usr/local, although they may be installed
locally.

Unpack the executable and placed in "/usr/local/bin"

Create the new directory "/usr/local/microemacs", unpack and install the
memacros.tar.gz into this directory.

For csh(1) users execute a "rehash" command and then me(1) can be executed
from the command line.

By default a X−Windows terminal is displayed, ensure that $DISPLAY and $TERM
are correctly configured. To execute a terminal emulation then execute me with the
−n option i.e. "me −n". Note that this is not required if you are using a vt100
emulation.

Organizing a local user profile

MicroEmacs uses local user configuration profiles to store user specific information. The user
information may be stored in the MicroEmacs directory, or more typically in a users private directory.
The environment variable $MENAME is typically used to determine the identity of the user.

The location of the user profile will depend upon your installation configuration.

Single Machine

For a single user machine it is typically easiest to use the installed MicroEmacs directory where user
specific files are placed. This method, although not recommended, is simple as all files that are
executed are in the same location. The $MEPATH is not changed.

UNIX

The UNIX environment is fairly easy and operates as most other UNIX applications. The user should
create a MicroEmacs directory in their home directory for their own local configuration. Assigning a
suitable name such as "microemacs", or if the file is to be hidden ".microemacs".

The $MEPATH environment variable of the user should be modified to include the users
MicroEmacs path BEFORE the default macros MicroEmacs path i.e.

Ksh/Zsh:

export MEPATH=$HOME/microemacs:/usr/local/bin

Csh/Bash:

setenv MEPATH $HOME/microemacs:/usr/local/bin

MicroEmacs '02

Installation(1) 43

Where $HOME is defined as "/usr/<name>" (typically by default).

DOS/Windows

DOS and Windows are a little more tricky as numerous directories at the root level are more
than a little annoying. It is suggested that the user directory is created as a sub−directory of
the MicroEmacs directory. i.e.

"c:\me\<user>" for DOS

or

"c:\Program Files\Jasspa\MicroEmacs\<user>" for Windows

The $MEPATH environment variable (see me32.ini(8) for Windows) is modified to include
the user component before the MicroEmacs component where $MEPATH is defined i.e.

SET MEPATH=c:\me\<user>;c:\me

where <user> is the user name (or $MENAME).

Alternative Directory Configurations

Numerous other configurations exist to organize the macro directories, to take the directory
organization to the extreme then it is sometimes easiest to keep all of the macro components separate.
An installation layout which encompasses different macro directories for:−

User profiles − 1 per user.♦
Shared company profiles − 1 per organization.♦
MicroEmacs macros which are updated from time to time.♦

The configuration on different systems may be defined as follows:−

UNIX

The shared files are placed in /usr/local

/usr
 \
 local
 \
 microemacs − Spelling + standard macros
 \
 company − Company specific files

The user profile is stored in the users directory

/usr
 \
<name>

MicroEmacs '02

Installation(1) 44

 \
 microemacs − User specific files

The user should configure the $MEPATH as:

MEPATH=$(HOME)/microemacs:/usr/local/microemacs/company:/usr/local/microemacs

DOS/WINDOWS

For DOS and MS−Windows environments, bearing in mind the problem of the root directory,
then it is easier to use the "me" directory as a place holder for a number of sub−directories,
using a configuration such as:−

 c:
 |
 me − Place holder directory
 / | \
 / | \
 <name> macros company

The user should configure the $MEPATH as:−

SET MEPATH=c:\me\<name>;c:\me\company;c:\me\macros

User Profile Files

Files contained in the user profiles typically include:−

<name>.emf − The users start up profile.
<name>.edf − The users spelling dictionary.
<name>.erf − The users registry configuration file.

These files are established from the menu "Help−>User Setup". The "Setup Path" item defines the
location of the files, but must be MANUALLY included in the $MEPATH environment.

Company Profiles

Company profiles include standard files and extensions to the standard files which may be related to a
company, this is typically <company>.emf where <company> is the name of the company.

The directory may also include template files etf(8) files which defines the standard header template
used in the files. Files in the "company" directory would over−ride the standard template files.

The company directory should be added to the $MEPATH after the user profile and before the
MicroEmacs standard macro directory.

SEE ALSO

MicroEmacs '02

Installation(1) 45

$MENAME(5), $MEPATH(5), Company Profiles, File Hooks, File Language Templates, User
Profiles.

MicroEmacs '02

Installation(1) 46

User Profiles(2)

USER PROFILES

This section describes how a user profile should be incorporated into MicroEmacs '02. A user profile
defines a set of extensions to MicroEmacs which encapsulates settings which are used by an
individual user.

The user profile allows:−

Saving of the last session (history), allowing the next invocation of MicroEmacs '02 to restore
your previous session.

♦

Personalized spelling dictionaries.♦
Redefinition of MicroEmacs '02, allowing the editor to be tailored to an individual's
requirements. Including the re−binding of keys, modification of the screen colors. Definition
of personal macros etc.

♦

Identification

In order to identify a user MicroEmacs '02 uses information in the system to determine the name of
the user, and in turn the configuration to use. On all systems the value of the environment variable
$MENAME(5) takes priority over any other means of user identification. If this variable is not
defined then the host system typically provides a mechanism to determine the current user. DOS and
Windows systems present problems where a login prompt is not supplied.

Each of the supported platforms are now described.

UNIX

The environment variable $LOGNAME is defined. This is the user name used by the system.

DOS

MS−DOS typically has no concept of the user name. The user name should be defined in the
autoexec.bat file, choose a name of 8 characters or less, i.e. to fix the user name to
fred then add the following line:−

SET MENAME=fred

Remember to re−boot the system before the new command takes effect. (see the next step,
there is another change to autoexec.bat).

Microsoft Windows

Microsoft windows environments may, or may not, have logging enabled. If you have to log into your
system then a login identification has been supplied and will be recognized by MicroEmacs, setting
the environment variable $MENAME(5) to this value.

MicroEmacs '02

User Profiles(2) 47

If login is not enabled then the me32.ini(8) file may be modified to provide a default login
name. To add the user fred then add the following lines to the ini file:−

[guest]
MENAME=fred

If login is subsequently enabled on the system then these lines should be removed. These
lines force the user identification to be fred.

The above technique may be used within the windows environment to modify your login
name. Assuming that the system administrator has assigned fred a user login name of fwhite,
and fred requires all of his configuration files to be the same name as his UNIX login which is
fred. Then fred may force his user name to fred from the me32.ini file as follows:−

[fwhite]
MENAME=fred

Once fred has entered MicroEmacs he will adopt his new login name which will be used to
identify his own files etc. The action of this statement is to force the environment variable
$MENAME to a new value. Any other environment variables may be forced in this way i.e.
$HOSTNAME is a good candidate here as the me32.ini is local to the machine.

Shared Platforms

Platforms may share the same set of configuration files. Consider a system which may boot under MS−DOS,
Windows '98, NT and Linux. Provided that the macro files are located on a file system that may be mounted
by all of the other operating systems and the $MEPATH is set appropriately, then a single set of MicroEmacs
macro files may be shared across all platforms. Personal MicroEmacs Directory

The private user profile is stored in a separate directory. The directory that MicroEmacs uses must be
created by the user, create the directory in your local file system. In addition, the MicroEmacs search
path $MEPATH(5) should be modified to include your new MicroEmacs personal directory.

UNIX

Create in your local directory, typically called microemacs or .microemacs (if it is to be
hidden).

Add/modify the $MEPATH(5) environment variable to include your personal directory in
your .login, .chsrc or .profile file, the file and exact syntax will depend upon your
shell. For a Korn shell the following line would be added to the .profile file:−

export MEPATH=$HOME/.microemacs:/usr/local/microemacs

Where $HOME is assumed to be the users login home directory, or use the directory location
of your new directory.

DOS

MicroEmacs '02

User Profiles(2) 48

For MS−DOS environments, there is typically no user directory, it is suggested that the user
directory is created in the MicroEmacs directory, use the $MENAME defined in the previous
step i.e.

mkdir c:\me\fred

Change the $MEPATH(5) in the autoexec.bat to include the new directory i.e.

SET MEPATH=c:\me\fred;c:\me

Windows

Windows environments, the me32.ini(8) userPath entry defines the location of the user
profile directories, within the Install Shield installation, the me32.ini is typically defined
as:−

userPath=C:\Program Files\JASSPA\MicroEmacs

Create your MicroEmacs personal directory in this folder, the name of the folder should be
your login name or $MENAME, depending upon how your name is identified.

Creating Your Profile

Once you have created a new directory to store your user profile, create a default profile for yourself
from MicroEmacs using the user−setup(3) dialog:−

Help => User Setup

Fill in the entries in the dialog, and ensure that Save is depressed on exit to write the files.

The dictionaries often present difficulties the first time, a prompt to save the dictionary requires the
full pathname and the name of the file, the pathname is the path to your personal folder, the filename
is typically your username.edf. Once the file is created you will not have a problem in the future.

The User Profile

Files created in the user directory include:−

Setup registry and previous session history username.erf, see erf(8)). This stores the
user−setup settings and also the context from your previous edit session.

♦

Users start−up file username.emf, see emf(8) the user may make local changes to
MicroEmacs in this file, this may include changing key bindings, defining new hook
functions etc. You should over−ride the standard MicroEmacs settings from your start−up file
rather than modifying the standard MicroEmacs files.

♦

Personal spelling dictionary username.edf, see edf(8). This file contains your personal
spelling modifications, any words that are added to the spelling dictionary are added to this
file.

♦

MicroEmacs '02

User Profiles(2) 49

In addition to the above, if new file hooks are defined then they should be added to this directory (if
they are not global to the company).

EXAMPLE

The following are examples of some individuals start−up files:−

; Jon's special settings
;
; Last Modified <190698.2226>
;
; Macro to delete the whitespace, or if an a word all of the
; word until the next word is reached.
define−macro super−delete
 set−variable #l0 0
 !while ¬ &sin @wc " \t\n"
 forward−char
 set−variable #l0 &add #l0 1
 !done
 !repeat
 !force forward−char
 !if $status
 set−variable #l0 &add #l0 1
 !endif
 !until &or &seq @wc "" ¬ &sin @wc " \t\n"
 #l0 backward−delete−char
 !return
!emacro
; Make a previous−buffer command.
define−macro previous−buffer
 &neg @# next−buffer
!emacro
; spotless; Perform a clean and remove any multi−blank lines.
define−macro spotless
 −1 clean
!emacro
; comment−adjust; Used for comments in electric−c mode (and the other
; electic modes. Moves to the comment fill position, saves having to mess
; around with comments at the end of the line.
0 define−macro comment−adjust
 ; delete all spaces up until the next character
 !while &sin @wc " \t"
 forward−delete−char
 !done
 ; Fill the line to the current $c−margin. We use this as
 ; this is the only variable that tells us where the margin
 ; should be.
 !if &gre $window−acol 0
 backward−char
 !if &sin @wc " \t"
 forward−delete−char
 !jump −4
 !else
 forward−char
 !endif
 !endif

MicroEmacs '02

User Profiles(2) 50

 ; Now fill to the $c−margin
 &sub $c−margin $window−acol insert−string " "
!emacro
; Macro to force buffer to compile buffer for C−x '
define−macro compile−error−buffer
 !force delete−buffer *compile*
 change−buffer−name "*compile*"
!emacro
;
; Set up the bindings.
;
global−bind−key super−delete "C−delete"
global−bind−key beginning−of−line "home"
global−bind−key end−of−line "end"
global−bind−key undo "f4"
!if &seq %emulate "ERROR"
 global−bind−key comment−adjust "esc tab"
 global−bind−key comment−adjust "C−insert"
 ; Like a korn shell please.
 ml−bind−key tab "esc esc"
!endif
;
; Setup for windows and UNIX.
;
; Define my hilighting colour for Windows and UNIX.
!if &equ &band $system 0x001 0
 !if ¬ &seq $platform "win32"
 ; Small bold font is better for me.
 change−font "−*−clean−medium−r−*−*−*−130−*−*−*−*−*−*"
 ; Small non−bold font.
 ; change−font "−misc−fixed−medium−r−normal−−13−*−*−*−c−70−iso8859−1"
 ; Change the size of the screen
 82 change−frame−width
 50 change−frame−depth
 !endif
!endif
; Change the default diff command−line for GNU diff utility all platforms
set−variable %diff−com "diff −−context −−minimal −−ignore−space−change −−report−identical−files −−recursive"
set−variable %gdiff−com "diff −−context −−ignore−space−change −w"
; Setup for cygnus
!if &seq $platform "win32"
 set−variable %cygnus−bin−path "c:/cygwin/bin"
 set−variable %cygnus−hilight 1
 set−variable %cygnus−prompt "$"
!endif
; Set up the ftp flags. The letters have the following meaning:
; c − Create a console (*ftp−console* for ftp, *http−console* for http)
; s − Show the console
; p − Show download progress ('#' every 2Kb downloaded)
set−variable %ftp−flags "csp"
; Info files
;To hilight the .info and also the dir file
add−file−hook ".info dir" fhook−info ; Info−files
;To hilight all info files without the extension .info
;but starting with the text "This is info file..
−2 add−file−hook "This is Info file" fhook−info

; Finished
ml−write "Configured to Jon's requirements"

MicroEmacs '02

User Profiles(2) 51

SEE ALSO

$MEPATH(5), $MENAME(5), user−setup(3), Company Profiles, File Hooks, File Language
Templates, Installation.

MicroEmacs '02

User Profiles(2) 52

CompanyProfiles(2)

COMPANY PROFILES

This section describes how a company profile should be incorporated into MicroEmacs '02. A
company profile defines a set of extensions to MicroEmacs which encapsulate settings which are used
on a company wide basis. This type of configuration is typically used with a networked (shared)
installation. The company profile would typically include:−

Name of the company.♦
Standard header files including company copyright statements.♦
Standard file layouts♦
Company defined language extensions.♦

Location Of The Company Information

It is suggested that all of the company extensions applied to MicroEmacs '02 are performed in a
separate directory location which shadows the MicroEmacs standard macro file directory. This
enables the original files to be sourced if a user does not want to include the company files. This
method also allows MicroEmacs to be updated in the future, whilst retaining the company files. For
our example, we shall use a company called JASSPA, you should replace references to jasspa with
your own company name. The steps involved are laid out as follows:−

Create a new company directory

You may skip this step if you are going to modify the standard installation.

Create a new directory to hold the company information. i.e.

/usr/local/microemacs/jasspa − UNIX
c:\Program Files\JASSPA\MicroEmacs\jasspa − Microsoft

Modify the $MEPATH(5) of the (of all users) to include the company directory on the search
path i.e.

UNIX

Users edit their local $MEPATH or a base $MEPATH is added to the system .login
or .profile scripts.

MEPATH=/usr/local/microemacs
MEPATH=/usr/local/microemacs/jasspa:$MEPATH

Microsoft Windows Platforms

Edit the me32.ini file and modify the mepath entry to reflect the location of the

MicroEmacs '02

CompanyProfiles(2) 53

company directory:−

mepath=C:\Prog....\Mic...\macros\jasspa;C:\Prog...\Mic...\macros

DOS Platforms

Edit the autoexec.bat file and modify MEPATH to include the company directory
location.

SET MEPATH=c:\me\jasspa;c:\me

Content Of The Company Information

Company macro file

The company file is typically called by the company name (i.e. jasspa.emf) create a new
company file. The file includes your company name and hook functions for any new file
types that have been defined for the company, an example company file for Jasspa might be
defined as:−

;;
;
; Author : Jasspa
; Created : Thu Jul 24 09:44:49 1997
; Last Modified : <190698.2225>
;
; Description Extensions for Jasspa
;
; Notes
;
; History
;
;;
; Define the name of the company.
set−variable %company−name "Jasspa"
; Add Jasspa specific file hooks
; Make−up foo file hook
add−file−hook ".foo" fhook−foo
1 add−file−hook "−!−[\t]*foobar.*−!−" fhook−foo ; −!− foobar −!−
; Override the make with localised build command
set−variable %compile−com "build"

The file contains company specific file hooks and the name of the company.

Other Company Files

Files defined on behalf of the company are included in the company directory. These would
include:−

Template header files etf(8).⋅
Hook file definitions (hkXXX.emf) for company specific files, see⋅

MicroEmacs '02

CompanyProfiles(2) 54

add−file−hook(2).
Extensions to the standard hook definitions (myXXX.emf) for company
specific language extensions to the standard hook files. See File Hooks and
File Language Templates.

⋅

SEE ALSO

$MENAME(5), $MEPATH(5), File Hooks, File Language Templates, Installation, user−setup(3),
User Profiles.

MicroEmacs '02

CompanyProfiles(2) 55

MainMenu(3)

NAME

Main Menu − The top main menu

SYNOPSIS

n osd

DESCRIPTION

The main menu is provided to give an easier access to parts of MicroEmacs functionality, the menu is
not burnt into MicroEmacs but defined on start−up in me.emf and osd.emf. The user−setup(3)
command can be used to set whether the menu is always visible and if the Alt−Hotkeys are enabled
(i.e. 'A−f' to open the File menu).

The main menu is osd(2) dialog number 0 so key bindings can be made which will open the main
menu, an argument of 0 will simply open the main menu, an argument of 0x0n0000 will not only
open the main menu but also the nth sub menu, e.g. to open the edit menu use:

 0x020000 osd

Following is a brief description of the main menu items:

File Menu

New

Changes the current buffer to a new buffer.

Open

Opens a dialog enabling the user to select files for opening into MicroEmacs. By default the dialog
opens the selected file using command find−file(2), but if the view option is selected the view−file(2)
command is used. The binary or encrypt options configure whether the files are to be loaded with
binary(2m) or crypt(2m) modes enabled.

Quick Open

Opens a sub−menu list all user file types (defined in user−setup(3)). Selecting one will open another
sub−dialog list all files of that type in the current directory, selecting a file will open it using
command find−file(2).

Favorites

MicroEmacs '02

MainMenu(3) 56

Opens a sub−menu enabling the user to add new favorite files, edit the existing list of favorite files, or
select an existing favorite file in which case the file is opened using command find−file(2). The
favorite file using to store the list is "$MENAME.eff" and is saved in the first path given in the
$search−path(5). Each favorite file takes 2 lines in the file, the first is the text displayed in the dialog
(note that characters '\' and '&' must be protected with a '\' and the '&' can be used to set the Hot key)
and the second line is the file name. A line with a single '−' character creates a separater line in the
dialog.

Find Tag

Only visible when a tags file is found in the current directory, the command jumps to the current tag
or if not on a tag or the tag is not found, opens a dialog enabling the user to select a tag. See command
find−tag(2) for more information.

Find File

Executes command file−browser(3).

FTP

Executes command ftp(3).

Close

Executes a dialog form of the command delete−buffer(2).

Attributes

Opens a dialog enabling the user to set the current buffers file attributes. See command file−attrib(3)
for more information.

Save

Executes a dialog form of the command save−buffer(2).

Save As

Executes a dialog form of the command write−buffer(2).

Save All

Executes a dialog form of the command save−all(3).

Printer Setup

Opens a dialog which enables the user to configure the printer driver, output location and page layout
(executes command print−setup(3)).

Print

MicroEmacs '02

MainMenu(3) 57

Executes command print−buffer(2).

Buffer

Opens a sub−menu listing all created buffers, selecting one will change the current buffer to the
selected one.

Exit

Executes command save−buffers−exit−emacs(2). Edit Menu

Undo

Undoes the last edit in the current buffer (executes command undo(2)).

Redo

Redo the last undo, only available immediately after an undo. This is also done via the undo(2)
command.

Undo All

Undo all edits in the current buffer until the last save or no more undo history is available. Executes
the command undo(2) with a 0 numerical argument.

Set Mark

Executes command set−mark(2).

Cut

Executes command kill−region(2).

Copy

Executes command copy−region(2).

Paste

Executes command yank(2).

Narrow Out

Executes command narrow−buffer(2) with a numeric argument of 4.

Narrow To

Executes command narrow−buffer(2) with a numeric argument of 3.

MicroEmacs '02

MainMenu(3) 58

Remove Single Narrow

Executes command narrow−buffer(2) with a numeric argument of 2.

Remove All Narrows

Executes command narrow−buffer(2) with a numeric argument of 1. Search Menu

Search

Executes a dialog form of the command isearch−forward(2).

Replace

Executes a dialog form of the command query−replace−string(2).

Hilight Search

Opens another dialog which can be used to add and remove hilighting of individual lines in the
current buffer. Note that setting a line hilight is a temporary change, it will not effect any files etc and
will be lost when the buffer is deleted.

Goto Line

Executes a dialog form of the command goto−line(2).

Goto Fence

Executes command goto−matching−fence(2).

Set Bookmark

Executes command set−alpha−mark(2).

Goto Bookmark

Executes command goto−alpha−mark(2). Insert Menu

Symbol

Executes command symbol(3).

Date & Time

Opens a dialog with the current date and time in a selection of common formats; selecting one of
these will insert the string into the current buffer at the current position. Note that the format text
strings depend on the current language (Default and American languages use the order MM−DD−YY

MicroEmacs '02

MainMenu(3) 59

etc whereas the rest use DD−MM−YY). The names used for the day and month names can be defined
using the Setup page of Organizer(3).

File

Executes command insert−file(2).

File Name

Executes command insert−file−name(2).

Macro...

Executes command insert−macro(2). Format Menu

Restyle Buffer

Executes command restyle−buffer(3).

Restyle Region

Executes command restyle−region(3).

Clean Buffer

Executes command clean(3).

Change Buffer Char Set

Executes command charset−change(3).

IQ Fill Paragraph

Executes command ifill−paragraph(3).

Fill Paragraph

Executes command fill−paragraph(2).

Fill All Paragraphs

Executes command fill−paragraph(2) with a very large positive numerical argument. Note that this
only effects paragraphs from the current position onwards.

Paragraph to Line

Executes command paragraph−to−line(3).

MicroEmacs '02

MainMenu(3) 60

All Paragraphs to Line

Executes command paragraph−to−line(3) with a very large positive numerical argument. Note that
this only effects paragraphs from the current position onwards.

Sort Lines

Executes command sort−lines(2).

Ignore Case Sort Lines

Executes command sort−lines−ignore−case(3).

Capitalize Word

Executes command capitalize−word(2).

Lower Case Word

Executes command lower−case−word(2).

Lower Case Region

Executes command lower−case−region(2).

Upper Case Word

Executes command upper−case−word(2).

Upper Case Region

Executes command upper−case−region(2). Execute Menu

Execute Command

Executes command execute−named−command(2).

Execute Buffer

Executes command execute−buffer(2).

Execute File

Executes command execute−file(2).

Start Kbd Macro

Executes command start−kbd−macro(2).

MicroEmacs '02

MainMenu(3) 61

Query Kbd Macro

Executes command kbd−macro−query(2).

End Kbd Macro

Executes command end−kbd−macro(2).

Execute Kbd Macro

Executes command execute−kbd−macro(2).

Name Kbd Macro

Executes command name−kbd−macro(2).

Ipipe command

Executes command ipipe−shell−command(2).

Shell

Executes command shell(2). Tools Menu

Current Buffer Tools

For some file formats MicroEmacs provides a file format specific set of tools, see the file type help
page for more specific information.

Count Words

Executes command count−words(2).

Spell Word

Executes command spell−word(3).

Spell Buffer

Executes command spell−buffer(3).

Word Complete

Takes the incomplete word to the left of the cursor and attempts to complete the word by using the
users current language dictionary. Executes command expand−word(3).

Compare Windows

MicroEmacs '02

MainMenu(3) 62

Executes command compare−windows(2).

Compile

Executes command compile(3).

Grep

Executes command grep(3).

Graphical Diff

Executes command gdiff(3).

Diff

Executes command diff(3).

Diff Changes

Executes command diff−changes(3).

Organizer

Executes command organizer(3).

Mail

Executes command mail(3).

View Mail

Executes command vm(3).

More...

Opens a sub−menu with a collection of other useful miscellaneous tools. Window Menu

Split Window V

Executes command split−window−vertically(2).

Grow Window V

Executes command change−window−depth(2) with an argument of 1.

Shrink Window V

MicroEmacs '02

MainMenu(3) 63

Executes command change−window−depth(2) with an argument of −1.

Split Window H

Executes command split−window−horizontally(2).

Grow Window H

Executes command change−window−width(2) with an argument of 1.

Shrink Window H

Executes command change−window−width(2) with an argument of −1.

One Window

Executes command delete−other−windows(2).

Delete Window

Executes command delete−window(2).

Previous Window

Executes command previous−window(2).

Next Window

Executes command next−window(2).

Create New Frame

Create an new external frame, only available on version which support multiple−window frames.
Executes command create−frame(2).

Create New Frame

Closes the current frame, only available on version which support multiple−window frames. The command
will fail if this is the only frame, use File −> Exit to exit MicroEmacs, executes command delete−frame(2).
Help Menu

Curr Buffer Help

For some file formats MicroEmacs provides a file format specific help page giving details of
key−bindings and tools specific to the current buffers file type.

General Help

MicroEmacs '02

MainMenu(3) 64

Executes command osd−help(3).

Help on Command

Executes command help−command(2).

Help on Variable

Executes command help−variable(2).

Describe Bindings

Executes command describe−bindings(2).

Describe key

Executes command describe−key(2).

Describe Variable

Executes command describe−variable(2).

Describe Word

Executes command describe−word(3).

List Buffers

Executes command list−buffers(2).

List Commands

Executes command list−commands(2).

List Registry

Executes command list−registry(2).

List Variables

Executes command list−variables(2).

Command Apropos

Executes command command−apropos(2).

Buffer Setup

Executes command buffer−setup(3).

MicroEmacs '02

MainMenu(3) 65

User Setup

Executes command user−setup(3).

Scheme Editor

Executes command scheme−editor(3).

Games

Opens a sub−menu listing all available games, see Games for more information.

Product Support

Opens on−line Contact information.

About MicroEmacs

Executes command about(2). NOTES

The main menu is defined using osd(2) in macro files me.emf and osd.emf.

General user extensions to the main menu can be added to the user file myosd.emf which is
executed once when the main menu is first opened. The macro file can add new items to any of the
main sub menus and can delete most existing items (some are dynamically added when appropriate,
these should not be deleted). See osd.emf for examples of how to add items to the menu.

New sub−menus should be added in the company or user setup files as this must be done at start−up.
The content on the menu is not required until the main menu is used so populating the new sub−menu
can be done in myosd.emf.

SEE ALSO

user−setup(3).

MicroEmacs '02

MainMenu(3) 66

Essential Commands

ESSENTIAL COMMANDS

The very essential commands which are the most important commands to know include:

abort−command(2) (C−g) Abort command
backward−char(2) (C−b) Move the cursor left
backward−delete−char(2) (backspace) Delete the previous character at the cursor position
backward−line(2) (C−p) Move the cursor to the previous line
file−browser(3) (f10) Browse the file system
file−browser−close(3) Close the file−browser
file−browser−swap−buffers(3) Swap between file−browser windows
forward−char(2) (C−f) Move the cursor right
forward−delete−char(2) (C−d) Delete the next character at the cursor position
forward−line(2) (C−n) Move the cursor to the next line
isearch−forward(2) (C−s) Search forward incrementally (interactive)
quick−exit(2) (esc z) Exit the editor writing changes
save−buffer(2) (C−x C−s) Save contents of changed buffer to file
save−buffers−exit−emacs(2) (esc z) Exit the editor prompt user to write changes
undo(2) (C−x u) Undo the last edit

MicroEmacs '02

Essential Commands 67

Help Information

HELP INFORMATION

Commands to retrieve on−line help information and status.

about(2) Information About MicroEmacs
command−apropos(2) (C−h a) List commands involving a concept
describe−key(2) (C−x ?) Report keyboard key name and binding
describe−variable(2) (C−h v) Describe current setting of a variable
help(2) (esc ?) Help; high level introduction to help
help−command(2) (C−h C−c) Help; command information
help−item(2) (C−h C−i) Help; item information
help−variable(2) (C−h C−v) Help; variable information
info(3) Display a GNU Info database
info−goto−link(3) Display Info on a given link
info−on(3) Display Info on a given topic
list−buffers(2) (C−x C−b) List all buffers and show their status
osd−help(3) GUI based on−line help

MicroEmacs '02

Help Information 68

Bindings(2)

DEFAULT KEY BINDINGS

The default key bindings are presented below in four alphabetical lists, one for single key bindings
and one for each of the 4 bound prefixes (esc, C−x, C−h & C−c). See Key Names for a list of valid
key names.

Single−Key Sequences

backspace backward−delete−char Delete the previous character.
delete forward−delete−char Delete character under the cursor.
down forward−line Move to next line.
end end−of−buffer Move to the end of the buffer.
esc prefix 1 Meta character prefix.
f1 osd Open top main menu.
home beginning−of−buffer Move to the start of the buffer.
insert buffer−mode Toggle over−write mode.
left backward−char Move backward one character (left).
page−down scroll−down Move forward by one screen.
page−up scroll−up Move backward by one screen.
return newline Insert a new line.
right forward−char Move forward one character (right).
tab tab Insert a tab character.
up backward−line Move to previous line.

S−backspace backward−delete−char Delete the previous character.
S−delete forward−delete−char Delete character under the cursor.
S−tab backward−delete−tab Delete white space to previous tab−stop.

C−a beginning−of−line Move to beginning of line.
C−b backward−char Move backwards by one character
C−c prefix Control character prefix.
C−d forward−delete−char Delete character under the cursor.
C−e end−of−line Move to end of line.
C−f forward−char Move forward one character (right).
C−g abort−command Abort current command.
C−h prefix Control character prefix.
C−i insert−tab Insert tab character.
C−k kill−line Delete from cursor to the end of the line.
C−l recenter Redraw screen with current line in the center.
C−m newline Insert a new line.
C−n forward−line Move to next line (down).
C−o insert−newline Open up a blank line.
C−p backward−line Move to previous line (up).
C−q quote−char Insert literal character.

MicroEmacs '02

Bindings(2) 69

C−r isearch−backward Start incremental search backwards.
C−s isearch−forward Start incremental search forwards.
C−t transpose−chars Transpose two letters.
C−u universal−argument Repeat the next command n times (default is 4).
C−v scroll−down Move forward by one screen.
C−w kill−region Delete a marked region.
C−x prefix Control character prefix.
C−y yank Restore what was copied or deleted.
C−z scroll−up Move backward by one screen.
C−_ undo Undo the previous edit.
C−down forward−line Move forward five lines.
C−left backward−word Move one word backward.
C−page−down scroll−next−window−down Scroll next window down a page.
C−page−up scroll−next−window−up Scroll the next window up a page.
C−right forward−word Move one word forward.
C−up backward−line Move backward 5 lines.

A−e file−browser Browse the file system.
A−r replace−all−string Replace string with new string in a list of files.
A−down scroll−down Scroll the current window down one line.
A−left scroll−left Scroll the current window left one character.
A−right scroll−right Scroll the current window right one character.
A−up scroll−up Scroll the current window up one line.

esc Prefix Sequences

esc ! pipe−shell−command Pipe a shell command to a buffer.
esc $ spell−word Spell a word.
esc . set−mark Set the start of a region.
esc / execute−file Execute script lines from a file.
esc < beginning−of−buffer Move to the start of the buffer.
esc > end−of−buffer Move to the end of the buffer.
esc ? help Help − high level introduction to MicroEmacs.
esc @ pipe−shell−command Pipe a shell command to a buffer.
esc [backward−paragraph Goto the beginning of the paragraph.
esc \ ipipe−shell−command Incrementally pipe a shell command to a buffer.
esc] forward−paragraph Move forward one paragraph
esc ^ delete−indentation Join 2 lines deleting white spaces.
esc b backward−word Move one word backwards
esc c capitalize−word Capitalize first letter of a word
esc d forward−kill−word Delete word the cursor is on.
esc e set−encryption−key Reset the encryption key.
esc f forward−word Move one word forward.
esc g goto−line Goto a line.
esc i tab Insert a tab character.
esc k global−bind−key Bind a key to a command or macro.
esc l lower−case−word Lowercase word.
esc m global−mode Toggle a global mode.

MicroEmacs '02

Bindings(2) 70

esc n forward−paragraph Move forward one paragraph
esc o fill−paragraph Reformat (fill) current paragraph.
esc p backward−paragraph Goto the beginning of the paragraph.
esc q ifill−paragraph Reformat (fill) current paragraph.
esc r replace−string Search and replace text (no query).
esc t find−tag Find a tag.
esc u upper−case−word Uppercase word.
esc v scroll−down Move to the previous screen.
esc w copy−region Copy region to the kill buffer.
esc x execute−named−command Execute the named command.
esc y reyank Kill current yank data and restore previous kill buffer data.
esc z quick−exit Save all buffers and exit.

esc ~ buffer−mode Remove edited status from current buffer.
esc backspace backward−kill−word Delete the word under the cursor.
esc esc expand−abbrev Expand an abbreviation.
esc space set−mark Set the start of a region.

esc C−c count−words Count words in a region.
esc C−f goto−matching−fence Reposition the cursor at an opposing bracket.
esc C−g abort−command Abort current command.
esc C−i tab Insert tab character.
esc C−k global−unbind−key Unbind a key from a command or macro
esc C−n change−buffer−name Rename current buffer.
esc C−r query−replace−string Search and replace with query.
esc C−v scroll−next−window−down Scroll next window down a page.
esc C−w kill−paragraph Delete current paragraph.
esc C−z scroll−next−window−up Scroll the next window up a page.

esc A−r query−replace−all−string Query replace string in a list of files.

C−x Prefix Sequences

C−x # filter−buffer Filter the buffer through a shell filter.
C−x (start−kbd−macro Start recording a keyboard macro.
C−x) end−kbd−macro Stop recording a keyboard macro.
C−x / isearch−forward Start incremental search forwards.
C−x 0 delete−window Delete the current window.
C−x 1 delete−other−windows Delete other windows.
C−x 2 split−window−vertically Split the current window into two.
C−x 3 next−window−find−buffer Find a buffer into the next window, split if necessary.
C−x 4 next−window−find−file Load a file into the next window, split if necessary.
C−x 5 split−window−horizontally Split the current window horizontally into two.
C−x 9 find−bfile Find and load a file for binary editing.
C−x < scroll−left Scroll the window left by one screen width.
C−x = buffer−info Show cursor position information
C−x > scroll−right Scroll the window right by one screen width.
C−x ? describe−key Describe binding of command to key.

MicroEmacs '02

Bindings(2) 71

C−x @ pipe−shell−command Pipe a shell command to buffer.
C−x [scroll−up Move backward by one screen.
C−x] scroll−down Move forward by one screen.
C−x ^ grow−window−vertically Enlarge the current window by a line.
C−x ` get−next−line Find the next command line.
C−x a goto−alpha−mark Move the cursor to an alphabetic mark.
C−x b find−buffer Switch window to a buffer.
C−x c shell Start a new command processor.
C−x e execute−kbd−macro Execute a macro.
C−x h hunt−forward Continue search in forward direction.
C−x k delete−buffer Delete buffer.
C−x m buffer−mode Toggle a local buffer mode.
C−x n change−file−name Rename current buffer file name.
C−x o next−window Move to the next window.
C−x p previous−window Move to the previous window.
C−x q kbd−macro−query Query keyboard macro.
C−x r search−backward Search in a reverse direction.
C−x s search−forward Search in a forward direction.
C−x u undo Undo the previous edit.
C−x v set−variable Assign a new value to a variable.
C−x w resize−window−vertically Resize the window.
C−x x next−buffer Switch to the next buffer.
C−x z grow−window−vertically Enlarge the current window.
C−x { shrink−window−horizontally Shrink current window horizontally.
C−x } grow−window−horizontally Enlarge current window horizontally.

C−x C−a set−alpha−mark Mark the current position with an alphabetic mark.
C−x C−b list−buffers Display buffer list.
C−x C−c save−buffer−exit−emacs Exit MicroEmacs '02.
C−x C−d change−directory Change the current working directory.
C−x C−e execute−kbd−macro Execute a macro.
C−x C−f find−file Find a file and load into buffer.
C−x C−g abort−command Abort current command.
C−x C−h hunt−backward Resume search in backwards direction.
C−x C−i insert−file Insert file into the current buffer.
C−x C−l lower−case−region Lowercase region.
C−x C−n scroll−down Scroll the current window down one line.
C−x C−o delete−blank−lines Delete blank lines about the cursor.
C−x C−p scroll−up Scroll the current window up one line.
C−x C−q rcs−file Interact with RCS to check in/out a file.
C−x C−r read−file Read a file from disk.
C−x C−s save−buffer Save current file to disk.
C−x C−t transpose−lines Swap adjacent lines.
C−x C−u upper−case−region Uppercase region.
C−x C−v view−file Read a file for viewing (read only).
C−x C−w write−buffer Write a file to disk witn new name.
C−x C−x exchange−point−and−mark Exchange cursor with mark position.
C−x C−y insert−file−name Insert filename into current buffer.
C−x C−z shrink−window−vertically Reduce size of current window.

MicroEmacs '02

Bindings(2) 72

C−h Prefix Sequences

C−h a command−apropos List commands involving a concept.
C−h b describe−bindings Show current command/key binding.
C−h c list−commands List available commands.
C−h d describe−variable Describe current setting of a variable.
C−h k describe−key Describe keyboard binding.
C−h v list−variables List defined variables.

C−h C−c help−command Display command help information.
C−h C−i help−item Display item help information.
C−h C−v help−variable Display variable help information.

MicroEmacs '02

Bindings(2) 73

File Handling Commands

FILE HANDLING COMMANDS

Commands to read, write and interact with files:

Commands

append−buffer(2) Write contents of buffer to end of named file
change−directory(2) [C−x C−d] Change the current working directory
change−file−name(2) (C−x n) Change the file name of the current buffer
directory−tree(2) Draw the file directory tree
file−attrib(3) Set the current buffers system file attributes
file−browser(3) (f10) Browse the file system
file−browser−close(3) Close the file−browser
file−browser−swap−buffers(3) Swap between file−browser windows
file−op(2) File system operations command
find−bfile(3) (C−x 9) Load a file as binary data
find−cfile(3) Load a crypted file
find−file(2) (C−x C−f) Load a file
find−zfile(3) Compressed file support
ftp(3) Initiate an FTP connection
insert−file(2) (C−x C−i) Insert file into current buffer
insert−file−name(2) (C−x C−y) Insert filename into current buffer
read−file(2) (C−x C−r) Find and load file replacing current buffer
reread−file(3) Reload the current buffer's file
save−all(3) Save all modified files (with query)
save−buffer(2) (C−x C−s) Save contents of changed buffer to file
save−some−buffers(2) Save contents of all changed buffers to file (with query)
set−encryption−key(2) (esc e) Define the encryption key
suspend−emacs(2) Suspend editor and place in background
view−file(2) (C−x C−v) Load a file read only
write−buffer(2) (C−x C−w) Write contents of buffer to named (new) file
zfile−setup(3) Compressed file support setup

Variables

$auto−time(5) Automatic buffer save time
$file−ignore(5) File extensions to ignore
$home(5) Users `home' directory location
$kept−versions(5) Number of backups to be kept
$timestamp(5) Time stamp string
%ftp−flags(5) Configure the FTP console
%http−flags(5) Configure the HTTP console
%http−proxy−addr(5) Set HTTP proxy server address

MicroEmacs '02

File Handling Commands 74

%http−proxy−port(5) Set HTTP proxy server port
Dialogs and Menus

MicroEmacs '02

File Handling Commands 75

Dialogs and Menus

DIALOGS AND MENUS

Menus and dialogs in the system:

Commands

buffer−help(3) Displays help page for current buffer
buffer−setup(3) Configures the current buffer settings
describe−word(3) Display a dictionary definition of a word
find−word(3) Find a using spelling dictionaries
generate−tags−file(3) Generate a tags file
line−scheme−search(3) Search and annotate the current buffer
MainMenu(3) The top main menu
organizer(3) Calendar and address organizer
osd(2) Manage the On−Screen Display
osd−dialog(3) OSD dialog box
osd−entry(3) OSD entry dialog box
osd−xdialog(3) OSD Extended dialog box
print−setup(3) Configure (*mS's printer interface
scheme−editor(3) Color Scheme Editor
spell−buffer(3) Spell check the current buffer
spell−edit−word(3) Edits a spell word entry
spell−word(3) (esc $) Spell check a single word
symbol(3) Insert an ASCII character
user−setup(3) Configure MicroEmacs for a specific user

Variables

$osd−scheme(5) OSD color scheme

MicroEmacs '02

Dialogs and Menus 76

Cursor Movement Commands

CURSOR MOVEMENT COMMANDS

The cursor movement commands control how the cursor is moved around the buffer.

Commands

backward−char(2) (C−b) Move the cursor left
backward−line(2) (C−p) Move the cursor to the previous line
backward−paragraph(2) (esc p) Move the cursor to the previous paragraph
backward−word(2) (esc b) Move the cursor to the previous word
beginning−of−buffer(2) (esc <) Move to beginning of buffer/file
beginning−of−line(2) (C−a) Move to beginning of line
display−matching−fence(3) Display the matching bracket
end−of−buffer(2) (esc >) Move to end of buffer/file
end−of−line(2) (C−e) Move to end of line
forward−char(2) (C−f) Move the cursor right
forward−line(2) (C−n) Move the cursor to the next line
forward−paragraph(2) (esc n) Move the cursor to the next paragraph
forward−word(2) (esc f) Move the cursor to the next word
goto−line(2) (esc g) Move the cursor to specified line
goto−matching−fence(2) (esc C−f) Move the cursor to matching fence
goto−position(2) Restore a stored position
goto−window(2) Restore a saved window to the current window (historic)
list−commands(2) (C−h c) List available commands
list−variables(2) (C−h v) List defined variables
recenter(2) (C−l) Recenter the window (refresh the screen)
set−position(2) Store the current position
set−window(2) Save the current window for restore (historic)
universal−argument(2) (C−u) Set the command argument count

Variables

$fmatchdelay(5) Fence matching delay time

MicroEmacs '02

Cursor Movement Commands 77

Insertion and Deletion Commands

INSERTION AND DELETION COMMANDS

Commands that initiate insertion or deletion of text include:

Deletion

backward−delete−char(2) (backspace) Delete the previous character at the cursor position
backward−delete−tab(2) (S−tab) Delete white space to previous tab−stop
backward−kill−word(2) (esc backspace) Delete the previous word at the cursor position
clean(3) Remove redundant white spaces from the current buffer
delete−blank−lines(2) (C−x C−o) Delete blank lines about cursor
delete−indentation(3) Join 2 lines deleting white spaces
forward−delete−char(2) (C−d) Delete the next character at the cursor position
forward−kill−word(2) (esc d) Delete the next word at the cursor position
kill−line(2) (C−k) Delete all characters to the end of the line
kill−paragraph(2) Delete a paragraph
kill−rectangle(2) (esc C−w) Delete a column of text
kill−region(2) (C−w) Delete all characters in the marked region
yank−rectangle(2) (esc C−y) Insert a column of text

Insertion

insert−newline(2) (C−o) Insert new line at cursor position
insert−tab(2) (C−i) Insert tab(s) into current buffer
normal−tab(3) Insert a normal tab
quote−char(2) (C−q) Insert literal character
reyank(2) (esc y) Restore next yank buffer
tab(2) (tab) Handle the tab key
yank(2) (C−y) Paste (copy) kill buffer contents into buffer

Variables

$tabsize(5) Tab character width
$tabwidth(5) Tab character interval

MicroEmacs '02

Insertion and Deletion Commands 78

Paragraph and Text Formatting Commands

PARAGRAPH AND TEXT FORMATTING COMMANDS

Commands that operate on paragraphs, and the layout of paragraphs:

Paragraph

Paragraphs are separated by blank lines. A single paragraph is defined as all of the text enclosed
between two blank lines, with no intervening blank lines.

backward−paragraph(2) (esc p) Move the cursor to the previous paragraph
fill−paragraph(2) (esc o) Format a paragraph
forward−paragraph(2) (esc n) Move the cursor to the next paragraph
ifill−paragraph(3) (esc q) Format a paragraph
kill−paragraph(2) Delete a paragraph
paragraph−to−line(3) Convert a paragraph to a single line
wrap−word(2) Wrap word onto next line

Regions and Marks

A region is the text located between the point (the current cursor position) and the mark defined by
set−mark.

copy−region(2) (esc w) Copy a region of the buffer
count−words(2) (esc C−c) Count the number of words in a region
exchange−point−and−mark(2) (C−x C−x) Exchange the cursor and marked position
goto−alpha−mark(2) (C−x a) Move the cursor to a alpha marked location
kill−rectangle(2) (esc C−w) Delete a column of text
kill−region(2) (C−w) Delete all characters in the marked region
set−alpha−mark(2) (C−x C−a) Place an alphabetic marker in the buffer
set−mark(2) (esc space) Set starting point of region
yank−rectangle(2) (esc C−y) Insert a column of text

Variables

$fill−bullet(5) Paragraph filling bullet character set
$fill−bullet−len(5) Paragraph filling bullet search depth
$fill−col(5) Paragraph Mode; right fill column
$fill−eos(5) Paragraph filling; end of sentence fill characters
$fill−eos−len(5) Paragraph filling; end of sentence padding length
$fill−ignore(5) Ignore paragraph filling character(s)
$fill−mode(5) Paragraph mode; justification method

MicroEmacs '02

Paragraph and Text Formatting Commands 79

Capitalization and Transposition Commands

CAPITALIZATION AND TRANSPOSITION COMMANDS

Commands to change the capitalization and transposition of text:

capitalize−word(2) (esc c) Capitalize word
lower−case−region(2) (C−x C−l) Lowercase a region (downcase)
lower−case−word(2) (esc l) Lowercase word (downcase)
sort−lines(2) Alphabetically sort lines
sort−lines−ignore−case(3) Alphabetically sort lines ignoring case
transpose−chars(2) (C−t) Exchange (swap) adjacent characters
transpose−lines(2) (C−x C−t) Exchange (swap) adjacent lines
uniq(3) Make lines in a sorted list unique
upper−case−region(2) (C−x C−u) Uppercase a region (upcase)
upper−case−word(2) (esc u) Uppercase word (upcase)

MicroEmacs '02

Capitalization and Transposition Commands 80

Searching and Replacing

SEARCHING AND REPLACING

Text searching and replacing commands:

hunt−backward(2) (C−x C−h) Resume previous search in backward direction
hunt−forward(2) (C−x h) Resume previous search in forward direction
isearch−backward(2) (C−r) Search backwards incrementally (interactive)
isearch−forward(2) (C−s) Search forward incrementally (interactive)
item−list(3) (F7) Abbreviated search and list buffer contents
item−list−close(3) (esc F7) Close the item list
item−list−find(3) Find the selected item in the item list
line−scheme−search(3) Search and annotate the current buffer
occur(3) Regular expression search for occurrences
query−replace−all−string(3) Query replace string in a list of files
query−replace−string(2) (esc C−r) Search and replace a string − with query
RegularExpressions(2) Regular Expressions
regex−backward(3) Search for a magic string in the backward direction
regex−forward(3) Search for a magic string in the forward direction
replace−all−pairs(3) Replace string pairs in a list of files
replace−all−string(3) Replace string with new string in a list of files
replace−string(2) (esc r) Replace string with new string
search−backward(2) (C−x r) Search for a string in the backward direction
search−forward(2) (C−x s) Search for a string in the forward direction

MicroEmacs '02

Searching and Replacing 81

Macro Commands

MACRO COMMANDS

Everyday macro commands used by the user. See Macro Development Commands for commands
related to macro development.

Commands

end−kbd−macro(2) (C−x)) Stop recording keyboard macro
execute−buffer(2) Execute script lines from a buffer
execute−file(2) (esc /) Execute script lines from a file
execute−kbd−macro(2) (C−x e) Execute a keyboard macro
execute−line(2) Execute a typed in script line
execute−named−command(2) [esc x] Execute a named command
insert−macro(2) Insert keyboard macro into buffer
kbd−macro−query(2) (C−x q) Query termination of keyboard macro
name−kbd−macro(2) Assign a name to the last keyboard macro
start−kbd−macro(2) (C−x () Start recording keyboard macro

Variables

$debug(5) Macro debugging flag

MicroEmacs '02

Macro Commands 82

Buffer Manipulation Commands

BUFFER MANIPULATION COMMANDS

A buffer is where MicroEmacs '02 stores text. Normally text is read from a file and is visible in an
editing window. The name, associated file and operating modes of the buffer, are generally shown in
the mode line.

Commands that deal with buffers include:

Commands

buffer−info(2) (C−x =) Status information on current buffer position
change−buffer−name(2) (esc C−n) Change name of current buffer
change−file−name(2) (C−x n) Change the file name of the current buffer
delete−buffer(2) (C−x k) Delete a buffer
delete−some−buffers(2) Delete buffers with query
execute−buffer(2) Execute script lines from a buffer
execute−line(2) Execute a typed in script line
find−buffer(2) (C−x b) Switch to a named buffer
insert−file−name(2) (C−x C−y) Insert filename into current buffer
list−buffers(2) (C−x C−b) List all buffers and show their status
narrow−buffer(2) Hide buffer lines
next−buffer(2) (C−x x) Switch to the next buffer
save−all(3) Save all modified files (with query)
save−some−buffers(2) Save contents of all changed buffers to file (with query)

Variables

$MEBACKUPPATH(5) Backup file location
$MEBACKUPSUB(5) Backup file name modifier
$buffer−backup(5) Buffer backup file name
$buffer−bname(5) Name of the current buffer
$buffer−fmod(5) Buffer file modes (or attributes)
$buffer−fname(5) Name of the current buffer's file name
$buffer−mask(5) Current buffer word class mask
$buffer−mode−line(5) Buffer mode line string
$buffer−names(5) Filtered buffer name list
$file−names(5) Filtered file name list
$global−fmod(5) Global file modes (or attributes)
$mode−line(5) Mode line format
$mode−line−scheme(5) Mode line color scheme
$show−modes(5) Select buffer modes to display

MicroEmacs '02

Buffer Manipulation Commands 83

Window Commands

WINDOW COMMANDS

MicroEmacs '02 uses windows to display and allow you to edit the contents of buffers. Multiple
windows may be present on the screen at once, each is separated by a mode line which describes the
contents of the window above it.

You can scroll text vertically and horizontally within a window by using the cursor commands. Note
that if a line of text extends beyond the boundary of a window, a dollar "$" sign is displayed instead
of the first/last visible character.

Commands that operate on windows are defined as follows:

Commands

change−window−depth(2) Change the depth of the current window
change−window−width(2) Change the width of the current window
compare−windows(2) Compare buffer windows, ignore whitespace
compare−windows−exact(3) Compare buffer windows, with whitespace
create−frame(2) Create a new frame
delete−frame(2) Delete the current frame
delete−other−windows(2) (C−x 1) Delete other windows
delete−window(2) (C−x 0) Delete current window
grow−window−horizontally(2) Enlarge current window horizontally (relative)
grow−window−vertically(2) Enlarge the current window (relative change)
next−frame(2) Change the focus to the next frame
next−window(2) (C−x o) Move the cursor to the next window
next−window−find−buffer(2) [] Split the current window and show new buffer
next−window−find−file(2) (C−x 4) Split the current window and find file
previous−window(2) (C−x p) Move the cursor to the previous window
resize−all−windows(2) Resize all windows (automatic change)
resize−window−horizontally(2) Resize current window horizontally (absolute)
resize−window−vertically(2) Resize the current window (absolute change)
scroll−down(2) (C−n) Move the window down (scrolling)
scroll−left(2) (C−x <) Move the window left (scrolling)
scroll−next−window−down(2) (esc C−v) Scroll next window down
scroll−next−window−up(2) (esc C−z) Scroll next window up
scroll−right(2) (C−x >) Move the window right (scrolling)
scroll−up(2) (C−p) Move the window up (scrolling)
shrink−window−horizontally(2) Shrink current window horizontally (relative)
shrink−window−vertically(2) Shrink the current window (relative change)
split−window−horizontally(2) (C−x 5) Split current window into two (horizontally)
split−window−vertically(2) (C−x 2) Split the current window into two

Variables

MicroEmacs '02

Window Commands 84

$scroll(5) Screen scroll control
$scroll−bar(5) Scroll bar configuration
$window−acol(5) Window cursor actual column
$window−aline(5) Window cursor actual line
$window−col(5) Window cursor column (no expansion)
$window−depth(5) Number of text lines in a window
$window−line(5) Window cursor line
$window−mode−line(5) Window mode line position
$window−scroll−bar(5) Window scroll bar (or separator) position
$window−wcol(5) Window cursor column (historic)
$window−width(5) Number of character columns in a window
$window−wline(5) Window cursor line (historic)
$window−x−scroll(5) Current window X scroll
$window−xcl−scroll(5) Current window current line X scroll
$window−y−scroll(5) Current window Y scroll

MicroEmacs '02

Window Commands 85

Keyboard Binding Commands

KEYBOARD BINDING COMMANDS

Keyboard binding allows key strokes to be associated with commands and macros such that when a
bound key stroke sequence is recognized its associated (or bound) command is invoked, thereby
controlling the editor. A set of Default Bindings exist for MicroEmacs '02 which may be altered using
the binding commands. There are three types of key bindings:

Global

Associates a key−stroke with a command for all buffers. Used to establish the standard keyboard
controls i.e. cursor movement, search, replace etc.

Local

Associates a key−stroke with a command for a specified buffer only, i.e. a binding local to the buffer.
Local bindings allow macro accelerators to be bound to keys without affecting other buffers
containing different types of data. Local bindings are used extensively in the buffer hook commands.

Message Line

Associates a key binding for use on the command line only, allowing command completion to be
diverted etc.

To bind a command to a key, the command and key names must be known, see Command Glossary
for a complete list of commands and Key Names for a complete list of key names.

The binding related commands are defined as follows:

Commands

buffer−bind−key(2) Create local key binding for current buffer
buffer−unbind−key(2) Remove local key binding for current buffer
command−apropos(2) (C−h a) List commands involving a concept
describe−bindings(2) (C−h b) Show current command/key binding
describe−key(2) (C−x ?) Report keyboard key name and binding
expand−iso−accents(3) Expand an ISO accent
global−bind−key(2) (esc k) Bind a key to a named command or macro
global−unbind−key(2) (esc C−k) Unbind a key from a named command or macro
iso−accents−mode(3) ISO accent expansion short−cut mode
ml−bind−key(2) Create key binding for message line
ml−unbind−key(2) Remove key binding from message line
osd−bind−key(2) Create key binding for OSD dialog
osd−unbind−key(2) Remove key binding from OSD dialog
set−char−mask(2) Set character word mask

MicroEmacs '02

Keyboard Binding Commands 86

translate−key(2) Translate key

Variables

Alt Key

The Alt Key has special binding priorities defined as follows:−

Direct key binding (e.g. A−b executes file−browser)♦
Main menu hot key (e.g. A−f opens the File menu)♦
Meta key binding (e.g. A−space −> esc space −> set−mark)♦

If the ALT key is to be used strictly as the Emacs Meta key then the bindings for the menu should be
over−ridden by Direct Key Bindings from the user configuration file i.e. to re−map the default
MicroEmacs Alt key to equivalent esc keys then the following keys should be re−bound.

global−bind−key forward−word "A−f" ; Over−ride File menu binding
: ; For all of the other menu items.
:
global−bind−key backward−word "A−b" ; Over−ride the file browser.
global−bind−key replace−string "A−r" ; Over−ride tools binding.

This creates a higher priority binding which overrides the underlying default. The commands that are
displaced would have to be re−bound to different keys if required.

MicroEmacs '02

Keyboard Binding Commands 87

Operating Modes

OPERATING MODES

Modes are switches (or states) that may be applied globally or on a per buffer basis whose settings
determine how MicroEmacs '02 operates. Modes affect operations within a buffer, global modes
determine the modes of newly created buffers.

Commands to alter the operating state:

add−global−mode(3) Set a global buffer mode
add−mode(3) Set a local buffer mode
buffer−mode(2) (C−x m) Change a local buffer mode
delete−global−mode(3) Remove a global buffer mode
delete−mode(3) Remove a local buffer mode
global−mode(2) (esc m) Change a global buffer mode
named−buffer−mode(2) Change a named buffer mode
unmark−buffer(3) Remove buffer edited flag

Modes

The operating modes are defined as follows:

auto(2m) Automatic source file line type detection
autosv(2m) Automatic file save
backup(2m) Automatic file backup of last edit
binary(2m) Binary editor mode
cmode(2m) C Programming language mode
crlf(2m) File's line feed style
crypt(2m) Encrypted file mode
ctrlz(2m) File's termination style
del(2m) Flag buffer to be deleted
dir(2m) Buffer is a directory listing
edit(2m) Buffer has be changed
exact(2m) Searching and sorting case sensitivity
fence(2m) Auto fence matching mode
hide(2m) Hide buffer
indent(2m) Automatic indentation
justify(2m) Justification Mode
letter(2m) Letter kill policy
line(2m) Line kill policy
lock(2m) Pipe cursor position lock
magic(2m) Regular expression search
nact(2m) Buffer not active
narrow(2m) Buffer contains a narrow
over(2m) Over−strike Mode

MicroEmacs '02

Operating Modes 88

pipe(2m) Incremental Pipe running
quiet(2m) Quiet mode
rbin(2m) Reduced binary editor mode
save(2m) Flag buffer to be saved
tab(2m) Tabulation mode
time(2m) File time stamping
undo(2m) Retain edit modifications
usr(2m) User buffer modes
view(2m) Read only
wrap(2m) Line wrap entered text

Mode Line

The buffer modes may be shown on the mode line as single letter mnemonics as follows:−

Auto, autosv, Backup, binary, Cmode, crlf, crYpt, ctrlz, del, Dir, edit, Exact, Hide, Indent,
Justify, letter, Line, lock, Magic, nact, Narrow, Over, Pipe, Quiet, Save, Tab, time, Undo,
usr1, usr2, usr3, usr4, usr5, usr6, usr7, usr8, View, Wrap.

MicroEmacs '02

Operating Modes 89

Shell and Command Controls

SHELL AND COMMAND CONTROLS

Operating system and external system call invocations:

Commands

add−next−line(2) Define the searching behavior of command output
compile(3) Start a compilation process
cvs(3) MicroEmacs CVS interface
cvs−add(3) MicroEmacs CVS interface − add file
cvs−checkout(3) MicroEmacs CVS interface − checkout files
cvs−commit(3) MicroEmacs CVS interface − commit changes
cvs−diff(3) MicroEmacs CVS interface − diff changes
cvs−gdiff(3) MicroEmacs CVS interface − graphical diff changes
cvs−log(3) MicroEmacs CVS interface − log changes
cvs−remove(3) MicroEmacs CVS interface − remove file
cvs−resolve−conflicts(3) MicroEmacs CVS interface − resolve conflicts
cvs−state(3) MicroEmacs CVS interface − list state of directory files
cvs−update(3) MicroEmacs CVS interface − update directory files
cygnus(3) Open a Cygwin BASH window
dbx(3) UNIX Debugger
diff(3) Difference files or directories
diff−changes(3) Find the differences from a previous edit session
execute−tool(3) Execute a user defined shell tool
filter−buffer(2) (C−x #) Filter the current buffer through an O/S command
gdb(3) GNU Debugger
gdiff(3) Graphical file difference
generate−tags−file(3) Generate a tags file
get−next−line(2) (C−x `) Find the next command line
grep(3) Execute grep command
ipipe−kill(2) Kill a incremental pipe
ipipe−shell−command(2) (esc backslash) Incremental pipe (non−suspending system call)
ipipe−write(2) Write a string to an incremental pipe
ishell(3) Open a Cygwin BASH window
item−list(3) (F7) Abbreviated search and list buffer contents
item−list−close(3) (esc F7) Close the item list
item−list−find(3) Find the selected item in the item list
occur(3) Regular expression search for occurrences
perldb(3) Perl Debugger
pipe−shell−command(2) (esc @) Execute a single operating system command
rcs−file(2) (C−x C−q) Handle Revision Control System (RCS) files
rgrep(3) Execute recursive grep command
shell(2) [C−x c] Create a new command processor or shell
shell−command(2) Perform an operating system command

MicroEmacs '02

Shell and Command Controls 90

Variables

$ME_ISHELL(5) Windows ishell command.com
$ME_PIPE_STDERR(5) Command line diversion to stderr symbol
$buffer−ipipe(5) Divert buffer incremental pipe input through macro
$file−template(5) Regular expression file search string
$line−template(5) Command line regular expression search string
$rcs−ci−com(5) RCS (and SCCS) check in command
$rcs−cif−com(5) RCS (and SCCS) check in first command
$rcs−co−com(5) RCS (and SCCS) check out command
$rcs−cou−com(5) RCS (and SCCS) check out unlock command
$rcs−file(5) RCS (and SCCS) file name
$rcs−ue−com(5) RCS (and SCCS) unedit file command
$result(5) Various command return values
%compile−com(5) Default system compile command line
%cygnus−bin−path(5) Cygwin BASH directory
%cygnus−hilight(5) Cygwin shell hilight enable flag
%cygnus−prompt(5) Cygwin shell prompt
%diff−com(5) Diff command line
%gdiff−com(5) Gdiff command line
%grep−com(5) Grep command line

MicroEmacs '02

Shell and Command Controls 91

Spelling Commands

SPELLING COMMANDS

Commands related to spelling:

Commands

add−dictionary(2) Declare existence of a spelling dictionary
add−spell−rule(2) Add a new spelling rule to the dictionary
auto−spell(3) Auto−spell support
auto−spell−buffer(3) Auto−spell whole buffer
auto−spell−ignore(3) Auto−spell ignore current word
auto−spell−reset(3) Auto−spell hilight reset
delete−dictionary(2) Remove a spelling dictionary from memory
describe−word(3) Display a dictionary definition of a word
edit−dictionary(3) Insert a dictionary in a buffer
expand−word(3) Complete a word by invocation of the speller
find−word(3) Find a using spelling dictionaries
restore−dictionary(3) Save dictionary user changes
save−dictionary(2) Save changed spelling dictionaries
spell(2) Spell checker service provider
spell−add−word(3) Add a word to the main dictionary
spell−buffer(3) Spell check the current buffer
spell−edit−word(3) Edits a spell word entry
spell−word(3) (esc $) Spell check a single word

Variables

$find−words(5) Filtered word list

MicroEmacs '02

Spelling Commands 92

Hilighting, Color and Screen Appearance

HILIGHTING, COLOR AND SCREEN APPEARANCE

Commands that change the hilighting, screen color and screen appearance:

Commands

add−color(2) Create a new color
add−color−scheme(2) Create a new color scheme
change−font(2) Change the screen font
change−frame−depth(2) Change the number of lines on the current frame
change−frame−width(2) Change the number of columns on the current frame
change−screen−depth(2) Change the number of lines on the screen
change−screen−width(2) Change the number of columns on the screen
hilight(2) Manage the buffer hilighting schemes
indent(2) Manage the auto−indentation methods
line−scheme−search(3) Search and annotate the current buffer
print−color(2) Create a new printer color
print−scheme(2) Create a new printer color and font scheme
restyle−buffer(3) Automatically reformat a buffer's indentation
restyle−region(3) Automatically reformat a regions indentation
scheme−editor(3) Color Scheme Editor
show−region(2) Show the current copy region

Variables

$box−chars(5) Characters used to draw lines
$buffer−hilight(5) Define current buffer hilighting scheme
$buffer−scheme(5) Buffer color scheme
$cursor−blink(5) Cursor blink rate
$cursor−color(5) Cursor foreground color
$frame−depth(5) Number of lines on the current frame canvas
$frame−width(5) Number of columns on the current frame canvas
$global−scheme(5) Global buffer color scheme
$line−scheme(5) Set the current line color scheme
$mode−line(5) Mode line format
$mode−line−scheme(5) Mode line color scheme
$mouse−pos(5) Mouse position information
$screen−depth(5) Number of character lines on the screen canvas
$screen−width(5) Number of character columns on the screen canvas
$scroll−bar(5) Scroll bar configuration
$scroll−bar−scheme(5) Scroll bar color scheme
$show−modes(5) Select buffer modes to display
$show−region(5) Enable the hilighting of regions

MicroEmacs '02

Hilighting, Color and Screen Appearance 93

$system(5) System configuration variable
$trunc−scheme(5) Truncation color scheme
$window−chars(5) Character set used to render the windows

MicroEmacs '02

Hilighting, Color and Screen Appearance 94

Comparison and Differencing

Comparison and Differencing

Commands that perform comparisons and differences:−

Commands

compare−windows(2) Compare buffer windows, ignore whitespace
compare−windows−exact(3) Compare buffer windows, with whitespace
diff(3) Difference files or directories
diff−changes(3) Find the differences from a previous edit session
gdiff(3) Graphical file difference

Variables

%diff−com(5) Diff command line
%gdiff−com(5) Gdiff command line

MicroEmacs '02

Comparison and Differencing 95

Short Cuts and Abbreviations

SHORT CUTS

Automatic commands, history and automatic formatting modes such as C−mode (see cmode(2m)).

Commands

buffer−abbrev−file(2) Set buffers' abbreviation file
comment−end(3) End the current comment
comment−line(3) Comment out the current line
comment−restyle(3) Reformat the current comment
comment−start(3) Start a new comment
comment−to−end−of−line(3) Extend comment to end of line
expand−abbrev(2) Expand an abbreviation
expand−abbrev−handle(3) (esc esc) Expand an abbreviation handler
expand−iso−accents(3) Expand an ISO accent
expand−look−back(3) Complete a word by looking back for a similar word
expand−word(3) Complete a word by invocation of the speller
find−tag(2) (esc t) Find tag, auto−load file and move to tag position
generate−tags−file(3) Generate a tags file
global−abbrev−file(2) Set global abbreviation file
indent(2) Manage the auto−indentation methods
iso−accents−mode(3) ISO accent expansion short−cut mode
read−history(2) Read in session history information
save−history(2) Write history information to history file
uncomment−line(3) Uncomment current line

Variables

$c−brace(5) C−mode; brace indentation
$c−case(5) C−mode; case indentation
$c−contcomm(5) C−mode; comment continuation string
$c−continue(5) C−mode; line continuation indent
$c−contmax(5) C−mode; line continuation maximum indent
$c−margin(5) C−mode; trailing comment margin
$c−statement(5) C−mode; statement indentation
$c−switch(5) C−mode; switch indentation
%tag−file(5) Tag file name
%tag−option(5) Tag file search option
%tag−template(5) Tag file search string

MicroEmacs '02

Short Cuts and Abbreviations 96

Message Line Commands

MESSAGE LINE COMMANDS

The message line appears at the bottom of the screen and is used for the input of commands and also
to receive errors and information (see also Mode Line).

Commands and variables that interact with the message line include:

Commands

ml−bind−key(2) Create key binding for message line
ml−clear(2) Clear the message line
ml−unbind−key(2) Remove key binding from message line
ml−write(2) Write message on message line
osd−bind−key(2) Create key binding for OSD dialog
osd−unbind−key(2) Remove key binding from OSD dialog

Variables

$ml−scheme(5) Message line color scheme

MicroEmacs '02

Message Line Commands 97

Printing Commands

PRINTING COMMANDS

Printing within MicroEmacs '02 is fairly restrictive, the following commands are used in conjunction
with the print facility.

print−buffer(2) Print buffer, with formatting
print−color(2) Create a new printer color
print−region(2) Print region, with formatting
print−scheme(2) Create a new printer color and font scheme
print−setup(3) Configure (*mS's printer interface

MicroEmacs '02

Printing Commands 98

Macro Development Commands

MACRO DEVELOPMENT COMMANDS

Commands used in macro development, and more specialized commands which are only invoked
from macros. Refer to Macro Commands for keyboard macros etc.

An additional set of commands for use with macros is outlined in the Introduction to Variable
Functions section. The Macro Language Glossary contains a full list of macro related commands and
special variables.

Commands

add−file−hook(2) Declare file name context dependent configuration
ascii−time(3) Return the current time as a string
command−wait(2) Conditional wait command
create−callback(2) Create a timer callback
create−frame(2) Create a new frame
define−macro−file(2) Define macro file location
delete−frame(2) Delete the current frame
directory−tree(2) Draw the file directory tree
etfinsrt(3) Insert template file into current buffer
execute−string(2) Execute a string as a command
file−op(2) File system operations command
fileHooks(2) File Hooks
goto−position(2) Restore a stored position
goto−window(2) Restore a saved window to the current window (historic)
hilight(2) Manage the buffer hilighting schemes
insert−space(2) Insert space(s) into current buffer
insert−string(2) Insert character string into current buffer
languageTemplates(2) File Language Templates
localeSupport(2) Locale Support
newline(2) (return) Insert a new line
next−frame(2) Change the focus to the next frame
osd−dialog(3) OSD dialog box
osd−entry(3) OSD entry dialog box
osd−xdialog(3) OSD Extended dialog box
popup−window(2) Pop−up a window on the screen
regex−backward(3) Search for a magic string in the backward direction
regex−forward(3) Search for a magic string in the forward direction
screen−poke(2) Immediate write string to the screen
screen−update(2) (redraw) Force screen update
set−cursor−to−mouse(2) Move the cursor to the current mouse position
set−position(2) Store the current position
set−scroll−with−mouse(2) Scroll the window with the mouse
set−variable(2) (C−x v) Assign a new value to a variable

MicroEmacs '02

Macro Development Commands 99

set−window(2) Save the current window for restore (historic)
show−cursor(2) Change the visibility of the cursor
shut−down(3) Editor exit callback command
spell(2) Spell checker service provider
start−up(3) Editor startup callback command
unset−variable(2) Delete a variable
void(2) Null command

Variables

$MEBACKUPPATH(5) Backup file location
$MEBACKUPSUB(5) Backup file name modifier
$buffer−backup(5) Buffer backup file name
$buffer−bhook(5) Buffer macro hook command name (buffer current)
$buffer−dhook(5) Buffer macro hook command name (buffer deletion)
$buffer−ehook(5) Buffer macro hook command name (buffer swapped)
$buffer−fhook(5) Buffer macro hook command name (buffer creation)
$buffer−fmod(5) Buffer file modes (or attributes)
$buffer−indent(5) Current buffer indentation scheme
$buffer−input(5) Divert buffer input through macro
$buffer−ipipe(5) Divert buffer incremental pipe input through macro
$buffer−names(5) Filtered buffer name list
$command−names(5) Filtered command name list
$cursor−x(5) Mouse X (horizontal) position
$cursor−y(5) Mouse Y (vertical) position
$debug(5) Macro debugging flag
$file−names(5) Filtered file name list
$find−words(5) Filtered word list
$global−fmod(5) Global file modes (or attributes)
$mode−names(5) Filtered mode name list
$mouse(5) Mouse configuration variable
$mouse−x(5) Mouse X (horizontal) position
$mouse−y(5) Mouse Y (vertical) position
$platform(5) MicroEmacs host platform identifier
$progname(5) Program file name
$random(5) Generate a random number
$result(5) Various command return values
$status(5) Macro command execution status
$system(5) System configuration variable
$temp−name(5) Temporary file name
$variable−names(5) Filtered variable name list
$version(5) MicroEmacs version date−code
$window−flags(5) Current window setup flags
$window−mode−line(5) Window mode line position
$window−scroll−bar(5) Window scroll bar (or separator) position
%company−name(5) Name of company for template
.calc.result(5) Last calc calculation result

MicroEmacs '02

Macro Development Commands 100

Registry

REGISTRY

The registry commands provide an interface to manage the registry files defined by erf(8). The
registry is a mechanism which allows the binding of information to a hierarchical tree node, using a
file system metaphor to access the data. MicroEmacs uses a reserved root node history to save
session information (see save−history(2)).

Commands

delete−registry(2) Delete a registry tree
find−registry(2) Index search of a registry sub−tree
get−registry(2) Retrieve a node value from the registry
list−registry(2) Display the registry in a buffer
mark−registry(2) Modify the operating mode of a registry node
read−registry(2) Read in a registry definition file
save−registry(2) Write a registry definition file
set−registry(2) Modify a node value in the registry

Macro Functions

®(4) Retrieve a registry value (with default)

MicroEmacs '02

Registry 101

Command Line Filters

COMMAND LINE FILTERS

MicroEmacs may be invoked from the command line to perform a specific set of filtering tasks, under
control of a dedicated start up macro, see me(1) and start−up(3). A number of standard macros are
provided, most of which are invoked automatically from the editor itself when requested by the user.
Having said that, it has not been unknown for a colleague of mine to use the editor as a replacement
for a more intelligent sed(1) filter, with 12 hours to go and a huge ugly 3−D geometric database to
convert, what better way than run it through a set of MicroEmacs macros to turn it into another
database format that can be handled − probably not for the uninitiated, but that person did pull it off
and went home for tea !!

Macro Command Line Filters

benchmrk(3f) Benchmark MicroEmacs macro processor speed
ctags(3f) Generate a C tags file
dos2unix(3f) Convert DOS format files to UNIX format files
ehftools(3f) Generate a MicroEmacs help file
emftags(3f) Generate a MicroEmacs macro tags file
gdiff(3f) Command line graphical file difference
javatags(3f) Generate a C tags file from Java sources
ntags(3f) Generate a nroff tags file
printall(3f) Formatted print job
tcltags(3f) Generate a Tcl/Tk tags file
textags(3f) Generate a LaTeX/BibTeX tags file

Macro Functions

shut−down(3) Editor exit callback command
start−up(3) Editor startup callback command

Macro Variables

MicroEmacs '02

Command Line Filters 102

Games

GAMES

The following is a list of all of the games provided by MicroEmacs '02:

Mahjongg(3) MicroEmacs '02 version of the solitaire Mah Jongg game
Match−It(3) MicroEmacs '02 version of the Match−It game
Metris(3) MicroEmacs '02 version of the falling blocks game
Patience(3) MicroEmacs '02 version of Patience (or Solitaire)
Triangle(3) MicroEmacs '02 version of Triangle patience game

MicroEmacs '02

Games 103

languageTemplates(2)

FILE LANGUAGE TEMPLATES

MicroEmacs '02 provides a large range of macros and templates to deal with the most commonly
occurring types of ASCII file that may be edited. However, there is a requirement for users to extend
this capability to include more obscure file types, in addition to bespoke files found internally within
organizations, or devised by the user.

For each file type, MicroEmacs '02 may be tailored to recognize the file and modify it's hilighting,
key binding configuration, osd display and indentation to accommodate the file. In addition, new
shorthand macros may be introduced to help deal with the contents of the file.

This section outlines the steps to be taken to integrate a new file language template into MicroEmacs
'02.

The scope of the File Type

The first step is to decide the scope of the file, this will determine where the file hook should be
defined. The options are:−

A standard file type not supported

If this is a standard file type not supported by MicroEmacs '02 then it should be added to me.emf, in
addition contact us and we will add it to the standard release. Any macro files associated with this file
type should be available globally and are added to the MicroEmacs macro directory.

Local To your organization

If it is a file type local to your organization then it should be added to your company.emf file. Any
macro files associated with the file type should be added to your local company MicroEmacs '02
directory.

Local to an individual

If this is a file type that is only used by a limited number of individuals then it should be added to the user.emf
file. Any files associated with the file type are added to your local user MicroEmacs '02 directory.
Recognizing the File Type

The next step to adding a new file type is to get MicroEmacs '02 to recognize the file as the new type.
Recognition is performed by the File Hooks which perform recognition on the file extension and/or
the file content. The name of the file type must be determined, this is typically the name of the file
prepended by hk. e.g. a file with extension foo uses the file hkfoo.emf for it's language specific
definitions.

MicroEmacs '02

languageTemplates(2) 104

Using the add−file−hook(2) invocation the file recognition is bound to the file hook macro whenever
the file type is loaded. The file hook is added to the appropriate global, company or user start up file
as determined in step 1. The file hooks for file foo might be defined as follows, depending upon the
recognition method:−

Recognizing the extension

To recognize the file extension, then a space separated list of extensions may be defined,
including the dot '.' (or other) extension separator.

add−file−hook ".foo" fhook−foo

Recognizing a magic editor string in the file

If the file type adopts multiple extensions (or does not use a file extension) then an editor
specific string may be inserted into the file to enable the editor to recognize it, typically of the
form −!− type −!−, if the string is GNU Emacs compatible then the −*− convention may be
used. The binding is defined as:−

−1 add−file−hook "−!−[\t]*foo.*−!−" fhook−foo

Recognizing a magic string in the file

UNIX files use a "#!<path>" notation for executable ASCII files. If the file is this type of
file (or uses any other type of common string in the as the first characters of a file) then the
binding may be defined as follows, in this case we have assumed foo is the UNIX executable
variety i.e. #!/usr/local/bin/foo:−

1 add−file−hook "^#!/.*foo" fhook−foo

Any, or all of the above recognition methods may be employed to invoke the language specific macro.
Note that the methods are evaluated in a LIFO order, hence it is possible to over−ride an existing
method.

Defining the Macro File

Once the hook has been defined, the language specific file must be created. Create the language
specific file with the same name as defined in the hooks, removing the fhook− prefix and replacing it
with hk, i.e. fhook−foo invokes the language specific file hkfoo.emf. Create, the file and add
the file hook macro. for example hkfoo.emf contents may be defined as:

define−macro fhook−foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro
ml−write "[MicroEmacs foo file hook loaded]"

The file hook may be tested by exiting and re−loading MicroEmacs '02, or simply by executing the
file containing the add−file−hook function. Once the file bindings are installed a foo file may be

MicroEmacs '02

languageTemplates(2) 105

loaded and the hook message should be displayed.

Modifying an Existing file hook

The standard file hooks supplied with MicroEmacs '02 should not be modified, typically a user will
want to extend the repertoire of hi−lighting tokens to encompass locally defined programming
libraries or syntactical extensions, in addition to extending support macros that are associated with the
file type. In this case, an extension to the hook function is required. The hook file myXXX.emf, allows
extensions to be made to the hkXXX.emf, without editing the original file. This may be considered to
be an include file and is executed, if it exists, after the hk file has been executed. i.e. if the hook file
hkfoo.emf is already defined and extensions are added to myfoo.emf.

Note that the myXXX.emf files do not typically include any fhook−XXX functions, the original fhook
functions would be used. However, if a different buffer environment is required from the one created
be the hook, such as a different setting of tab(2m) mode, the hook function should be copied to
myXXX.emf and altered appropriately.

Adding Hilighting definitions

File specific hilighting is used to pick out key words and tokens used within the file type, it greatly
improves readability; the hilighting is also used for printing. The hilighting is defined within the body
of the file and is executed once when the hook file is loaded, this occurs when the hook function is
executed. During development of the hilighting code, it is usually necessary to execute the hook
buffer to view the effects of any changes to the hilighting.

The hilighting is defined using the command hilight(2) which requires a hilighting identifier, used to
identify the hilighting scheme. This identifier is dynamically allocated when the hook file is loaded,
again using foo, the identifier is allocated at the top of the file and is protected such that a value is
assigned once only.

!if &sequal .hilight.foo "ERROR"
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

The variable .hilight.next allocates unique hilighting numbers, typically a single hilighting
number is consumed, incrementing the .hilight.next variable ready for the next allocation. The
hilighting color scheme is defined in a macro variable .hilight.ext, where ext is the name of the
language scheme (i.e. foo).

Given a hilighting number, the hilighting scheme may be defined. Each of the tokens in the language
is assigned a hilighting color, for our simple foo file type:−

0 hilight .hilight.foo 1 $global−scheme
hilight .hilight.foo 2 "#" .scheme.comment
hilight .hilight.foo 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.foo 0 "'.'" .scheme.quote
hilight .hilight.foo 0 "'\\\\.'" .scheme.quote ; '\?' quoted char

hilight .hilight.foo 1 "if" .scheme.keyword

MicroEmacs '02

languageTemplates(2) 106

hilight .hilight.foo 1 "then" .scheme.keyword
hilight .hilight.foo 1 "else" .scheme.keyword
hilight .hilight.foo 1 "endif" .scheme.keyword

When the hilighting tokens have been defined, the hilighting scheme is bound to the buffer. This is
performed by assigning $buffer−hilight(5) with the hilighting scheme within the fhook macro body,
e.g.

define−macro fhook−foo
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Putting it all together hkfoo.emf now comprises:−

!if &sequal .hilight.foo "ERROR"
 ; Allocate a hilighting scheme number
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

; Define the hilighting scheme
0 hilight .hilight.foo 1 $global−scheme
hilight .hilight.foo 2 "#" .scheme.comment
hilight .hilight.foo 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.foo 0 "'.'" .scheme.quote
hilight .hilight.foo 0 "'\\\\.'" .scheme.quote ; '\?' quoted char

hilight .hilight.foo 1 "if" .scheme.keyword
hilight .hilight.foo 1 "then" .scheme.keyword
hilight .hilight.foo 1 "else" .scheme.keyword
hilight .hilight.foo 1 "endif" .scheme.keyword

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

; Notification that hook is loaded.
ml−write "[MicroEmacs foo file hook loaded]"

Adding a Template

A template inserts initial text into a new file that is created. This mechanism is typically used to insert
a standard header into the file on creation. The insertion text is defined within a template file, given
the file extension etf(8), which is created in the corresponding global, company or user directory as
determined in step 1. The template is named ext.etf, so for our example file foo, the template file is
called foo.etf. We shall simply add a file header, our comment is # (as defined by the hilighting
tokens). Our example foo template file foo.etf may be defined as follows:−

MicroEmacs '02

languageTemplates(2) 107

#−!− foo −!− #################################

Created By : $USER_NAME$
Created : $ASCII_TIME$
Last Modified : <160495.1521>

Description

Notes

History

Copyright (c) $YEAR$ $COMPANY_NAME$.

The template file must be explicitly loaded by the hook file, within the fhook function. A new file
condition may be tested within the fhook macro by checking the numerical argument, an argument of
0 indicates that this is a new file. The template file is inserted with an invocation of etfinsrt(3). The
fhook macro checks the argument and inserts the template file as follows:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Adding abbreviations

Abbreviations are short−cut expansions which may be defined for the language specific file. The
abbreviations are defined in a eaf(8) file, ext.eaf, located in the appropriately defined MicroEmacs
directory. The abbreviation file defines the key sequences which may be automatically inserted, under
user intervention, using expand−abbrev(2). An abbreviation file for foo, foo.eaf, may be defined
as:−

if "if \p\rthen\rendif\P"
el "else\r\p\P"

The binding to the hook is defined in the fhook macro using buffer−abbrev−file(2). For the example
language file foo the fhook macro becomes:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo

MicroEmacs '02

languageTemplates(2) 108

 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Automatic Indentation

Automatic indentation may be applied to the file, such that the indentation is automatically performed
when new lines are entered into the file. Indentation also benefits from automatic re−styling
operations using restyle−region(3) and restyle−buffer(3).

The indentation style is declared by defining language tokens that constitute positions in the syntax
where the indentation is changed. The indentation requires a unique identifier to identify the
indentation style, the hilighting identifier is used. If hilighting is not defined, then the language
template may still obtain an identifier as described in the hilighting section.

The indention is create with an argument of 0 to the indent(2) command, the subsequent tokens are
defined using indent with no argument. For our simple foo syntax then the indentation might be
defined as follows:−

0 indent .hilight.foo 2 10
indent .hilight.foo n "then" 4
indent .hilight.foo s "else" −4
indent .hilight.foo o "endif" −4

This provides an indentation of the form:−

if condition
then
 XXXX
else
 if condition
 then
 XXXX
 endif
endif

The indentation is bound to the buffer in the fhook macro by defining $buffer−indent(5). For the
example file foo then the fhook is defined as:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"

MicroEmacs '02

languageTemplates(2) 109

 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Setting Buffer Modes

Buffer modes which are to be adopted (or discarded) by the language specific file are defined in the
fhook macro. Typical modes that are applied are:−

time

Enables time stamping on the file, modifying the time stamp field with the modification date and
time.

indent

Automatic indentation, where the cursor is returned to the same column on entering a new line, rather
than to the start of the line.

As an example, the foo fhook file becomes:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Set up the buffer modes
 1 buffer−mode "time"
 1 buffer−mode "indent"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Assigning New Bindings

New bindings and language specific macros may be added to the language specific file. New macros,
to extend the repertoire of commands specifically developed for the language file are defined within
the macro body using define−macro(2) these are automatically loaded when the hook file is loaded,
which in turn is loaded when the file type is identified and loaded.

New bindings, which may be associated with new macros or existing commands, are assigned within
the fhook macro. As an example, we shall extend the foo language file to include a commenting and
uncommenting macros, locally binding the macros to the keys "C−c C−c" and "C−c C−d"

MicroEmacs '02

languageTemplates(2) 110

respectively. The macro definitions are defined as follows:−

; Macro to comment a line
define−macro foo−comment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 insert−string "#"
 beginning−of−line
 forward−line
 !done
!emacro

; Macro to remove a comment from a line
define−macro foo−uncomment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 −1 search−forward "#"
 backward−delete−char
 forward−line
 !done
!emacro

The key bindings for the macros are defined for the local buffer ONLY, as such are added using
buffer−bind−key(2). The bindings are declared in the fhook macro as follows:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Set up the buffer modes
 1 buffer−mode "time"
 1 buffer−mode "indent"
 ; Set up local bindings
 buffer−bind−key foo−comment−line "C−c C−c"
 buffer−bind−key foo−uncomment−line "C−c C−d"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Allowing Other to Modify the Hook

Other users of the file hook may need to modify or extend the file hook, the most common form is the
addition of user specific hilight tokens. MicroEmacs uses a simple mechanism of executing a user
hook extension file if it exists. The extension file name must be of the form myXXX.emf, i.e. for our
example it must be "myfoo.emf". This is performed at the end of the macro file so that anything
within the file can be altered, it is executed as follows:−

MicroEmacs '02

languageTemplates(2) 111

; load in user extensions if found
!force execute−file "myfoo"

Note the !force(4) directive is used as the file may not exist.

Summing Up

The previous sections have presented the basic steps involved in setting up a new language file
template. They cater for simple file types, for more complex examples then browse the hkxxx.emf
files.

The completed files that should have been generated by following the previous examples are now
presented:−

file.foo

This is a comment.
if condition
then
 do something
else
 if condition
 then
 do something
 endif
endif

hkfoo.emf

!if &sequal .hilight.foo "ERROR"
 ; Allocate a hilighting scheme number
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

; Define the hilighting scheme
0 hilight .hilight.foo 1 $global−scheme
hilight .hilight.foo 2 "#" .scheme.comment
hilight .hilight.foo 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.foo 0 "'.'" .scheme.quote
hilight .hilight.foo 0 "'\\\\.'" .scheme.quote ; '\?' quoted char

hilight .hilight.foo 1 "if" .scheme.keyword
hilight .hilight.foo 1 "then" .scheme.keyword
hilight .hilight.foo 1 "else" .scheme.keyword
hilight .hilight.foo 1 "endif" .scheme.keyword

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

MicroEmacs '02

languageTemplates(2) 112

; Define the indentation scheme
0 indent .hilight.foo 2 10
indent .hilight.foo n "then" 4
indent .hilight.foo s "else" −4
indent .hilight.foo o "endif" −4

; Reset the hilighting printer format and define the color bindings.
0 hilight−print .hilight.foo
hilight−print .hilight.foo "i" .scheme.comment
hilight−print .hilight.foo "b" .scheme.keyword
hilight−print .hilight.foo "bi" .scheme.string .scheme.quote

; Macro to comment a line
define−macro foo−comment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 insert−string "#"
 beginning−of−line
 forward−line
 !done
!emacro

; Macro to remove a comment from a line
define−macro foo−uncomment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 −1 search−forward "#"
 backward−delete−char
 forward−line
 !done
!emacro

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Set up the buffer modes
 1 buffer−mode "time"
 1 buffer−mode "indent"
 ; Set up local bindings
 buffer−bind−key foo−comment−line "C−c C−c"
 buffer−bind−key foo−uncomment−line "C−c C−d"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

; Notification that hook is loaded.
ml−write "[MicroEmacs foo file hook loaded]"

; load in user extensions if found
!force execute−file "myfoo"

MicroEmacs '02

languageTemplates(2) 113

foo.eaf

if "if \p\rthen\rendif\P"
el "else\r\p\P"

foo.etf

#−!− foo −!− #################################

Created By : $USER_NAME$
Created : $ASCII_TIME$
Last Modified : <160495.1521>

Description

Notes

History

Copyright (c) $YEAR$ $COMPANY_NAME$.

SEE ALSO

add−file−hook(2), buffer−abbrev−file(2), etfinsrt(3), execute−buffer(2), expand−abbrev(2),
global−abbrev−file(2), hilight(2), scheme−editor(3), indent(2), indent(2m), restyle−buffer(3),
restyle−region(3), time(2m), $buffer−hilight(5), $buffer−indent(5), etf(8), eaf(8),
File Hooks.

MicroEmacs '02

languageTemplates(2) 114

fileHooks(2)

FILE HOOKS

File hooks provide a mechanism to automatically invoke a set of macros for a given buffer type when
the following events occur:

Loading of a file into a buffer♦
Moving into a buffer (i.e. making a buffer current)♦
Moving out of a buffer (i.e. making another buffer current)♦
Deleting an active buffer♦

The file hook selection (see below) is performed on the file name / extension and on the textual
content of the buffer using add−file−hook.

Refer to Language Templates for a description of how the file hooks are used to define a new
template for a new text format.

The hook macros allow buffer modes and highlighting, applicable to the text type of the file, to be
applied to the buffer. In addition, the associated hook macros may be located in a separate file and are
loaded on demand when the file reading determines that a set of hook macros are required.

Consider a file hook definition of the form;

add−file−hook ".c .h" "fhook−c"

which binds the file hook fhook−c to any files that are loaded with the extension .c and .h. The
operations undertaken by MicroEmacs '02 are defined as follows when a file foo.c is loaded:−

Attempt to load file foo.c, if foo.c is not found then create a new buffer and assign file
name foo.c.

♦

If foo.c is found then load file into buffer. Search the first line(s) of the buffer for magic
hook text (add−file−hook with argument).

♦

If magic hook was not found then determine hook name from the file extension
(add−file−hook information).

♦

If a hook command is located, assign the file hook fhook−c to the buffer, assign the buffer
entry (begin) hook macro of bhook−c; assign a buffer exit hook of ehook−c.

♦

If the macro fhook−c is undefined then execute the macro file hkc.emf from the MicroEmacs
home directory in an attempt to load the macro. If the file myc.emf is defined, then the
modifications to the language template are applied after hkc.emf is loaded.

♦

If the macro fhook−c is (now) defined then foo.c is TEMPORARILY made the current
buffer and the file hook macro fhook−c is executed to completion and the previous current
buffer is restored. [TEMPORARY here implies that no buffer hooks are executed on the flip
in/out of foo.c].

♦

The current buffer is officially swapped to foo.c. At this point the ehook of the old current
buffer is executed (while its still current) and then foo.c is swapped in to become the
current buffer; the begin buffer hook bhook−cmode is then executed for foo.c (if it exists).

♦

MicroEmacs '02

fileHooks(2) 115

If the user moves to another buffer execute the end hook macro ehook−cmode (if it exists)
and move to the new buffer, executing it's begin hook.

♦

If the user subsequently returns to buffer foo.c execute the previous buffers end hook
macro, set the current buffer to foo.c and execute the begin hook macro bhook−c (if it exists).

♦

If the user kills buffer foo.c, if foo.c is the current buffer then an alternative buffer is
made current, ehook and bhook executed as normal. If macro dhook−c is defined then
foo.c is TEMPORARILY made the current buffer and the delete hook macro dhook−c is
executed to completion and the previous current buffer is restored.

♦

The name of the file hook macro name is important, hook commands must commence with the text
fhook−mode where mode is an identifier for the operating mode. The name space is decomposed as
follows:−

The initial f is removed and replaced with b for the begin hook macro and e for the end hook
macro.

♦

When the fhook macro is undefined the mode component is removed and the file
hkmode.emf is executed from the MicroEmacs home directory in an attempt to define the
macro.

♦

The fhook− nomenclature may be omitted provided that the name is less than 6 characters, however
the file, begin and end hook macros MUST commence with f, b and e respectively. In addition the
macros must be defined as no auto file loading is performed.

Buffer Hook Variables

The macros bound to a buffer may be interrogated, the variables $buffer−fhook(5), $buffer−bhook(5),
$buffer−ehook(5) and $buffer−dhook(5) contain the names of any associated macro attached as a
macro hooks, defining the file, begin, end and delete hooks respectively. If a macro is not bound then
the empty string "" is returned. Setting the variables has the effect of defining the hook and is a
method by which the buffer hooks may be affected after the buffer has been loaded.

Determination of a new file

The file hook fhook−XXX numeric argument may be used to determine if the file associated with a
buffer is a new file created by the user, or an existing file. Typically this distinction is used to
determine whether a boiler template is added to the file or not. The macro argument @# is defined as
zero (0) if this is a new file that has been created, or non−zero otherwise.

The macro argument status is typically tested on entry to the macro as follows:−

define−macro fhook−mode
 !if ¬ @#
 ; This is a new file. Do new file things
 !else
 ; This is an existing file
 !endif
 ; Set up bindings
!emacro

MicroEmacs '02

fileHooks(2) 116

An example of a generic hook file is given at the end of this section which elaborates on the file
hooks.

Begin and End hooks

The begin and end hooks are usually used to save and restore global states which require special
settings for a particular buffer type. This typically involves saving and restoring global variables
which are used by other buffers in a different configuration. For example the following is used to
reformat the time stamp string; the time stamp is a global variable $timestamp(5) and if it is changed
in one buffer, it must be restored ready for another. In this case the old time stamp is retained in a
local buffer variable whenever the buffer is entered, the time stamp is then modified for the buffers
requirements. On exit from the buffer the old time stamp format is restored to it's former state.

0 define−macro bhook−foo
 set−variable .timestamp $timestamp ; Save old time stamp.
 set−variable $timestamp "19%Y/%M/%D %h:%m:%s"
!emacro

0 define−macro ehook−foo
 set−variable $timestamp .bhook−foo.timestamp
!emacro

Note that in both cases the define−macro(2) invocation is defined as zero, this merely hides the macro
from the command line since both are private macros not normally invoked by the user.

FILE HOOK SELECTION

MicroEmacs '02 may be reconfigured to operate in different modes (referred to a Major Modes in
GNU emacs(1)) using the macro file hooks. The file hooks allow the working environment to be
customized for the editing of text of a particular sort, by importing text specific macros, key rebinding
and highlighting.

MicroEmacs '02, by default, loads a file into a buffer with default global modes with no highlighting.
There are no mode specific key bindings, variable settings, macros or highlights, buffer interaction
behaves in it's default state. The state of the buffer interaction may be modified through the use of the
buffer modes (see Operating Modes), for example the 'C' programming language cmode(2m) changes
the characteristics of the tab character and performs language specific indentation of statements.
When a text specific set of highlighting rules are applied to the buffer, the text becomes emphasized
through the use of color applied selectively to the text i.e. comments, keywords, strings are shown in
different colors, allowing them to be differentiated without studying the content.

Setting the operating mode of the buffer would be tedious to perform from the command line, instead
MicroEmacs '02 uses three different prioritized criteria to endeavor to select the correct operating
mode. The operating mode is applied to the buffer by execution of a set of file specific macros,
referred to a hook commands. The selection criteria of the hook commands is performed as follows,
ordered in lowest to highest priority:−

File Name

MicroEmacs '02

fileHooks(2) 117

MicroEmacs '02 uses the filename and/or the file extension to select a start−up hook
command. File names and extensions are bound to a set of macro hooks in a space separated
list e.g.

add−file−hook "c cpp" "fhook−cmode"
add−file−hook "doc txt README" "fhook−doc"

The space separated list of names are interpreted as either file extensions or filenames. In this
case any file with the extension .c, .cpp is bound to a file hook called fhook−cmode e.g.
foo.c. Similarly files with the extension .doc or .txt are interpreted as plain text documents
and are bound to fhook−doc. e.g. foo.txt. The entry README that exists in the
documentation hook list may refer to a file README and also foo.README, both cases
invoke the document hook.

The file selection is the lowest priority selection criteria but usually satisfies most mode
selection requirements.

Magic Strings

There are cases when file extensions may be omitted from files, typically these files include
an identifier, or magic string, on the first line of the file which is used to identify the file to
the operating system or application e.g. shell scripts under UNIX. MicroEmacs '02
automatically interrogates the top of every file that is loaded to locate some form of
identification string. The identification strings are defined in a similar way to the file name
hooks, except instead of defining a file extension the location and text content of the identifier
is defined:

1 add−file−hook "#!/bin/sh" "fhook−shell"
1 add−file−hook "#!/usr/local/bin/wish" "fhook−tcl"

In this case, any file that commences with "#!/bin/sh" is interpreted as a shell script and
invokes the shell hook fhook−shell. Where the identifier does not appear on the first
non−blank line, the argument may be increased to the number of lines to be searched. Also it
the magic sting should be search for without exact(2m) mode then the argument should be
negated, e.g.

−4 add−file−hook "<html>" "fhook−html"

invokes fhook−html whenever "<html>", "<HTML>" etc. is found in the first 4 lines of a
file header, e.g.:

<!−− Comment line −−>
<HtMl>

A match on a string identifier is assigned a higher priority than the file extension. It is
recommended that magic strings are only used where there are no predefined file extensions,
or conflicts exist between files with the same extension containing data interpreted in a
different context.

MicroEmacs '02

fileHooks(2) 118

Explicit Strings

The last method allows an explicit identifier string to be embedded into the text of the file
informing MicroEmacs '02 which mode it should adopt. GNU Emacs supports this (see
Major Mode in the GNU Emacs documentation) type of operation by insertion of strings of
the form:

−*− mode −*−

Where mode represents the major mode within GNU Emacs. The same format as used by
Magic Strings can be used to find and extract the mode, e.g.:

−1 add−file−hook "−[*!]−[\t]nroff.*−[*!]−" "fhook−nroff"

The definition would detect the GNU Emacs mode defined in an Nroff file e.g.

.\" −*− nroff −*− "

.TH man 1

.SH NAME

...

It should be stressed that the −*− syntax belongs to GNU Emacs and NOT MicroEmacs '02,
MicroEmacs '02 provides a mechanism to locate, extract and interpret the string. The −*−
syntax should only be applied to files if it is known that the mode is a GNU mode.

A MicroEmacs '02 specific string is also provided, defined as:

−!− mode−!−

where mode is an arbitrary string defined by add−file−hook. User defined modes may be
created and assigned to files with this syntax, this does not conflict with the GNU Emacs
command. For example to assign a new mode mymode to a file we would define the
following:−

−1 add−file−hook "−!−[\t]mymode.*−!−" "fhook−mymode"

Files containing a the following identifier would be loaded with mymode hook:

−!− mymode −!−
#
Last Modified: <120683.1014>

FILE HOOK SCRIPTS

The buffer hook files hkname.emf typically follow a standard layout, and are generally associated
with hi−lighting as follows, mode in this case is the name of the file mode associated with the file:−

!if &seq .hilight.mode "ERROR"

MicroEmacs '02

fileHooks(2) 119

 set−variable .hilight.mode &pinc .hilight.next 1
!endif
;
; Define the hilighting
;
0 hilight .hilight.mode 1 $global−scheme
hilight .hilight.mode 2 "**" .scheme.comment
hilight .hilight.mode 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.mode 0 "'.'" .scheme.quote

hilight .hilight.mode 1 "if" .scheme.keyword
hilight .hilight.mode 1 "elif" .scheme.keyword
hilight .hilight.mode 1 "else" .scheme.keyword
...

; Reset the hilighting printer format and define the color bindings.
0 hilight−print .hilight.mode
hilight−print .hilight.mode "i" .scheme.comment
hilight−print .hilight.mode "b" .scheme.keyword .scheme.variable
hilight−print .hilight.mode "bi" .scheme.string .scheme.quote
...

; Define the indentation tokens
0 indent .hilight.mode 2 10
indent .hilight.mode n "if" 4
indent .hilight.mode s "elif" −4
indent .hilight.mode s "else" −4
indent .hilight.mode o "endif" −4
indent .hilight.mode n "while" 4
...

define−macro fhook−mode
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "mode"
 !endif
 set−variable $buffer−hilight .hilight.mode
 set−variable $buffer−indent .hilight.mode
 1 buffer−mode "time"
 1 buffer−mode "indent"
 buffer−abbrev−file "mode"
!emacro

The previous example shows how the fhook−mode numeric argument is used to determine if this is a
new file. If the argument @# is zero then this is interpreted as a new file, in this case a standard
template is inserted (from file mode.etf) and the generic strings such as $YEAR$ replaced with
construction information. The template is generally used for standard headers and skeleton text body.

In addition an abbreviation file mode.eaf (see eaf(8)) is bound to the buffer using the
buffer−abbrev−file(2) command and the buffer hi−lighting enabled by assignment of the
$buffer−hilight(5) variable.

MODIFYING FILE HOOKS

MicroEmacs '02

fileHooks(2) 120

The standard hook files supplied with MicroEmacs '02 should not be modified, changes to the file
hooks may be applied using a separate macro file called myXXX.emf, this is automatically executed
after the hkXXX.emf file is executed.

The extended hook functions may be defined company wide, or by the user, to over−ride some of the
standard hook functions, or to extend the syntax of the base files with locally defined extensions. As
an example, consider the following file myc.emf which extends the basic hkc.emf file set of
hi−lighting tokens for the 'C' Language.

;;
;
; Created By : Steven Phillips
; Created : Thu Jun 18 15:34:05 1998
; Last Modified : <230798.0854>
;
; Description Extension hilighting for the 'C' language.
;
; Notes Define the locally defined 'C' library types and definitions
; as extensions to the 'C' programming language.
;
; History
;
;;

; MicroEmacs specific tokens
hilight .hilight.c 1 "LINE" .scheme.type
hilight .hilight.c 1 "BUFFER" .scheme.type
hilight .hilight.c 1 "WINDOW" .scheme.type
hilight .hilight.c 1 "REGION" .scheme.type
hilight .hilight.c 1 "KEYTAB" .scheme.type
hilight .hilight.c 1 "KILL" .scheme.type
hilight .hilight.c 1 "KLIST" .scheme.type
hilight .hilight.c 1 "HILNODE" .scheme.type
hilight .hilight.c 1 "HILNODEPTR" .scheme.type
hilight .hilight.c 1 "HILCOLOR" .scheme.type
hilight .hilight.c 1 "SELHILIGHT" .scheme.type
hilight .hilight.c 1 "VIDEO" .scheme.type
hilight .hilight.c 1 "VVIDEO" .scheme.type
hilight .hilight.c 1 "FRAMELINE" .scheme.type
hilight .hilight.c 1 "IPIPEBUF" .scheme.type
hilight .hilight.c 1 "DIRNODE" .scheme.type
hilight .hilight.c 1 "UNDOND" .scheme.type
hilight .hilight.c 1 "meVARLIST" .scheme.type
hilight .hilight.c 1 "meVARIABLE" .scheme.type
hilight .hilight.c 1 "meCMD" .scheme.type
hilight .hilight.c 1 "meAMARK" .scheme.type
hilight .hilight.c 1 "meABREV" .scheme.type
hilight .hilight.c 1 "meMACRO" .scheme.type
hilight .hilight.c 1 "meNARROW" .scheme.type
hilight .hilight.c 1 "meREGISTERS" .scheme.type
hilight .hilight.c 1 "meSTAT" .scheme.type
hilight .hilight.c 1 "osdITEM" .scheme.type
hilight .hilight.c 1 "osdDIALOG" .scheme.type
hilight .hilight.c 1 "osdCHILD" .scheme.type
hilight .hilight.c 1 "meSCROLLBAR" .scheme.type
hilight .hilight.c 1 "osdCONTEXT" .scheme.type
hilight .hilight.c 1 "osdDISPLAY" .scheme.type

MicroEmacs '02

fileHooks(2) 121

hilight .hilight.c 1 "RNODE" .scheme.type
hilight .hilight.c 1 "REGHANDLE" .scheme.type
hilight .hilight.c 1 "meDIRLIST" .scheme.type
hilight .hilight.c 1 "meNAMESVAR" .scheme.type
hilight .hilight.c 1 "meDICTADDR" .scheme.type
hilight .hilight.c 1 "meSPELLRULE" .scheme.type
hilight .hilight.c 1 "meDICTWORD" .scheme.type
hilight .hilight.c 1 "meDICTIONARY" .scheme.type
hilight .hilight.c 1 "meMODE" .scheme.type

SEE ALSO

Operating Modes, Language Templates, add−file−hook(2), cmode(2m).

MicroEmacs '02

fileHooks(2) 122

Editor File Types

EDITOR FILE TYPES

Different file types used by MicroEmacs '02:

eaf(8) MicroEmacs abbreviation file format
edf(8) MicroEmacs spelling dictionary file
ehf(8) MicroEmacs help file
emf(8) MicroEmacs macro file
erf(8) MicroEmacs registry file
etf(8) MicroEmacs template file format

MicroEmacs '02

Editor File Types 123

Compatibility(2)

COMPATIBILITY

JASSPA MicroEmacs is based on the original version of MicroEMACS produced by Danial
Lawrence at revision 3.8, the source files were obtained in approximately 1990. The exact origin of
the files is unknown. In that period of time the source files have undergone an awful lot of change,
without reference to the subsequent releases made of MicroEMACS by Danial Lawrence (due to no
network access). As a result the JASSPA version of MicroEmacs does not include any modifications
or features that may have been implemented since. This version of MicroEmacs has been tailored to
suite the requirements of a small group of individuals who have used the editor on a daily basis across
a limited number of platforms, for a variety of very different tasks and operating requirements.

This version of MicroEmacs is biased towards UNIX environments, MS−DOS and Microsoft
Windows ports have been performed however they are heavily influenced by UNIX and inherit UNIX
characteristics wherever possible. The intention is that programmers, and alike, may move across
platforms using a common editor environment without being frustrated by the idiosyncrasies of
different platforms. The most noticeable platform is the Microsoft Windows platform which mimics
the X−Windows cut and paste mechanism within the MicroEmacs environment. If you want a
Windows style environment then use Notepad(1) or Wordpad(1), this editor is not for you !!

The gross changes to MicroEmacs '02 are summarized as follows:−

Macro language interpreter re−written allowing an unlimited number of named macros to be
supported. The macro implementation allows new commands to be created by the user, as
opposed to continually extending the underlying command set. The named macros are
transparent to the user, appearing as built in commands on the command line. Macro
command set significantly increased. Support for global, buffer and register variables within
the macro language.

♦

Display drivers re−written providing color hilighting support on most platforms. A macro
interface allows information to be written directly to the display canvas allowing the screen to
be annotated with additional transient information.

♦

Support for X−Window screen type in UNIX environments. Microsoft Window's
environments (3.x, '95, NT) treated in the same was as X−Windows − this may be unorthodox
for existing Window's users, UNIX users will find it more comfortable.

♦

Introduction of integrated spell checker. Support includes correction word guessing, word
auto−correction and double word detection. Ignore and personal dictionaries supported.

♦

Horizontal window splitting.♦
Introduction of scroll bars on all platforms that support a mouse. The scroll bar
implementation is platform independent.

♦

Command and file completion available on all platforms. Most commands support a
command history allowing previous command invocations to be recalled.

♦

Session history file kept, allowing the previous edit session to be reinstated.♦
Undo capability, allows previous edits to be undone when mistakes are made.♦
Backup capability, Includes a periodic timed backup while an editing session is in progress.
The timed backup is automatically recovered by the next session in situations where the
system (or editor) crashes.

♦

MicroEmacs '02

Compatibility(2) 124

A regular expression incremental search becomes the default search forward mechanism.♦
Support for abbreviation files allowing frequently used constructs to be automatically
expanded.

♦

Automatic time stamping of files, allowing the edit time to be automatically maintained in the
source file(s).

♦

Introduction of an electric 'C' mode. Editor intelligently handles the layout of 'C' files (under
user control).

♦

Improved documentation text mode providing left/right/center and both justification methods
with inclusion for bullet points. Automatic justification may be continually performed as text
is entered, thereby maintaining the paragraph in the correct format.

♦

Integrated on−line help facilities. All commands are documented on−line. New macros may
be documented within the macro files and become part of the help system.

♦

File type determination system, based on either the file name or embedded file text allows file
type specific macros (hooks) to be applied, thereby configuring the editor into the correct
mode for the file type.

♦

Introduction of special MicroEmacs search path allowing all of the standard configuration
files to be utilized from a shared directory.

♦

The name space of JASSPA MicroEmacs differs from the original MicroEMACS and has become
more compliant with the GNU implementation of Emacs. A list of the original MicroEMACS verses
the new command name set is as follows, executing the compatibility macro file meme3_8.emf will
create macro versions of these commands:

add−global−mode => global−mode
add−mode => buffer−mode
apropos => command−apropos
backward−character => backward−char
begin−macro => start−kbd−macro
beginning−of−file => beginning−of−buffer
bind−to−key => global−bind−key
buffer−position => buffer−info
case−region−lower => lower−case−region
case−region−upper => upper−case−region
case−word−capitalize => capitalize−word
case−word−lower => lower−case−word
case−word−upper => upper−case−word
change−screen−depth => change−frame−depth
change−screen−width => change−frame−width
clear−message−line => ml−clear
ctlx−prefix => prefix 2
delete−global−mode => global−mode
delete−mode => buffer−mode
delete−next−character => forward−delete−char
delete−next−word => forward−kill−word
delete−previous−character => backward−delete−char
delete−previous−word => backward−kill−word
end−macro => end−kbd−macro
end−of−file => end−of−buffer
execute−command−line => execute−line

MicroEmacs '02

Compatibility(2) 125

execute−macro => execute−kbd−macro
execute−macro−# => Deleted
file−name−insert => insert−file−name
forward−character => forward−char
grow−window => grow−window−horizontally
handle−tab => tab
i−shell => shell
incremental−search => isearch−forward
kill−to−end−of−line => kill−line
meta−prefix => prefix 1
move−window−down => scroll−down
move−window−up => scroll−up
name−buffer => change−buffer−name
next−line => forward−line
next−page => scroll−down
next−paragraph => forward−paragraph
next−word => forward−word
open−line => insert−newline
pipe−command => pipe−shell−command
previous−line => backward−line
previous−page => scroll−up
previous−paragraph => backward−paragraph
previous−word => backward−word
quote−character => quote−char
redraw−display => recenter
restore−window => goto−position
reverse−incremental−search => isearch−backward
save−file => save−buffer
save−window => set−position
scroll−next−down => scroll−next−window−down
scroll−next−up => scroll−next−window−up
search−reverse => search−backward
select−buffer => find−buffer
set => set−variable
shrink−window => shrink−window−vertically
split−current−window => split−window−vertically
top−bottom−switch => Deleted
transpose−characters => transpose−chars
unbind−key => global−unbind−key
update−screen => screen−update
write−message => ml−write

MicroEmacs '02

Compatibility(2) 126

Interfacing(2)

INTERFACING

This sections describes how MicroEmacs '02 may be interfaced to external components.

Shells

A shell window may be opened within the context of the editor using the command ishell(3), whereby
an interactive command shell is presented within a buffer.

In the Microsoft Windows environment a cygnus UNIX style BASH shell may be realised with the
cygnus(3) command.

Debugger

Within the UNIX environment the GNU gdb(1) or native UNIX dbx(1) debuggers may be invoked
from the editor using gdb(3) or dbx(3). respectively This invokes the debugger and follows the
debugging process in the editor window, automatically opening the source files as the debugger calls
for them.

Microsoft Developer Studio

In the Microsoft windows environment, the memsdev(1) DLL may be attached to the Microsoft
Developer Studio to enable MicroEmacs '02 to be used in place of the in−built editor.

File Searching

File searching is performed using grep(1) using the grep(3) command. For Windows then the GNU
grep utility is recommended, for MS−DOS then the DJGPP version of GNU grep is recommended.

File Differencing

Differencing files, or directories is performed using the diff(1) utility using the diff(3) command. For
all platforms the GNU diff utility is recommended as this provides a comprehensive differencing that
is not typically available with native UNIX diff utilities.

Tag Files

A tag capability exists (see find−tag(2)) such that source functions and alike may be located quickly
using a tags file. The standard ctags(1) format is used by MicroEmacs. The tags file itself may be

MicroEmacs '02

Interfacing(2) 127

generated by MicroEmacs '02 from the menu (Tools−>XX Tools−>Create Tags File). Alternatively a
tags file may be generated by the ctags(1) utility. This is typically standard on UNIX platforms. For
Windows and DOS platforms then the Exuberant Ctags is recommended, this is available from:−

http://darren.hiebert.com

A MicroEmacs '02 compatible tags file may be generated using the command line "ctags −N
−−format=1 ." cataloging the current directory. To generate tags for a directory tree then use
"ctags −NR −−format=1 .". Refer to the Exuberant Ctags documentation for a more detailed
description of the utility.

Compilation

Compilation is performed using the compile(3) command. This invokes a command shell, typically
using make(1) to initiate a build sequence.

Client−Server

The Client−Server interface allows other client applications to inject commands into an already
existing MicroEmacs '02 session (the server), thereby controlling the editor remotely. This is typically
used to inject new files into the editor to be presented to the user.

The Client−Server interface is available in both the UNIX and Microsoft Windows environments.
This mechanism is used in the Microsoft windows environment by the memsdev(1) DLL to attach the
Microsoft Developer Studio to MicroEmacs '02. This may be used with similar effects within the
UNIX environments from the X−Window managers desktop in addition to other utilities such as
TkDesk(1).

Command Line Filer

MicroEmacs may be invoked as a command filter in it's own right, macro scripts have been developed
to perform a dos2unix(1) conversion operation, generate tags files etc. See Command Line Filters.

SEE ALSO

ctags(1), compile(3), cygnus(3), dbx(3), diff(3), find−tag(2) gdb(3), grep(3), ishell(3), memsdev(1),
Client−Server, Command Line Filters.

MicroEmacs '02

Interfacing(2) 128

Supported File Types

SUPPORTED FILE TYPES

The file types currently supported by MicroEmacs '02 are defined in the following list. Other file
types may be supported by definition of an appropriate hook function to handle the file, see
fileHooks(2).

0−9(9) UNIX t/nroff file
asm(9) Assembler File
asn.1(9) ASN.1 file
awk(9) AWK File
bas(9) Visual Basic
bat(9) MS−DOS Batch File
bnf(9) Backus−Naur Form
btm(9) 4−DOS Batch File
c(9) C programming language
cbl(9) Cobol (85) File
cc(9) C++ programming language
cls(9) Visual Basic
cpp(9) C++ programming language
csh(9) C−Shell file
def(9) C or C++ definition file
doc(9) ASCII plain text document file
ehf(9) MicroEmacs '02 help file
emf(9) MicroEmacs '02 Macro File
erf(9) MicroEmacs '02 registry file
f(9) Fortran File
f77(9) Fortran 77 File
f90(9) Fortran 90 File
fvwm(9) FVWM configuration file
fvwmrc(9) FVWM configuration file
gawk(9) GNU AWK File
h(9) C programming language header
hpj(9) MS−Windows Help Project File
htm(9) HyperText Markup Language File
html(9) HyperText Markup Language File
i(9) C/C++ preprocessor outpuit file
imakefile(9) Make file
info(9) GNU Info file
ini(9) MS−Windows Initialization File
jav(9) Java programming language
java(9) Java programming language
ksh(9) Korn shell file
l(9) LEX programming language
latex(9) TeX Documentation
login(9) Shell user login file

MicroEmacs '02

Supported File Types 129

MetaFont(9) MetaFont/MetaPost File
m4(9) M4 Macro Processor
makefile(9) Make file
man(9) UNIX Manual Page
mf(9) MetaFont File
mp(9) MetaPost File
nawk(9) New AWK File
nroff(9) UNIX nroff file
p(9) Pascal File
pas(9) Pascal File
perl(9) Practical Extraction and Report Language File
pl(9) Practical Extraction and Report Language File
pm(9) Practical Extraction and Report Language File
profile(9) Shell user profile
py(9) Python Language File
python(9) Python Language File
rc(9) Microsoft Developer resource file
reg(9) Registry file
rgy(9) Registry file
rul(9) Install Shield Rules
s(9) Assembler File
sch(9) Scheme File
scheme(9) Scheme File
scm(9) Scheme File
sh(9) Bourne shell file
so(9) UNIX t/nroff include file
sql(9) SQL File
tcl(9) TCL programming language
tcshrc(9) T−Shell start up file
tex(9) TeX Documentation
texi(9) GNU Texinfo documentation file
texinfo(9) GNU Texinfo documentation file
tk(9) TK programming language
tni(9) UNIX t/nroff include file
troff(9) UNIX troff file
txt(9) ASCII plain text file
vb(9) Visual Basic
vhdl(9) VHDL hardware simulation File
vrml(9) VRML File
wish(9) TCL shell file
x86(9) Intel .x86 Assembler File
y(9) YACC programming language
zsh(9) Z−Shell file

MicroEmacs '02

Supported File Types 130

Client−Server(2)

CLIENT−SERVER

This sections describes how MicroEmacs '02 may be interfaced to external components through the
Client−Server interface.

The Client−Server interface of MicroEmacs '02 provides a capability for other applications to inject
commands into a running version of the editor, which are interpreted and executed. The interface is
only available on multi−tasking operating systems such as UNIX and Microsoft Windows; it is not
available on MS−DOS systems.

Within the following discussions, the Server is a running version of the MicroEmacs '02 editor; the
client is the application (or shell script) that communicates a new command to the server.

The Client−Server interface may provide a bidirectional interface such that a client may submit a
command to the server and may also retrieve a response to that command.

DESCRIPTION

The Client−Server interface operates by making an external interface available which is continually
monitored by the server. The external interface may be provided by a file, named pipe or socket
(depending upon the platform) with a well know location in the file system. Typically two files are
provided, an input file into which the client writes commands ($TEMP/me$MENAME.cmd); and an
output file where responses to those commands my be read ($TEMP/me$MENAME.rsp).

Within MicroEmacs, the client server interface appears as a hidden ipipe−shell−command(2) buffer,
with the name *server*. Commands are received through this buffer and responses are written
back to the buffer.

Client Commands

Clients may write directly to the command through the use of explicit embedded code, or may use a
me(1) invocation with the −m option. Commands to the client interface take the form
"C:<client>:<command>".

<client>

<client> is an identification string that may be used to identify the client, this information may be
used when the command is handled to interpret the command if some special client specific action is
required.

<command>

The <command> is an editor command (or macro) of the given name with any arguments.

MicroEmacs '02

Client−Server(2) 131

Standard command escape sequences must be adhered to. i.e. to write "Hello World" on
the message line then a client may issue the command:−

me −m "C:<client>:ml−write \"Hello world\"

The client−server interface is typically used to load a file, this may be performed as follows:−

me −m "C:<client>:find−file \"/path/foo.bar\""

The absolute path is specified in this type of transaction as the current working directory of
the active MicroEmacs session is unknown. The −m option de−iconize's the existing editor
session and bring it to the foreground.

Client Responses

Responses from client commands are written to the response file, responses take a similar form to
client commands except they are prefixed by an R, i.e. "R:<client>:<data>".

As multiple clients may be utilizing the client−server mechanism then the <client> sting passed in
the command is typically returned in the response to allow the client to identify it's own response
(rather than any other clients. It is the clients responsibility that this string is unique in order that it
may be differentiated.

The returned <data> format is undefined and would be generated by a macro command used to
handle the client command; sufficient to say that the data should exist on a single line.

Server Side

On the server side, the Client−Server interface is managed like an ipipe−shell−command(2) using
the hidden buffer *server* (as previously mentioned).

The Client−Server interface is enabled from the user−setup(3) interface, the user setting of the
interface is confirmed by checking bit 0x20000 of the $system(5) variable.

The client server interface is typically initialized within the me.emf initialization file, whereby the
ipipe input handler is bound to the client pipe buffer and the buffer is hidden, so it is not available
when the buffers are swapped. (Note that the client buffer may be explicitly interrogated using
find−buffer*server*). The client handler is installed as follows:−

; Setup the Client Server
!if &band $system 0x20000
 define−macro−file meserver server−input
 find−buffer "*server*"
 set−variable :last−line 2
 set−variable :client−list ":"
 set−variable $buffer−ipipe server−input
 beginning−of−buffer
 goto−alpha−mark "I"
 −1 find−buffer "*server*"

MicroEmacs '02

Client−Server(2) 132

!endif

This binds a MicroEmacs macro called server−input to handle the client commands as they arrive on
the input, an alpha−mark is used to record the processed position at the end of the buffer. The pipe
handler itself decodes the client request and executes it. The default handler supplied with
MicroEmacs '02 is defined within the macro file meserver.emf

Responses to the client are inserted into the response file by writing directly into the ipipe buffer
(*server*) using the ipipe−write(2) command. It is the calling macros responsibility to ensure that
the response string adheres to the format outlined above in the previous sections.

NOTES

It is not possible to kill the *server* buffer, and ipipe−kill(2) is ignored within the context of the
buffer.

FILES

meserver.emf − Default Client−Server ipipe handler.
$TEMP/me$MENAME.cmd − Command file.
$TEMP/me$MENAME.rsp − Response file.

BUGS

The first MicroEmacs '02 session that executes becomes the editor server, additional editor sessions
that are executed do not become server processes. In the event that the server editor is terminated, any
other sessions do not take over the role of server. Subsequently issuing a client command may fail, or
invoke a new editor session which adopts the role of server.

SEE ALSO

me(1), ipipe−shell−command(2)

MicroEmacs '02

Client−Server(2) 133

RegularExpressions(2)

REGULAR EXPRESSIONS

Regular Expressions are used in the search (and replace) operations. The following notes are
applicable when magic(2m) mode is enabled.

Overview

A "regular expression" (or "regex", or "pattern") is a text string that describes some (mathematical)
set of strings. A regex R "matches" a string S if S is in the set of strings described by R.

MicroEmacs '02 includes the GNU regular expression pattern matcher library, regex which provides
a powerful search engine, using the search engine you can:

see if a string matches a specified pattern as a whole, and♦
search within a string for a substring matching a specified pattern.♦

Some regular expressions match only one string, i.e., the set they describe has only one member. For
example, the regular expression 'foo' matches the string 'foo' and no others. Other regular
expressions match more than one string, i.e., the set they describe has more than one member. For
example, the regular expression 'f*' matches the set of strings made up of any number (including
zero) of 'f's. As you can see, some characters in regular expressions match themselves (such as 'f')
and some don't (such as '*'); the ones that do not match themselves instead let you specify patterns
that describe many different strings.

Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the rest are
"ordinary". An ordinary character is a simple regular expression which matches that same character
and nothing else. The special characters are '$', '^', '.', '*', '+', '?', '[', ']' and '\'. Any other character
appearing in a regular expression is ordinary, unless a '\' precedes it.

For example, 'f' is not a special character, so it is ordinary, and therefore 'f' is a regular expression
that matches the string 'f' and no other string. (It does not match the string 'ff'.) Likewise, 'o' is a
regular expression that matches only 'o'. (When case distinctions are being ignored, these regexs also
match 'F' and 'O', but we consider this a generalization of "the same string", rather than an exception.)

Any two regular expressions A and B can be concatenated. The result is a regular expression which
matches a string if A matches some amount of the beginning of that string and B matches the rest of
the string.

As a simple example, we can concatenate the regular expressions 'f' and 'o' to get the regular
expression 'fo', which matches only the string 'fo'. Still trivial. To do something nontrivial, you need
to use one of the special characters. Here is a list of them.

MicroEmacs '02

RegularExpressions(2) 134

. (Period)

is a special character that matches any single character except a newline. Using concatenation, we can
make regular expressions like 'a.b', which matches any three−character string that begins with 'a'
and ends with 'b'.

* (asterisk)

is not a construct by itself; it is a postfix operator that means to match the preceding regular
expression repetitively as many times as possible. Thus, 'o*' matches any number of 'o's (including
no 'o's).

'*' always applies to the smallest possible preceding expression. Thus, 'fo*' has a repeating
'o', not a repeating 'fo'. It matches 'f', 'fo', 'foo', and so on.

The matcher processes a '*' construct by matching, immediately, as many repetitions as can
be found. Then it continues with the rest of the pattern. If that fails, backtracking occurs,
discarding some of the matches of the '*'−modified construct in case that makes it possible to
match the rest of the pattern. For example, in matching 'ca*ar' against the string 'caaar',
the 'a*' first tries to match all three 'a's; but the rest of the pattern is 'ar' and there is only 'r'
left to match, so this try fails. The next alternative is for 'a*' to match only two 'a's. With this
choice, the rest of the regex matches successfully.

+ (plus) is a postfix operator, similar to '*' except that it must match the preceding expression
at least once. So, for example, 'ca+r' matches the strings 'car' and 'caaaar' but not the
string 'cr', whereas 'ca*r' matches all three strings.

'?' (question mark)

is a postfix operator, similar to '*' except that it can match the preceding expression either once or not
at all. For example, 'ca?r' matches 'car' or 'cr'; nothing else.

[...]

is a "character set", which begins with '[' and is terminated by ']'. In the simplest case, the characters
between the two brackets are what this set can match.

Thus, '[ad]' matches either one 'a' or one 'd', and '[ad]*' matches any string composed of
just 'a's and 'd's (including the empty string), from which it follows that 'c[ad]*r' matches
'cr', 'car', 'cdr', 'caddaar', etc.

You can also include character ranges in a character set, by writing the starting and ending
characters with a '−' between them. Thus, '[a−z]' matches any lower−case ASCII letter.
Ranges may be intermixed freely with individual characters, as in '[a−z$%.]', which
matches any lower−case ASCII letter or '$', '%' or period.

Note that the usual regex special characters are not special inside a character set. A
completely different set of special characters exists inside character sets: ']', '−' and '^'.

MicroEmacs '02

RegularExpressions(2) 135

To include a ']' in a character set, you must make it the first character. For example, '[]a]'
matches ']' or 'a'. To include a '−', write '−' as the first or last character of the set, or put it
after a range. Thus, '[]−]' matches both ']' and '−'.

To include '^' in a set, put it anywhere but at the beginning of the set.

When you use a range in case−insensitive search, you should write both ends of the range in
upper case, or both in lower case, or both should be non−letters. The behavior of a
mixed−case range such as 'A−z' is somewhat ill−defined, and it may change in future Emacs
versions.

[^ ...]

'[^' begins a "complemented character set", which matches any character except the ones specified.
Thus, '[^a−z0−9A−Z]' matches all characters *except* letters and digits.

'^' is not special in a character set unless it is the first character. The character following the
'^' is treated as if it were first (in other words, '−' and ']' are not special there).

A complemented character set can match a newline, unless newline is mentioned as one of the
characters not to match. This is in contrast to the handling of regexs in programs such as
grep(1).

^ (caret)

is a special character that matches the empty string, but only at the beginning of a line in the text
being matched. Otherwise it fails to match anything. Thus, '^foo' matches a 'foo' that occurs at the
beginning of a line.

$ (dollar)

is similar to '^' but matches only at the end of a line. Thus, 'x+$' matches a string of one 'x' or more at
the end of a line.

\ (backslash)

has two functions: it quotes the special characters (including '\'), and it introduces additional special
constructs.

Because '\' quotes special characters, '\$' is a regular expression that matches only '$', and
'\[' is a regular expression that matches only '[', and so on.

Note: for historical compatibility, special characters are treated as ordinary ones if they are in
contexts where their special meanings make no sense. For example, '*foo' treats '*' as
ordinary since there is no preceding expression on which the '*' can act. It is poor practice to
depend on this behavior; it is better to quote the special character anyway, regardless of where
it appears.

MicroEmacs '02

RegularExpressions(2) 136

For the most part, '\' followed by any character matches only that character. However, there
are several exceptions: two−character sequences starting with '\' that have special meanings.
The second character in the sequence is always an ordinary character when used on its own.
Here is a table of '\' constructs.

\| (bar)

specifies an alternative. Two regular expressions A and B with '\|' in between form an
expression that matches some text if either A matches it or B matches it. It works by trying to
match A, and if that fails, by trying to match B.

Thus, 'foo\|bar' matches either 'foo' or 'bar' but no other string.

'\|' applies to the largest possible surrounding expressions. Only a surrounding '\(
... \)' grouping can limit the grouping power of '\|'.

Full backtracking capability exists to handle multiple uses of '\|'.

\(... \)

is a grouping construct that serves three purposes:

To enclose a set of '\|' alternatives for other operations. Thus,
'\(foo\|bar\)x' matches either 'foox' or 'barx'.

•

To enclose a complicated expression for the postfix operators '*', '+'
and '?' to operate on. Thus, 'ba\(na\)*' matches 'bananana',
etc., with any (zero or more) number of 'na' strings.

•

To record a matched substring for future reference. This last
application is not a consequence of the idea of a parenthetical
grouping; it is a separate feature that is assigned as a second meaning
to the same '\(... \)' construct. In practice there is no conflict
between the two meanings.

•

'\D'

matches the same text that matched the Dth occurrence of a `\(... \)' construct.

After the end of a '\(... \)' construct, the matcher remembers the beginning and
end of the text matched by that construct. Then, later on in the regular expression,
you can use '\' followed by the digit D to mean "match the same text matched the Dth
time by the '\(... \)' construct."

The strings matching the first nine '\(... \)' constructs appearing in a regular
expression are assigned numbers 1 through 9 in the order that the open−parentheses
appear in the regular expression. So you can use '\1' through '\9' to refer to the text
matched by the corresponding '\(... \)' constructs.

For example, '\(.*\)\1' matches any newline−free string that is composed of two
identical halves. The '\(.*\)' matches the first half, which may be anything, but the

MicroEmacs '02

RegularExpressions(2) 137

'\1' that follows must match the same exact text.

If a particular '\(... \)' construct matches more than once (which can easily
happen if it is followed by '*'), only the last match is recorded.

\`

matches the empty string, but only at the beginning of the buffer or string being matched
against.

NOTE: This currently only matches the start of the current line − it does not match
the start of the buffer.

\'

matches the empty string, but only at the end of the buffer or string being matched against.

NOTE: This currently only matches the end of the current line − it does not match
the end of the buffer.

\=

matches the empty string, but only at point.

\b

matches the empty string, but only at the beginning or end of a word. Thus, '\bfoo\b'
matches any occurrence of 'foo' as a separate word. '\bballs?\b' matches 'ball' or
'balls' as a separate word.

'\b' matches at the beginning or end of the buffer regardless of what text appears next
to it.

\B matches the empty string, but *not* at the beginning or end of a word.

\<

matches the empty string, but only at the beginning of a word. '\<' matches at the beginning
of the buffer only if a word−constituent character follows.

\>

matches the empty string, but only at the end of a word. '\>' matches at the end of the buffer
only if the contents end with a word−constituent character.

\w

matches any word−constituent character. The syntax table determines which characters these
are.

MicroEmacs '02

RegularExpressions(2) 138

\W

matches any character that is not a word−constituent.

\sC

matches any character whose syntax is C. Here C is a character that represents a syntax code:
thus, 'w' for word constituent, '−' for whitespace, '(' for open parenthesis, etc. Represent a
character of whitespace (which can be a newline) by either '−' or a space character.

\SC

matches any character whose syntax is not C.

\{N,M\}

Matches an integer number of the previous item, where N and M are integer constants
interpreted as follows:−

\{N\}

The preceeding item is matched exactly N times.

\{N,\}

The preceeding item is matched N or more times.

\{N,M\}

The preceeding item is matched at least N times, but no more than M times.

\{,M\}

The preceeding item is optional and is matched at most M times.

The constructs that pertain to words and syntax are controlled by the setting of the syntax table.

Syntax of Replacement Expressions

A regular expression replacement, query−replace−string(2) command (with magic(2m) mode
enabled), replaces exact matches for a single string or pattern. The replacement pattern may be a
constant; it may also refer to all or part of what is matched by the regular expression search string.

\&

In the replacement pattern, \& stands for the entire match being replaced. (as does \0).

\D

MicroEmacs '02

RegularExpressions(2) 139

In the replacement pattern, where D is a digit 1−9, stands for whatever matched the Dth
parenthesized grouping (\(.. \)) in search pattern. To include a '\' in the text to replace
with, you must enter '\\'. For example,

M−x query−replace−string<RET> c[ad]+r <RET> \&−safe <RET>

replaces (for example) "cadr" with "cadr−safe" and "cddr" with "cddr−safe".

M−x query−replace−string<RET> \(c[ad]+r\)−safe <RET> \1 <RET>

performs the inverse transformation.

\0 is a special case, this represents the whole of the search pattern, it is equivalent to \&.

Searching and Case

Searching may be either case sensitive or case insensitive, and is controlled by the exact(2m) mode.
When exact mode is enabled (default) the then searches are case sensitive; disabled then case is
ignored. The exact(2m) mode is set on a per−buffer basis.

NOTES

The search engine searches for the longest string that matches a given pattern, the longest pattern is
sometimes the pattern that is not actually required. For instance, consider searching for an HTML
bracket set. The simplest search is:−

M−x search−forward "<.*>"

Unfortunately, this pattern is not specific enough, given an HTML line:−

Jasspa Site

Then the pattern matched is actually the whole line as the .* matches everything to the last >, this is
the longest string. To rectify the pattern then we must be more specific, the correct search pattern to
use in this instance is:−

M−x search−forward "<[^>]*>"

In this case we match any character excluding the closing character, this guarantees that we always
find the shortest string match. A search of our HTML line locates two separate instances of the
regular expression and .

SEE ALSO

search−forward(2), search−backward(2), buffer−mode(2), exact(2m), hunt−backward(2),
hunt−forward(2), isearch−forward(2), magic(2m), replace−string(2).

MicroEmacs '02

RegularExpressions(2) 140

Build(2)

BUILD

MicroEmacs '02 may be compiled from the source files using the command shell build scripts build
(UNIX Bourne Shell) or build.bat (DOS/Windows). A default compile sequence may be achieved
with a simple:

build

from the command line. The build script attempts to detect the host system and available compiler and
build the editor.

The build script recognizes the following options:−

−C

Build clean. Delete all of the object files.

−d

Build a debugging version, the output is med (or med32 for 32−bit Windows versions).

−h

Display a simple help page

−l logfile

Redirect all compilation output to the logfile, this may not work on DOS or Windows systems.

−la logfile

Append all compilation output to the end of logfile, this may not work on DOS or Windows systems.

−m makefile

Build using the specified makefile. over−riding the auto system detect. The supplied
makefiles include:−

aix43.mak IBM AIX 4.3 native⋅
cygwin.gmk Cygwin using GNU tools under Windows.⋅
dosdj1.mak Microsoft DOS build using djgpp version 1.⋅
dosdj2.mak Microsoft DOS build using djgpp version 2.⋅
freebsd.gmk Free BSD using GNU tools.⋅
hpux9.gmk HP−UX 9.x using GNU tools.⋅
hpux9.mak HP−UX 9.x native⋅
hpux10.gmk HP−UX 10.x using GNU tools.⋅

MicroEmacs '02

Build(2) 141

hpux10.mak HP−UX 10.x native⋅
hpux11.gmk HP−UX 11.x using GNU tools.⋅
hpux11.mak HP−UX 11.x native⋅
irix5.gmk Silicon Graphics IRIX 5.x using GNU tools⋅
irix5.mak Silicon Graphics IRIX 5.x native⋅
irix6.gmk Silicon Graphics IRIX 6.x using GNU tools⋅
irix6.mak Silicon Graphics IRIX 6.x native⋅
linux2.gmk Linux 2.x using GNU tools⋅
openstep.mak Openstep 4.2 on NeXTstep (BSD 4.3).⋅
sunos55.gmak Sun Solaris 5.5 using GNU tools⋅
sunos55.mak Sun Solaris 5.5 native⋅
sunos56.gmak Sun Solaris 5.6 using GNU tools⋅
sunos56.mak Sun Solaris 5.6 native⋅
sunosx86.gmk Sun Solarais 2.6 (Intel) using GNU tools.⋅
win32bc.mak Borland C, 32−bit Windows version.⋅
win32b55.mak Borland C 5.5, 32−bit Windows version (Free compiler).⋅
win32sv2.mak Microsoft Developer v2.x, Win32s (for Win 3.xx)⋅
win32sv4.mak Microsoft Developer v4.2, Win32s (for Win 3.xx)⋅
win32v2.mak Microsoft Developer v2.x, 32−bit Windows.⋅
win32v5.mak Microsoft Developer v5.x, 32−bit Windows.⋅
win32v6.mak Microsoft Developer v6.x, 32−bit Windows.⋅

−ne

Build NanoEmacs (a cut down version aimed as a vi replacement), the output is ne (or ned32 for
32−bit Windows versions).

−S

Build spotless. Deletes all of the object files and any backup files, tag files etc.

−t type

Set the build type, where type can be one of the following:

c Build a console only version (i.e. no window support), the output is mec
(or mec32 on Windows).

⋅

w Build a windows only version (i.e. no console support), the output is mew
(or mew32 on Windows).

⋅

cw Build a version which supports both console and windows, the output is
mecw (or mecw32 on Windows).

⋅

−u

Build a URL version (Windows '95/'98/NT only), constructs the executable meu32.exe. Makefiles

The supplied makefiles are provided in two forms:−

MicroEmacs '02

Build(2) 142

.gmk − GNU make, using gcc.♦

.mak − Native make, consistent with the compiler and platform.♦

The makefiles are supplied with the following targets:−

all − Default build.♦
clean − Removes intermediate files.♦
spotless − Removes intermediate files and any backup files.♦
med − Builds a debugging version.♦
men − Builds console version (Windows only).♦
men − Builds a URL version (Windows only).♦
menu − Builds console and URL version (Windows only).♦

NOTES

Other UNIX ports should be fairly easy from the base set of ported platforms. If any new platform
ports are performed by individuals then please submit the makefiles and any source changes back to
JASSPA − see Contact Information.

MicroEmacs '02

Build(2) 143

Command Glossary
COMMAND GLOSSARY

The following is a list of all of the commands (built−in and macro) provided by MicroEmacs '02
[See split listing]:

abort−command(2) (C−g) Abort command
about(2) Information About MicroEmacs
add−color(2) Create a new color
add−color−scheme(2) Create a new color scheme
add−dictionary(2) Declare existence of a spelling dictionary
add−file−hook(2) Declare file name context dependent configuration
add−global−mode(3) Set a global buffer mode
add−mode(3) Set a local buffer mode
add−next−line(2) Define the searching behavior of command output
add−spell−rule(2) Add a new spelling rule to the dictionary
alarm(3) Set an alarm
aman(3) Compile an nroff file into a buffer (UNIX)
append−buffer(2) Write contents of buffer to end of named file
ascii−time(3) Return the current time as a string
auto−spell(3) Auto−spell support
auto−spell−buffer(3) Auto−spell whole buffer
auto−spell−ignore(3) Auto−spell ignore current word
auto−spell−reset(3) Auto−spell hilight reset
backward−char(2) (C−b) Move the cursor left
backward−delete−char(2) (backspace) Delete the previous character at the cursor position
backward−delete−tab(2) (S−tab) Delete white space to previous tab−stop
backward−kill−word(2) (esc backspace) Delete the previous word at the cursor position
backward−line(2) (C−p) Move the cursor to the previous line
backward−paragraph(2) (esc p) Move the cursor to the previous paragraph
backward−word(2) (esc b) Move the cursor to the previous word
beginning−of−buffer(2) (esc <) Move to beginning of buffer/file
beginning−of−line(2) (C−a) Move to beginning of line
buffer−abbrev−file(2) Set buffers' abbreviation file
buffer−bind−key(2) Create local key binding for current buffer
buffer−help(3) Displays help page for current buffer
buffer−info(2) (C−x =) Status information on current buffer position
buffer−mode(2) (C−x m) Change a local buffer mode
buffer−setup(3) Configures the current buffer settings
buffer−unbind−key(2) Remove local key binding for current buffer
c−hash−del(3) Remove C/C++ #define evaluation
c−hash−eval(3) Evaluate C/C++ #defines
c−hash−set−define(3) Set a C/C++ #define
c−hash−unset−define(3) Unset a C/C++ #define
calc(3) Integer calculator
capitalize−word(2) (esc c) Capitalize word

Command Glossary 144

change−buffer−name(2) (esc C−n) Change name of current buffer
change−directory(2) [C−x C−d] Change the current working directory
change−file−name(2) (C−x n) Change the file name of the current buffer
change−font(2) Change the screen font
change−frame−depth(2) Change the number of lines on the current frame
change−frame−width(2) Change the number of columns on the current frame
change−screen−depth(2) Change the number of lines on the screen
change−screen−width(2) Change the number of columns on the screen
change−window−depth(2) Change the depth of the current window
change−window−width(2) Change the width of the current window
charset−change(3) Convert buffer between two character sets
charset−iso−to−user(3) Convert buffer from ISO standard to user character set
charset−user−to−iso(3) Convert buffer from user to ISO standard character set
check−line−length(3) Check the length of text lines are valid
clean(3) Remove redundant white spaces from the current buffer
command−apropos(2) (C−h a) List commands involving a concept
command−wait(2) Conditional wait command
compare−windows(2) Compare buffer windows, ignore whitespace
compare−windows−exact(3) Compare buffer windows, with whitespace
compile(3) Start a compilation process
copy−region(2) (esc w) Copy a region of the buffer
count−words(2) (esc C−c) Count the number of words in a region
create−callback(2) Create a timer callback
create−frame(2) Create a new frame
cvs(3) MicroEmacs CVS interface
cvs−add(3) MicroEmacs CVS interface − add file
cvs−checkout(3) MicroEmacs CVS interface − checkout files
cvs−commit(3) MicroEmacs CVS interface − commit changes
cvs−diff(3) MicroEmacs CVS interface − diff changes
cvs−gdiff(3) MicroEmacs CVS interface − graphical diff changes
cvs−log(3) MicroEmacs CVS interface − log changes
cvs−remove(3) MicroEmacs CVS interface − remove file
cvs−resolve−conflicts(3) MicroEmacs CVS interface − resolve conflicts
cvs−state(3) MicroEmacs CVS interface − list state of directory files
cvs−update(3) MicroEmacs CVS interface − update directory files
cygnus(3) Open a Cygwin BASH window
define−help(2) Define help information
define−macro(2) Define a new macro
define−macro−file(2) Define macro file location
delete−blank−lines(2) (C−x C−o) Delete blank lines about cursor
delete−buffer(2) (C−x k) Delete a buffer
delete−dictionary(2) Remove a spelling dictionary from memory
delete−frame(2) Delete the current frame
delete−global−mode(3) Remove a global buffer mode
delete−indentation(3) Join 2 lines deleting white spaces
delete−mode(3) Remove a local buffer mode
delete−other−windows(2) (C−x 1) Delete other windows
delete−registry(2) Delete a registry tree
delete−some−buffers(2) Delete buffers with query

MicroEmacs '02

Command Glossary 145

delete−window(2) (C−x 0) Delete current window
describe−bindings(2) (C−h b) Show current command/key binding
describe−key(2) (C−x ?) Report keyboard key name and binding
describe−variable(2) (C−h v) Describe current setting of a variable
describe−word(3) Display a dictionary definition of a word
diff(3) Difference files or directories
diff−changes(3) Find the differences from a previous edit session
directory−tree(2) Draw the file directory tree
display−white−chars(3) Toggle the displaying of white characters
draw(3) Simple line drawing utility
edit−dictionary(3) Insert a dictionary in a buffer
end−kbd−macro(2) (C−x)) Stop recording keyboard macro
end−of−buffer(2) (esc >) Move to end of buffer/file
end−of−line(2) (C−e) Move to end of line
etfinsrt(3) Insert template file into current buffer
exchange−point−and−mark(2) (C−x C−x) Exchange the cursor and marked position
execute−buffer(2) Execute script lines from a buffer
execute−file(2) (esc /) Execute script lines from a file
execute−kbd−macro(2) (C−x e) Execute a keyboard macro
execute−line(2) Execute a typed in script line
execute−named−command(2) [esc x] Execute a named command
execute−string(2) Execute a string as a command
execute−tool(3) Execute a user defined shell tool
exit−emacs(2) Exit MicroEmacs
expand−abbrev(2) Expand an abbreviation
expand−abbrev−handle(3) (esc esc) Expand an abbreviation handler
expand−look−back(3) Complete a word by looking back for a similar word
expand−word(3) Complete a word by invocation of the speller
file−attrib(3) Set the current buffers system file attributes
file−browser(3) (f10) Browse the file system
file−browser−close(3) Close the file−browser
file−browser−swap−buffers(3) Swap between file−browser windows
file−op(2) File system operations command
fill−paragraph(2) (esc o) Format a paragraph
filter−buffer(2) (C−x #) Filter the current buffer through an O/S command
find−bfile(3) (C−x 9) Load a file as binary data
find−buffer(2) (C−x b) Switch to a named buffer
find−cfile(3) Load a crypted file
find−file(2) (C−x C−f) Load a file
find−registry(2) Index search of a registry sub−tree
find−tag(2) (esc t) Find tag, auto−load file and move to tag position
find−word(3) Find a using spelling dictionaries
find−zfile(3) Compressed file support
fold−all(3) (f3) (Un)Fold all regions in the current buffer
fold−current(3) (f2) (un)Fold a region in the current buffer
forward−char(2) (C−f) Move the cursor right
forward−delete−char(2) (C−d) Delete the next character at the cursor position
forward−kill−word(2) (esc d) Delete the next word at the cursor position
forward−line(2) (C−n) Move the cursor to the next line

MicroEmacs '02

Command Glossary 146

forward−paragraph(2) (esc n) Move the cursor to the next paragraph
forward−word(2) (esc f) Move the cursor to the next word
ftp(3) Initiate an FTP connection
gdiff(3) Graphical file difference
generate−tags−file(3) Generate a tags file
get−next−line(2) (C−x `) Find the next command line
get−registry(2) Retrieve a node value from the registry
global−abbrev−file(2) Set global abbreviation file
global−bind−key(2) (esc k) Bind a key to a named command or macro
global−mode(2) (esc m) Change a global buffer mode
global−unbind−key(2) (esc C−k) Unbind a key from a named command or macro
goto−alpha−mark(2) (C−x a) Move the cursor to a alpha marked location
goto−line(2) (esc g) Move the cursor to specified line
goto−matching−fence(2) (esc C−f) Move the cursor to matching fence
goto−position(2) Restore a stored position
goto−window(2) Restore a saved window to the current window (historic)
grep(3) Execute grep command
grow−window−horizontally(2) Enlarge current window horizontally (relative)
grow−window−vertically(2) Enlarge the current window (relative change)
help(2) (esc ?) Help; high level introduction to help
help−command(2) (C−h C−c) Help; command information
help−item(2) (C−h C−i) Help; item information
help−variable(2) (C−h C−v) Help; variable information
hilight(2) Manage the buffer hilighting schemes
hunt−backward(2) (C−x C−h) Resume previous search in backward direction
hunt−forward(2) (C−x h) Resume previous search in forward direction
ifill−paragraph(3) (esc q) Format a paragraph
indent(2) Manage the auto−indentation methods
info(3) Display a GNU Info database
info−goto−link(3) Display Info on a given link
info−on(3) Display Info on a given topic
insert−file(2) (C−x C−i) Insert file into current buffer
insert−file−name(2) (C−x C−y) Insert filename into current buffer
insert−macro(2) Insert keyboard macro into buffer
insert−newline(2) (C−o) Insert new line at cursor position
insert−space(2) Insert space(s) into current buffer
insert−string(2) Insert character string into current buffer
insert−tab(2) (C−i) Insert tab(s) into current buffer
ipipe−kill(2) Kill a incremental pipe
ipipe−shell−command(2) (esc backslash) Incremental pipe (non−suspending system call)
ipipe−write(2) Write a string to an incremental pipe
isearch−backward(2) (C−r) Search backwards incrementally (interactive)
isearch−forward(2) (C−s) Search forward incrementally (interactive)
ishell(3) Open a Cygwin BASH window
kbd−macro−query(2) (C−x q) Query termination of keyboard macro
kill−line(2) (C−k) Delete all characters to the end of the line
kill−paragraph(2) Delete a paragraph
kill−rectangle(2) (esc C−w) Delete a column of text
kill−region(2) (C−w) Delete all characters in the marked region

MicroEmacs '02

Command Glossary 147

line−scheme−search(3) Search and annotate the current buffer
list−buffers(2) (C−x C−b) List all buffers and show their status
list−commands(2) (C−h c) List available commands
list−registry(2) Display the registry in a buffer
list−variables(2) (C−h v) List defined variables
lower−case−region(2) (C−x C−l) Lowercase a region (downcase)
lower−case−word(2) (esc l) Lowercase word (downcase)
Mahjongg(3) MicroEmacs '02 version of the solitaire Mah Jongg game
MainMenu(3) The top main menu
Match−It(3) MicroEmacs '02 version of the Match−It game
Metris(3) MicroEmacs '02 version of the falling blocks game
mail(3) Compose and send an email
mail−check(3) Check for new email
man(3) UNIX manual page viewer
man−clean(3) Clean UNIX manual page
mark−registry(2) Modify the operating mode of a registry node
ml−bind−key(2) Create key binding for message line
ml−clear(2) Clear the message line
ml−unbind−key(2) Remove key binding from message line
ml−write(2) Write message on message line
name−kbd−macro(2) Assign a name to the last keyboard macro
named−buffer−mode(2) Change a named buffer mode
narrow−buffer(2) Hide buffer lines
newline(2) (return) Insert a new line
next−buffer(2) (C−x x) Switch to the next buffer
next−frame(2) Change the focus to the next frame
next−window(2) (C−x o) Move the cursor to the next window
next−window−find−buffer(2) [] Split the current window and show new buffer
next−window−find−file(2) (C−x 4) Split the current window and find file
normal−tab(3) Insert a normal tab
organizer(3) Calendar and address organizer
osd(2) Manage the On−Screen Display
osd−bind−key(2) Create key binding for OSD dialog
osd−dialog(3) OSD dialog box
osd−entry(3) OSD entry dialog box
osd−help(3) GUI based on−line help
osd−unbind−key(2) Remove key binding from OSD dialog
osd−xdialog(3) OSD Extended dialog box
Patience(3) MicroEmacs '02 version of Patience (or Solitaire)
paragraph−to−line(3) Convert a paragraph to a single line
pipe−shell−command(2) (esc @) Execute a single operating system command
popup−window(2) Pop−up a window on the screen
prefix(2) Key prefix command
previous−window(2) (C−x p) Move the cursor to the previous window
print−buffer(2) Print buffer, with formatting
print−color(2) Create a new printer color
print−region(2) Print region, with formatting
print−scheme(2) Create a new printer color and font scheme
print−setup(3) Configure (*mS's printer interface

MicroEmacs '02

Command Glossary 148

query−replace−all−string(3) Query replace string in a list of files
query−replace−string(2) (esc C−r) Search and replace a string − with query
quick−exit(2) (esc z) Exit the editor writing changes
quote−char(2) (C−q) Insert literal character
rcs−file(2) (C−x C−q) Handle Revision Control System (RCS) files
read−file(2) (C−x C−r) Find and load file replacing current buffer
read−history(2) Read in session history information
read−registry(2) Read in a registry definition file
recenter(2) (C−l) Recenter the window (refresh the screen)
regex−backward(3) Search for a magic string in the backward direction
regex−forward(3) Search for a magic string in the forward direction
replace−all−pairs(3) Replace string pairs in a list of files
replace−all−string(3) Replace string with new string in a list of files
replace−string(2) (esc r) Replace string with new string
reread−file(3) Reload the current buffer's file
resize−all−windows(2) Resize all windows (automatic change)
resize−window−horizontally(2) Resize current window horizontally (absolute)
resize−window−vertically(2) Resize the current window (absolute change)
restore−dictionary(3) Save dictionary user changes
restyle−buffer(3) Automatically reformat a buffer's indentation
restyle−region(3) Automatically reformat a regions indentation
reyank(2) (esc y) Restore next yank buffer
rgrep(3) Execute recursive grep command
save−all(3) Save all modified files (with query)
save−buffer(2) (C−x C−s) Save contents of changed buffer to file
save−buffers−exit−emacs(2) (esc z) Exit the editor prompt user to write changes
save−dictionary(2) Save changed spelling dictionaries
save−history(2) Write history information to history file
save−registry(2) Write a registry definition file
save−some−buffers(2) Save contents of all changed buffers to file (with query)
scheme−editor(3) Color Scheme Editor
screen−poke(2) Immediate write string to the screen
screen−update(2) (redraw) Force screen update
scroll−down(2) (C−n) Move the window down (scrolling)
scroll−left(2) (C−x <) Move the window left (scrolling)
scroll−next−window−down(2) (esc C−v) Scroll next window down
scroll−next−window−up(2) (esc C−z) Scroll next window up
scroll−right(2) (C−x >) Move the window right (scrolling)
scroll−up(2) (C−p) Move the window up (scrolling)
search−backward(2) (C−x r) Search for a string in the backward direction
search−forward(2) (C−x s) Search for a string in the forward direction
set−alpha−mark(2) (C−x C−a) Place an alphabetic marker in the buffer
set−char−mask(2) Set character word mask
set−cursor−to−mouse(2) Move the cursor to the current mouse position
set−encryption−key(2) (esc e) Define the encryption key
set−mark(2) (esc space) Set starting point of region
set−position(2) Store the current position
set−registry(2) Modify a node value in the registry
set−scroll−with−mouse(2) Scroll the window with the mouse

MicroEmacs '02

Command Glossary 149

set−variable(2) (C−x v) Assign a new value to a variable
set−window(2) Save the current window for restore (historic)
shell(2) [C−x c] Create a new command processor or shell
shell−command(2) Perform an operating system command
show−cursor(2) Change the visibility of the cursor
show−region(2) Show the current copy region
shrink−window−horizontally(2) Shrink current window horizontally (relative)
shrink−window−vertically(2) Shrink the current window (relative change)
shut−down(3) Editor exit callback command
sort−lines(2) Alphabetically sort lines
sort−lines−ignore−case(3) Alphabetically sort lines ignoring case
spell(2) Spell checker service provider
spell−add−word(3) Add a word to the main dictionary
spell−buffer(3) Spell check the current buffer
spell−edit−word(3) Edits a spell word entry
spell−word(3) (esc $) Spell check a single word
split−window−horizontally(2) (C−x 5) Split current window into two (horizontally)
split−window−vertically(2) (C−x 2) Split the current window into two
start−kbd−macro(2) (C−x () Start recording keyboard macro
start−up(3) Editor startup callback command
stop−mail−check(3) Disable the check for new email
suspend−emacs(2) Suspend editor and place in background
symbol(3) Insert an ASCII character
Triangle(3) MicroEmacs '02 version of Triangle patience game
tab(2) (tab) Handle the tab key
tabs−to−spaces(3) Converts all tabs to spaces
tex2nr(3) Convert a Latex file into nroff
time(3) Command time evaluator
translate−key(2) Translate key
transpose−chars(2) (C−t) Exchange (swap) adjacent characters
transpose−lines(2) (C−x C−t) Exchange (swap) adjacent lines
undo(2) (C−x u) Undo the last edit
uniq(3) Make lines in a sorted list unique
universal−argument(2) (C−u) Set the command argument count
unmark−buffer(3) Remove buffer edited flag
unset−variable(2) Delete a variable
upper−case−region(2) (C−x C−u) Uppercase a region (upcase)
upper−case−word(2) (esc u) Uppercase word (upcase)
user−setup(3) Configure MicroEmacs for a specific user
view−file(2) (C−x C−v) Load a file read only
vm(3) Email viewer
void(2) Null command
which(3) Program finder
wrap−word(2) Wrap word onto next line
write−buffer(2) (C−x C−w) Write contents of buffer to named (new) file
yank(2) (C−y) Paste (copy) kill buffer contents into buffer
yank−rectangle(2) (esc C−y) Insert a column of text
zfile−setup(3) Compressed file support setup

MicroEmacs '02

Command Glossary 150

Split Command Glossary

SPLIT COMMAND GLOSSARY

The following is a list of all of the built in commands provided by MicroEmacs '02 [See mixed
listing]:

abort−command(2) (C−g) Abort command
about(2) Information About MicroEmacs
add−color(2) Create a new color
add−color−scheme(2) Create a new color scheme
add−dictionary(2) Declare existence of a spelling dictionary
add−file−hook(2) Declare file name context dependent configuration
add−next−line(2) Define the searching behavior of command output
add−spell−rule(2) Add a new spelling rule to the dictionary
append−buffer(2) Write contents of buffer to end of named file
backward−char(2) (C−b) Move the cursor left
backward−delete−char(2) (backspace) Delete the previous character at the cursor position
backward−delete−tab(2) (S−tab) Delete white space to previous tab−stop
backward−kill−word(2) (esc backspace) Delete the previous word at the cursor position
backward−line(2) (C−p) Move the cursor to the previous line
backward−paragraph(2) (esc p) Move the cursor to the previous paragraph
backward−word(2) (esc b) Move the cursor to the previous word
beginning−of−buffer(2) (esc <) Move to beginning of buffer/file
beginning−of−line(2) (C−a) Move to beginning of line
buffer−abbrev−file(2) Set buffers' abbreviation file
buffer−bind−key(2) Create local key binding for current buffer
buffer−info(2) (C−x =) Status information on current buffer position
buffer−mode(2) (C−x m) Change a local buffer mode
buffer−unbind−key(2) Remove local key binding for current buffer
capitalize−word(2) (esc c) Capitalize word
change−buffer−name(2) (esc C−n) Change name of current buffer
change−directory(2) [C−x C−d] Change the current working directory
change−file−name(2) (C−x n) Change the file name of the current buffer
change−font(2) Change the screen font
change−frame−depth(2) Change the number of lines on the current frame
change−frame−width(2) Change the number of columns on the current frame
change−screen−depth(2) Change the number of lines on the screen
change−screen−width(2) Change the number of columns on the screen
change−window−depth(2) Change the depth of the current window
change−window−width(2) Change the width of the current window
command−apropos(2) (C−h a) List commands involving a concept
command−wait(2) Conditional wait command
compare−windows(2) Compare buffer windows, ignore whitespace
copy−region(2) (esc w) Copy a region of the buffer
count−words(2) (esc C−c) Count the number of words in a region
create−callback(2) Create a timer callback

MicroEmacs '02

Split Command Glossary 151

create−frame(2) Create a new frame
define−help(2) Define help information
define−macro(2) Define a new macro
define−macro−file(2) Define macro file location
delete−blank−lines(2) (C−x C−o) Delete blank lines about cursor
delete−buffer(2) (C−x k) Delete a buffer
delete−dictionary(2) Remove a spelling dictionary from memory
delete−frame(2) Delete the current frame
delete−other−windows(2) (C−x 1) Delete other windows
delete−registry(2) Delete a registry tree
delete−some−buffers(2) Delete buffers with query
delete−window(2) (C−x 0) Delete current window
describe−bindings(2) (C−h b) Show current command/key binding
describe−key(2) (C−x ?) Report keyboard key name and binding
describe−variable(2) (C−h v) Describe current setting of a variable
directory−tree(2) Draw the file directory tree
end−kbd−macro(2) (C−x)) Stop recording keyboard macro
end−of−buffer(2) (esc >) Move to end of buffer/file
end−of−line(2) (C−e) Move to end of line
exchange−point−and−mark(2) (C−x C−x) Exchange the cursor and marked position
execute−buffer(2) Execute script lines from a buffer
execute−file(2) (esc /) Execute script lines from a file
execute−kbd−macro(2) (C−x e) Execute a keyboard macro
execute−line(2) Execute a typed in script line
execute−named−command(2) [esc x] Execute a named command
execute−string(2) Execute a string as a command
exit−emacs(2) Exit MicroEmacs
expand−abbrev(2) Expand an abbreviation
file−op(2) File system operations command
fill−paragraph(2) (esc o) Format a paragraph
filter−buffer(2) (C−x #) Filter the current buffer through an O/S command
find−buffer(2) (C−x b) Switch to a named buffer
find−file(2) (C−x C−f) Load a file
find−registry(2) Index search of a registry sub−tree
find−tag(2) (esc t) Find tag, auto−load file and move to tag position
forward−char(2) (C−f) Move the cursor right
forward−delete−char(2) (C−d) Delete the next character at the cursor position
forward−kill−word(2) (esc d) Delete the next word at the cursor position
forward−line(2) (C−n) Move the cursor to the next line
forward−paragraph(2) (esc n) Move the cursor to the next paragraph
forward−word(2) (esc f) Move the cursor to the next word
get−next−line(2) (C−x `) Find the next command line
get−registry(2) Retrieve a node value from the registry
global−abbrev−file(2) Set global abbreviation file
global−bind−key(2) (esc k) Bind a key to a named command or macro
global−mode(2) (esc m) Change a global buffer mode
global−unbind−key(2) (esc C−k) Unbind a key from a named command or macro
goto−alpha−mark(2) (C−x a) Move the cursor to a alpha marked location
goto−line(2) (esc g) Move the cursor to specified line

MicroEmacs '02

Split Command Glossary 152

goto−matching−fence(2) (esc C−f) Move the cursor to matching fence
goto−position(2) Restore a stored position
goto−window(2) Restore a saved window to the current window (historic)
grow−window−horizontally(2) Enlarge current window horizontally (relative)
grow−window−vertically(2) Enlarge the current window (relative change)
help(2) (esc ?) Help; high level introduction to help
help−command(2) (C−h C−c) Help; command information
help−item(2) (C−h C−i) Help; item information
help−variable(2) (C−h C−v) Help; variable information
hilight(2) Manage the buffer hilighting schemes
hunt−backward(2) (C−x C−h) Resume previous search in backward direction
hunt−forward(2) (C−x h) Resume previous search in forward direction
indent(2) Manage the auto−indentation methods
insert−file(2) (C−x C−i) Insert file into current buffer
insert−file−name(2) (C−x C−y) Insert filename into current buffer
insert−macro(2) Insert keyboard macro into buffer
insert−newline(2) (C−o) Insert new line at cursor position
insert−space(2) Insert space(s) into current buffer
insert−string(2) Insert character string into current buffer
insert−tab(2) (C−i) Insert tab(s) into current buffer
ipipe−kill(2) Kill a incremental pipe
ipipe−shell−command(2) (esc backslash) Incremental pipe (non−suspending system call)
ipipe−write(2) Write a string to an incremental pipe
isearch−backward(2) (C−r) Search backwards incrementally (interactive)
isearch−forward(2) (C−s) Search forward incrementally (interactive)
kbd−macro−query(2) (C−x q) Query termination of keyboard macro
kill−line(2) (C−k) Delete all characters to the end of the line
kill−paragraph(2) Delete a paragraph
kill−rectangle(2) (esc C−w) Delete a column of text
kill−region(2) (C−w) Delete all characters in the marked region
list−buffers(2) (C−x C−b) List all buffers and show their status
list−commands(2) (C−h c) List available commands
list−registry(2) Display the registry in a buffer
list−variables(2) (C−h v) List defined variables
lower−case−region(2) (C−x C−l) Lowercase a region (downcase)
lower−case−word(2) (esc l) Lowercase word (downcase)
mark−registry(2) Modify the operating mode of a registry node
ml−bind−key(2) Create key binding for message line
ml−clear(2) Clear the message line
ml−unbind−key(2) Remove key binding from message line
ml−write(2) Write message on message line
name−kbd−macro(2) Assign a name to the last keyboard macro
named−buffer−mode(2) Change a named buffer mode
narrow−buffer(2) Hide buffer lines
newline(2) (return) Insert a new line
next−buffer(2) (C−x x) Switch to the next buffer
next−frame(2) Change the focus to the next frame
next−window(2) (C−x o) Move the cursor to the next window
next−window−find−buffer(2) [] Split the current window and show new buffer

MicroEmacs '02

Split Command Glossary 153

next−window−find−file(2) (C−x 4) Split the current window and find file
osd(2) Manage the On−Screen Display
osd−bind−key(2) Create key binding for OSD dialog
osd−unbind−key(2) Remove key binding from OSD dialog
pipe−shell−command(2) (esc @) Execute a single operating system command
popup−window(2) Pop−up a window on the screen
prefix(2) Key prefix command
previous−window(2) (C−x p) Move the cursor to the previous window
print−buffer(2) Print buffer, with formatting
print−color(2) Create a new printer color
print−region(2) Print region, with formatting
print−scheme(2) Create a new printer color and font scheme
query−replace−string(2) (esc C−r) Search and replace a string − with query
quick−exit(2) (esc z) Exit the editor writing changes
quote−char(2) (C−q) Insert literal character
rcs−file(2) (C−x C−q) Handle Revision Control System (RCS) files
read−file(2) (C−x C−r) Find and load file replacing current buffer
read−history(2) Read in session history information
read−registry(2) Read in a registry definition file
recenter(2) (C−l) Recenter the window (refresh the screen)
replace−string(2) (esc r) Replace string with new string
resize−all−windows(2) Resize all windows (automatic change)
resize−window−horizontally(2) Resize current window horizontally (absolute)
resize−window−vertically(2) Resize the current window (absolute change)
reyank(2) (esc y) Restore next yank buffer
save−buffer(2) (C−x C−s) Save contents of changed buffer to file
save−buffers−exit−emacs(2) (esc z) Exit the editor prompt user to write changes
save−dictionary(2) Save changed spelling dictionaries
save−history(2) Write history information to history file
save−registry(2) Write a registry definition file
save−some−buffers(2) Save contents of all changed buffers to file (with query)
screen−poke(2) Immediate write string to the screen
screen−update(2) (redraw) Force screen update
scroll−down(2) (C−n) Move the window down (scrolling)
scroll−left(2) (C−x <) Move the window left (scrolling)
scroll−next−window−down(2) (esc C−v) Scroll next window down
scroll−next−window−up(2) (esc C−z) Scroll next window up
scroll−right(2) (C−x >) Move the window right (scrolling)
scroll−up(2) (C−p) Move the window up (scrolling)
search−backward(2) (C−x r) Search for a string in the backward direction
search−forward(2) (C−x s) Search for a string in the forward direction
set−alpha−mark(2) (C−x C−a) Place an alphabetic marker in the buffer
set−char−mask(2) Set character word mask
set−cursor−to−mouse(2) Move the cursor to the current mouse position
set−encryption−key(2) (esc e) Define the encryption key
set−mark(2) (esc space) Set starting point of region
set−position(2) Store the current position
set−registry(2) Modify a node value in the registry
set−scroll−with−mouse(2) Scroll the window with the mouse

MicroEmacs '02

Split Command Glossary 154

set−variable(2) (C−x v) Assign a new value to a variable
set−window(2) Save the current window for restore (historic)
shell(2) [C−x c] Create a new command processor or shell
shell−command(2) Perform an operating system command
show−cursor(2) Change the visibility of the cursor
show−region(2) Show the current copy region
shrink−window−horizontally(2) Shrink current window horizontally (relative)
shrink−window−vertically(2) Shrink the current window (relative change)
sort−lines(2) Alphabetically sort lines
spell(2) Spell checker service provider
split−window−horizontally(2) (C−x 5) Split current window into two (horizontally)
split−window−vertically(2) (C−x 2) Split the current window into two
start−kbd−macro(2) (C−x () Start recording keyboard macro
suspend−emacs(2) Suspend editor and place in background
tab(2) (tab) Handle the tab key
translate−key(2) Translate key
transpose−chars(2) (C−t) Exchange (swap) adjacent characters
transpose−lines(2) (C−x C−t) Exchange (swap) adjacent lines
undo(2) (C−x u) Undo the last edit
universal−argument(2) (C−u) Set the command argument count
unset−variable(2) Delete a variable
upper−case−region(2) (C−x C−u) Uppercase a region (upcase)
upper−case−word(2) (esc u) Uppercase word (upcase)
view−file(2) (C−x C−v) Load a file read only
void(2) Null command
wrap−word(2) Wrap word onto next line
write−buffer(2) (C−x C−w) Write contents of buffer to named (new) file
yank(2) (C−y) Paste (copy) kill buffer contents into buffer
yank−rectangle(2) (esc C−y) Insert a column of text

The following is a list of documented macro commands provided by MicroEmacs '02:

add−global−mode(3) Set a global buffer mode
add−mode(3) Set a local buffer mode
alarm(3) Set an alarm
aman(3) Compile an nroff file into a buffer (UNIX)
ascii−time(3) Return the current time as a string
auto−spell(3) Auto−spell support
auto−spell−buffer(3) Auto−spell whole buffer
auto−spell−ignore(3) Auto−spell ignore current word
auto−spell−reset(3) Auto−spell hilight reset
buffer−help(3) Displays help page for current buffer
buffer−setup(3) Configures the current buffer settings
c−hash−del(3) Remove C/C++ #define evaluation
c−hash−eval(3) Evaluate C/C++ #defines
c−hash−set−define(3) Set a C/C++ #define
c−hash−unset−define(3) Unset a C/C++ #define
calc(3) Integer calculator
charset−change(3) Convert buffer between two character sets

MicroEmacs '02

Split Command Glossary 155

charset−iso−to−user(3) Convert buffer from ISO standard to user character set
charset−user−to−iso(3) Convert buffer from user to ISO standard character set
check−line−length(3) Check the length of text lines are valid
clean(3) Remove redundant white spaces from the current buffer
compare−windows−exact(3) Compare buffer windows, with whitespace
compile(3) Start a compilation process
cvs(3) MicroEmacs CVS interface
cvs−add(3) MicroEmacs CVS interface − add file
cvs−checkout(3) MicroEmacs CVS interface − checkout files
cvs−commit(3) MicroEmacs CVS interface − commit changes
cvs−diff(3) MicroEmacs CVS interface − diff changes
cvs−gdiff(3) MicroEmacs CVS interface − graphical diff changes
cvs−log(3) MicroEmacs CVS interface − log changes
cvs−remove(3) MicroEmacs CVS interface − remove file
cvs−resolve−conflicts(3) MicroEmacs CVS interface − resolve conflicts
cvs−state(3) MicroEmacs CVS interface − list state of directory files
cvs−update(3) MicroEmacs CVS interface − update directory files
cygnus(3) Open a Cygwin BASH window
delete−global−mode(3) Remove a global buffer mode
delete−indentation(3) Join 2 lines deleting white spaces
delete−mode(3) Remove a local buffer mode
describe−word(3) Display a dictionary definition of a word
diff(3) Difference files or directories
diff−changes(3) Find the differences from a previous edit session
display−white−chars(3) Toggle the displaying of white characters
draw(3) Simple line drawing utility
edit−dictionary(3) Insert a dictionary in a buffer
etfinsrt(3) Insert template file into current buffer
execute−tool(3) Execute a user defined shell tool
expand−abbrev−handle(3) (esc esc) Expand an abbreviation handler
expand−look−back(3) Complete a word by looking back for a similar word
expand−word(3) Complete a word by invocation of the speller
file−attrib(3) Set the current buffers system file attributes
file−browser(3) (f10) Browse the file system
file−browser−close(3) Close the file−browser
file−browser−swap−buffers(3) Swap between file−browser windows
find−bfile(3) (C−x 9) Load a file as binary data
find−cfile(3) Load a crypted file
find−word(3) Find a using spelling dictionaries
find−zfile(3) Compressed file support
fold−all(3) (f3) (Un)Fold all regions in the current buffer
fold−current(3) (f2) (un)Fold a region in the current buffer
ftp(3) Initiate an FTP connection
gdiff(3) Graphical file difference
generate−tags−file(3) Generate a tags file
grep(3) Execute grep command
ifill−paragraph(3) (esc q) Format a paragraph
info(3) Display a GNU Info database
info−goto−link(3) Display Info on a given link

MicroEmacs '02

Split Command Glossary 156

info−on(3) Display Info on a given topic
ishell(3) Open a Cygwin BASH window
line−scheme−search(3) Search and annotate the current buffer
Mahjongg(3) MicroEmacs '02 version of the solitaire Mah Jongg game
MainMenu(3) The top main menu
Match−It(3) MicroEmacs '02 version of the Match−It game
Metris(3) MicroEmacs '02 version of the falling blocks game
mail(3) Compose and send an email
mail−check(3) Check for new email
man(3) UNIX manual page viewer
man−clean(3) Clean UNIX manual page
normal−tab(3) Insert a normal tab
organizer(3) Calendar and address organizer
osd−dialog(3) OSD dialog box
osd−entry(3) OSD entry dialog box
osd−help(3) GUI based on−line help
osd−xdialog(3) OSD Extended dialog box
Patience(3) MicroEmacs '02 version of Patience (or Solitaire)
paragraph−to−line(3) Convert a paragraph to a single line
print−setup(3) Configure (*mS's printer interface
query−replace−all−string(3) Query replace string in a list of files
regex−backward(3) Search for a magic string in the backward direction
regex−forward(3) Search for a magic string in the forward direction
replace−all−pairs(3) Replace string pairs in a list of files
replace−all−string(3) Replace string with new string in a list of files
reread−file(3) Reload the current buffer's file
restore−dictionary(3) Save dictionary user changes
restyle−buffer(3) Automatically reformat a buffer's indentation
restyle−region(3) Automatically reformat a regions indentation
rgrep(3) Execute recursive grep command
save−all(3) Save all modified files (with query)
scheme−editor(3) Color Scheme Editor
shut−down(3) Editor exit callback command
sort−lines−ignore−case(3) Alphabetically sort lines ignoring case
spell−add−word(3) Add a word to the main dictionary
spell−buffer(3) Spell check the current buffer
spell−edit−word(3) Edits a spell word entry
spell−word(3) (esc $) Spell check a single word
start−up(3) Editor startup callback command
stop−mail−check(3) Disable the check for new email
symbol(3) Insert an ASCII character
Triangle(3) MicroEmacs '02 version of Triangle patience game
tabs−to−spaces(3) Converts all tabs to spaces
tex2nr(3) Convert a Latex file into nroff
time(3) Command time evaluator
uniq(3) Make lines in a sorted list unique
unmark−buffer(3) Remove buffer edited flag
user−setup(3) Configure MicroEmacs for a specific user
vm(3) Email viewer

MicroEmacs '02

Split Command Glossary 157

which(3) Program finder
zfile−setup(3) Compressed file support setup

MicroEmacs '02

Split Command Glossary 158

abort−command(2)

NAME

abort−command − Abort command

SYNOPSIS

abort−command (C−g)

DESCRIPTION

Aborts the current command, when in trouble, this command will usually limit the damage. If you
find yourself in a position where you do not want to be then this command will usually take you back
to a sane state. This command rings the bell and stops keyboard macros.

Avoid re−binding this key where possible as it is used in other places.

When abort−command is invoked a warning is automatically given alerting the user, this may be an
audible or a visual warning depending on the global state of the quiet(2m) mode.

SEE ALSO

buffer−mode(2), quiet(2m).

MicroEmacs '02

abort−command(2) 159

about(2)

NAME

about − Information About MicroEmacs '02

SYNOPSIS

about

DESCRIPTION

about displays information about the current MicroEmacs '02 editing session and includes the
following information:−

Version number and date information for MicroEmacs '02.♦
Global status information including the number of active buffers and global mode status
information.

♦

Current buffer status information; buffer modes and buffer size information.♦

EXAMPLE

The following is an example output from about.

MicroEmacs '98 − Date 1/1/98

Global Status:
 # buffers : 21

 Modes on : auto backup crlf exact magic quiet tab undo
 Modes off : binary cmode crypt ctrlz del dir edit hide indent
 justify letter line lock nact narrow over pipe rbin
 save time usr1 usr2 usr3 usr4 usr5 usr6 usr7 usr8
 view wrap

Current Buffer Status:
 Buffer : m2cmd148.2
 File name : c:/emacsdoc/m2cmd148.2

 Lines : Total 34, Current 27
 Characters: Total 759, Current 683

 Modes on : auto backup edit exact indent justify magic quiet
 tab time undo wrap
 Modes off : binary cmode crlf crypt ctrlz del dir hide letter
 line lock nact narrow over pipe save rbin usr1 usr2
 usr3 usr4 usr5 usr6 usr7 usr8 view

MicroEmacs '02

about(2) 160

SEE ALSO

describe−bindings(2), list−buffers(2).

MicroEmacs '02

about(2) 161

add−color(2)

NAME

add−color − Create a new color
add−color−scheme − Create a new color scheme

SYNOPSIS

add−color "col−no" "red" "green" "blue"
n add−color−scheme "schemeNum" "fore" "back" "current−fore" "current−back"

"selected−fore" "selected−back"
"current−selected−fore" "current−selected−back"
["fm−fore" "fm−back" "fm−cur−fore" "fm−cur−back"
"fm−sel−fore" "fm−sel−back"
"fm−cur−sel−fore" "fm−cur−sel−back"] DESCRIPTION

add−color creates a new color and inserts it into MicroEmacs '02 colors table, where red, green and
blue are the color components and col−no is the MicroEmacs '02 color table number. The color table
contains 256 entries indexed by col−no in the range 0−255.

On some platforms (DOS and UNIX termcap) the number of colors is physically limited by the
hardware to less than 256 (typically 16), in this case all 256 colors can be defined and for each created
color the closest system color is used.

By default, only color 0 (white) and 1 (black) are defined. Once created, the colors may be used to
create color schemes, this is the sole use of colors.

add−color may be used to modify an existing col−no index by re−assignment, the existing color
definition is over−written with the new color definition. add−color−scheme creates a color scheme
entry used by hilight(2), screen−poke(2), osd(2) and variables such as $global−scheme(5),
$buffer−scheme(5), $ml−scheme(5).

The command takes an index number "schemeNum" and eight color values (defined by add−color)
alternating between foreground and background colors. The 8 colors represent the 4 color paired
states of foreground and background that may appear in a text buffer. The paired states correspond to
current and selected lines (or permutations thereof). If an argument n is given to the command then
schemeNum is set to a duplicate of the nth scheme, no other arguments are required.

schemeNum is the identifying index that is used to recognize the scheme. By default only two color
schemes are defined at initialization, they are a monochrome scheme and inverse scheme with indices
0 and 1 using white as foreground and black as background, selected text is inverted. When defining a
color scheme, if an existing schemeNum index is used then that scheme is modified.

MicroEmacs '02

add−color(2) 162

The next eight arguments must be given, they specify foreground and background color pairs for the
four different situations, as follows:−

Default

Color combination used when none of the following three are applicable.

Current

Color combination used when the text is on the same line as the cursor. It is also used by the
$mode−line−scheme(5) for the current window's mode line and for the current selection on an osd(2)
dialog.

Selected

Color combination used when the text is in the current selected region, but is not on the current line.
Also used by osd for non−current item Hot keys.

Current−selected

Color combination used when the text is on the current line and in the current selected region. Also
used by osd for the current item's Hot key.

The following 8 arguments set up fonts and are optional, any missing arguments are defaulted to 0.
Each argument is a bitmask indicating which font should be enabled, where each bit is as follows:

0x01 Enable bold font.
0x02 Enable italic font.
0x04 Enable light font.
0x08 Enable reverse font.
0x10 Enable underlining.

Normally only the foreground value is used, i.e. the first, third, fifth and seventh values. But
screen−poke(2) can be used to draw reversed color scheme in which case the background values are
used.

EXAMPLE

The color palette is typically created at start−up via the configuration file schemeX.emf. These files
are not easily read as they are automatically generated via the scheme−editor(3) dialog. A more
readable form of "schemed.emf" would be as follows:−

; Standard colors
add−color &set .white 0 200 200 200
add−color &set .black 1 0 0 0
add−color &set .red 2 200 0 0
add−color &set .green 3 0 200 0
add−color &set .yellow 4 200 200 0
add−color &set .blue 5 0 0 200

MicroEmacs '02

add−color(2) 163

add−color &set .magenta 6 200 0 200
add−color &set .cyan 7 0 200 200
; Light colors
add−color &set .lwhite 8 255 255 255
add−color &set .lblack 9 75 75 75
add−color &set .lred 10 255 0 0
add−color &set .lgreen 11 0 255 0
add−color &set .lyellow 12 255 255 0
add−color &set .lblue 13 0 0 255
add−color &set .lmagenta 14 255 0 255
add−color &set .lcyan 15 0 255 255
; Selection color
add−color &set .sel−col 16 91 78 131
; Set the required cursor−color
set−variable $cursor−color .col12
; Set up the standard schemes for the text, mode line message line, scroll bar and osd.
add−color−scheme $global−scheme .white .black .lwhite .black ...
 white .sel−col .lwhite .sel−col 0 8 1 9 8 0 9 1
add−color−scheme $ml−scheme .white .black .lwhite .black ...
 white .sel−col .lwhite .sel−col 0 8 1 9 8 0 9 1
add−color−scheme $mode−line−scheme .white .red .lwhite .lred ...
 white .red .lwhite .red 8 0 9 1 0 8 1 9
add−color−scheme $scroll−bar−scheme .white .lblack .lwhite .lblack ...
 lblack .white .lblack .lwhite 8 0 9 1 0 8 1 9
 .
 .

NOTES

Color schemes can be created and altered using the scheme−editor(3) dialog, the created color scheme
can then the used from start−up by using the user−setup(3) dialog. Therefore direct use of these
commands is largely redundant.

The existence of a color or scheme index is checked as each entry is submitted, therefore any color or
scheme used must have been previously been created, otherwise a default value is substituted.

Changing any existing color definitions causes all references to the color from a scheme to adopt the
new color.

Changing any existing color−scheme definitions changes the rendered color of any hilight(2) etc., that
was using that color−scheme.

A −ve color scheme value (i.e. −n) uses the previous 'n'th entry that is defined in the color block. i.e.
if current−fore was specified as −2 then it would inherit the fore field color.

Not all UNIX terminals support all the above fonts.

On some telnet packages color is not directly supported and some of the termcap display attributes
such as bold and italic are represented by a color (e.g. italic text is shown in green). Using this
translation it is possible to achieve reasonable color support on a VT100 terminal − it is a little
awkward but is worth while if you have to use this type of connection frequently.

MicroEmacs '02

add−color(2) 164

SEE ALSO

scheme−editor(3), user−setup(3), change−font(2), hilight(2), screen−poke(2), $buffer−hilight(5),
$cursor−color(5), $global−scheme(5), $trunc−scheme(5), $ml−scheme(5), $osd−scheme(5),
$mode−line−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

add−color(2) 165

add−dictionary(2)

NAME

add−dictionary − Declare existence of a spelling dictionary

SYNOPSIS

n add−dictionary "file"

DESCRIPTION

add−dictionary adds the given dictionary (specified by the given file) to the dictionary list. Note that
the file may omit the .edf extension, this is automatically added.

The command accepts a numeric argument 'n' which determines the actions to be undertaken. When n
is omitted then the dictionary is marked for loading (on demand) − this is the standard invocation used
in the start up files.

If an argument of 0 is given the dictionary is created but it is not marked for loading, this can be used
to create an empty dictionary.

If an argument of −1 is given the contents of the dictionary are dumped into the current buffer, used
for dictionary maintenance. The two main uses of this command are discussed below.

Dictionary Loading

A call to add−dictionary with no numeric argument does not perform an immediate load of the
dictionary, instead the dictionary is only loaded on demand, i.e. when a call to spell(2) (usually via
spell−word(3) or spell−buffer(3)) is made, this ensures that the start up time for MicroEmacs does not
become too long. When the dictionary is loaded it is checked for efficiency, if found to be inefficient
it is automatically optimized and flagged as changed. On exiting MicroEmacs, the user is prompted to
save any dictionary that has be altered or optimized.

The spelling search order is made from the last dictionary added to the first, as soon as a word is
found in a dictionary the search is halted. This implies that if a word has been defined incorrectly in
one dictionary, but correct in another, the order in which the dictionaries are added determines the
result.

The number of dictionaries allowed is unlimited but note that any words added are always added to
the LAST dictionary. The size of the dictionary is restricted to about 16Mb, the size is NOT tested
when words are added and if this size is exceeded the results are undefined. However, it is unlikely
that this limit will be reached, the largest dictionary created to date is 0.8Mb.

MicroEmacs '02

add−dictionary(2) 166

A new main dictionary may be created as follows:−

1)

Find a file containing an ispell(1) compatible list of words.

2)

execute−file(2) spellutl.emf to define macro spell−add−word(3).

3)

Start up MicroEmacs '02 and execute the command add−dictionary giving an appropriate new
dictionary name.

4)

Load up the file containing the words and execute the command spell−add−word(3) with a very large
argument so all the words are added.

5)

Save the dictionary by either executing the command save−dictionary(2) or exiting. Dictionary Dump

A call to add−dictionary with a numeric argument n of −1 causes the contents of the given dictionary
to be dumped into the current buffer (make sure you are in an empty buffer or *scratch*) where:

xxxx − Good word xxxx with no spell rules allowed
xxxx/abc − Good word xxxx with spell rules abc allowed
xxxx>yyyy − Erroneous word with an auto−replace to yyyy

The dump of the dictionary may be edited, allowing erroneous entries to be removed. The macro file
spellutl.emf contains macros edit−dictionary(3) and restore−dictionary(3) which enable the user
to edit a dictionary.

NOTES

MicroEmacs '02 is supplied with a dictionaries for American and British English, it is strongly
suggested that these dictionaries are NOT modified in anyway. Ensure that the dictionary is protected
by loading the base dictionaries first, followed by a personal dictionary. New words added during
spelling will then be added to the personal dictionary rather than the main dictionary.

EXAMPLE

The MicroEmacs '02 start−up file me.emf executes language.emf which in turn executes the user
language setup file, for example american.emf, which adds the main language dictionaries and rules.

MicroEmacs '02

add−dictionary(2) 167

language.emf then adds the user's dictionary, this process can be simplified to:−

; add the main American dictionary
add−dictionary "lsdmenus"

; reset the spell rules
0 add−spell−rule
; Now add the American spell rules
−2 add−spell−rule "A" "" "" "re" ; As in enter > reenter
−2 add−spell−rule "I" "" "" "in" ; As in disposed > indisposed
 .
 .
; Now add the user dictionary
add−dictionary $MENAME

SEE ALSO

add−spell−rule(2), save−dictionary(2), spell−add−word(3), edit−dictionary(3), spell−buffer(3).

MicroEmacs '02

add−dictionary(2) 168

add−file−hook(2)

NAME

add−file−hook − Declare file name context dependent configuration

SYNOPSIS

n add−file−hook "extensions" "fhook−name"

DESCRIPTION

add−file−hook defines a macro binding between a file name or file type and a set of macros. This
binding enables file type dependent screen highlighting and key bindings to be performed. For a
higher level introduction refer to File Hooks.

add−file−hook operates in two different modes to establish the type of file:−

Content recognition, by examination of the contents of the file.♦
File extension recognition.♦

Content recognition has the highest priority and is used in preference to the file extension.

add−file−hook is called multiple times to add new recognition rules. The rules are interrogated in
last−in−first−out (LIFO) order, hence the extension added last has a greater precedence than those
added first. This ordering allows default rules to be over−ridden.

Initialization

add−file−hook must be initialized prior to the first call, using an invocation of the form:−

0 add−file−hook

with a numeric argument n of 0, and no arguments. This invocation resets the file hooks by deleting
all of the installed hooks.

File Extension Recognition

add−file−hook with no numerical argument n allows the extension of a file (or the base file name if
there is no extension) to be used to determine which user defined setup macro is to be executed. The
extensions argument is a space separated list of file endings (as opposed to true extensions) and is
usually specified with the extension separator. For example, the extension ".doc" may indicate that
the file is a document and therefore the indent, wrap and justify buffer modes are required. This may
be performed automatically by defining a macro which adds these modes and adding a file hook to

MicroEmacs '02

add−file−hook(2) 169

automatically execute this macro whenever a file "*.doc" is loaded.

The command arguments are defined as follows:−

extensions

A space separated list of file extensions, which are to be checked, this list includes the extension
separator (typically dot ('.'). It should be noted that the extension search is actually a comparison of
the tail of the string, as such files such as makefile, which do not have an extension, are specified
literally.

fhook−name

The name of the file hook to execute. This is the name of the macro to execute that initializes the
buffer.

As an example:−

define−macro fhook−doc
 1 buffer−mode "indent"
 1 buffer−mode "wrap"
 1 buffer−mode "justify"
!emacro

add−file−hook ".doc" "fhook−doc"

It is quite possible that the same macro should be executed for a text file, i.e. "*.txt" this is
achieved by a single add−file−hook as the space (' ') character is used as an extension separator, e.g.

add−file−hook ".doc .txt" "fhook−doc"

There are three special file hooks, which are fhook−binary, fhook−rbin and fhook−default, these
are not predefined, but if the user defines them then they are executed whenever a file is loaded in
binary or reduced binary mode (see buffer−mode(2)) or the extension does not match any of those
defined.

Considering the fhook−XXX prefix, the initial 'f' character must be present as this is changed to a 'b'
and an 'e' when looking for the enter (begin) buffer and exit buffer hooks. These hooks are executed
whenever the user swaps to or from a buffer (including creating and deleting). So for the given
example, if the tab size of 8 is required in a document (but 4 elsewhere) then this operation this is
performed by defining the bhook−XXX and ehook−XXX macros, e.g.:−

define−macro bhook−doc
 set−variable $tabsize 8
!emacro

define−macro ehook−doc
 set−variable $tabsize 4
!emacro

File hooks are often used to setup the desired buffer modes, hilighting, local key bindings,

MicroEmacs '02

add−file−hook(2) 170

abbreviation file, etc.

Buffer hooks are usually used to set and restore conflicting global variables.

File Content Recognition

add−file−hook with a non−zero numerical argument n defines a macro binding between the content
in a file and a set of macros. This binding enables file type dependent screen hi−lighting and key
binding to be performed. For a full description of file hooks refer to File Hooks, for file extension
dependent hooking refer to add−file−hook(2).

The content defined file hooks interrogate the contents of a file on loading and search for a magic
string identifier embedded in the text which uniquely identifies the file type.

The recognition process performs a search of the first n (numerical argument) non−blank lines of the
file, searching for the regular expression specified by the extensions argument. The sign of the
numerical argument n is interpreted as follows:−

−ve − Case insensitive search♦
+ve − Case sensitive search♦

The command arguments are defined as follows:−

extensions

A regular expression string defining the text to be searched for.

fhook−name

The name of the file hook to execute. This is the name of the macro to execute that will initialize the
buffer.

The search commences from the first non−blank line in the file, if the regular expression, defined by
extensions is located then the file hook fhook−name is invoked. This is typically used to identify files
which do not have file extensions i.e. UNIX shell script files. To identify a shell script file which
commences with:−

#!/bin/sh

The following file hook is used:−

1 add−file−hook "#!/.*sh" "fhook−shell"

Note that ".*sh" also matches /bin/csh, /usr/local/bin/zsh etc, so care should be taken
to ensure that the regular expression string is sufficiently well specified to recognize the file type.

The second class of embedded text are explicit identifiers embedded into the text. The embedded
strings take the form:

MicroEmacs '02

add−file−hook(2) 171

−*− mode−*
−*− Mode: mode; ... −*−
−!− mode −!−

The −*− notation belongs to GNU Emacs, but MicroEmacs '02 recognizes the construct and extracts
the string correctly. The −!− notation is MicroEmacs '02 specific and is provided so as not to cause
conflict with GNU Emacs. MicroEmacs '02 searches for either construct on the first non−blank line of
the file.

The explicit strings are defined with a negative numerical argument n, which identifies them as
explicit rather than magic text strings. The string should be defined in lower case and matches a case
insensitive string take from the file. e.g. to define a file hook for a make file:

#_____________________________−!−Makefile−!−________________________________

Make file for MicroEmacs using the Microsoft MSCV 2.0/4.0 development kit.

Author : Jon Green
Created : 020197.1002
Last Edited : <150297.1942>
File : makefile.w32
....

might be defined as:

−1 add−file−hook "−!−[\t]*makefile.*−!−" fhook−make

NOTES

Automatic Macro File Loading

add−file−hook performs an automatic load of a macro file if the fhook macro is not present in
memory. The file name of the command file containing the macro is automatically derived from the
name component of the fhook macro name. The fhook− part of the name is stripped off and
prepended with hk and suffixed with .emf. Hence, macro fhook−doc would be searched for in file
hkdoc.emf within the MicroEmacs '02 directory. The command file is automatically loaded and
executed.

In cases where the fhook macro is not located in an equivalent hook file, the file location of the macro
may be explicitly defined for auto loading via a define−macro−file(2) invocation.

As an example, consider the C−mode file hook, used to load .c files. The loading of a C header file
(.h) utilizes the same highlighting modes, but it's startup sequence is slightly different when handling
new files. In this case the fhook−cmode for .c and fhook−hmode for .h files are located in the
same hook file namely hkcmode.emf.

define−macro−file hkcmode fhook−hmode

add−file−hook ".c .cc .cpp .def .l .y .i .ac" "fhook−cmode"
add−file−hook ".h .hpp" "fhook−hmode"

MicroEmacs '02

add−file−hook(2) 172

In this case the define−macro−file has been used to inform MicroEmacs '02 of the location of the
fhook−hmode macro thereby overriding the automatic load of a file called hkhmode.emf. The
fhook−cmode macro requires no such definition as it is located in a hook file that matches the mode
name, hkcmode.emf.

Extending a standard hook definition

The standard file hook files hkXXX.emf should not be modified. The standard file hooks may be
extended with local definitions by defining a file myXXX.emf, which is an extension to the hook file
hkXXX.emf. This is automatically executed after hkXXX.emf. Refer to sections Language Templates
and File Hooks for details.

File Extensions

The file extensions are specified as a space separated list of file name endings. Back−up file endings
such as tilde (~) are not classed as correct file endings and are skipped by the file hook search, hence
a file ending ".c~" invokes the same hook function as a ".c" file. It is therefore not necessary to add
the backup and auto−save endings to the file hook definition.

The extension separator, usually dot (.), is typically added to the extensions list, they may be omitted
with effect where a file always ends in the same set of characters. A notable example is "makefile"
which includes no extension, as such, MicroEmacs '02 applies the same hook function to a file called
Imakefile as the endings are the same.

Binary Files

It is sometimes useful to associate file types as binary files, so that they are immediately loaded in
binary. In this case, both file extension and content recognition methods (i.e. of a magic string) are
applicable. In both cases the file is bound to the well known hook fhook−binary which
automatically loads the file in a binary mode.

Note, that for the content recognition process for a binary hook, the load time is doubled as the file is
initially loaded in the default text mode, the binary hook function forces a second load operation in
binary.

SUMMARY

add−file−hook is summarized as follows:−

Binds one or more extensions to a macro called fhook−xxxx.♦
Extensions are typically specified with the dot (.) separator.♦
Multiple extensions are specified as a space separated list.♦
Binds a regular expression search string to a macro called fhook−xxxx.♦
The absolute value of the numerical argument determines the number of lines in the file over
which the regular expression search is made.

♦

MicroEmacs '02

add−file−hook(2) 173

The sign of the numerical argument determines if the regular expression search is case
(in)sensitive.

♦

When one of the files with a known file extension, or recognized content, is loaded macro
fhook−xxxx is executed.

♦

fhook−xxxx, if undefined, is automatically searched for in file hkxxxx.emf.♦
When the buffer containing the known file is entered (i.e. gains focus), then entry macro
bhook−xxxx is executed.

♦

When the buffer containing the known file is exited (i.e. looses focus), then the exit macro
ehook−xxxx is executed.

♦

EXAMPLE

The standard set of supported file types by MicroEmacs '02, at the time of writing, is defined as:−

; reset the file hook list
0 add−file−hook
; Add file extension hooks.
; Files loaded in binary mode do not need hook as fixed
add−file−hook "*help* *info* .ehf" fhook−ehf
add−file−hook "*bindings* *commands* *variables*" fhook−lists
add−file−hook "*buffers*" fhook−blist
add−file−hook "/ *directory* *files*" fhook−dir
add−file−hook "*registry*" fhook−reg
add−file−hook "*icommand* *shell* *gdb* *dbx*" fhook−ipipe
add−file−hook ".emf" fhook−emf
add−file−hook ".doc .txt" fhook−doc
add−file−hook ".1 .2 .3 .4 .5 .6 .7 .8 .9 .so .tni .sm" fhook−nroff
add−file−hook ".c .h .def .l .y .i" fhook−c
add−file−hook ".cc .cpp .hpp .rc" fhook−cpp
add−file−hook "Makefile makefile .mak" fhook−make
add−file−hook "Imakefile imakefile" fhook−imake
add−file−hook ".sh .ksh .csh .login .cshrc .profile .tcshrc" fhook−shell
add−file−hook ".bat .btm" fhook−dos
add−file−hook ".man" fhook−man
add−file−hook ".dmn" fhook−dman
add−file−hook ".ini .hpj .reg .rgy" fhook−ini
add−file−hook ".htm .html" fhook−html
add−file−hook ".htp .hts" fhook−hts
add−file−hook ".tcl" fhook−tcl
add−file−hook ".rul" fhook−rul
add−file−hook ".awk .nawk .gawk" fhook−awk
add−file−hook ".p .pas" fhook−pascal
add−file−hook ".vhdl .vhd" fhook−vhdl
add−file−hook ".fvwm .fvwm2rc" fhook−fvwm
add−file−hook ".java .jav" fhook−java
add−file−hook ".nsr" fhook−nsr
add−file−hook ".erf" fhook−erf
; Add magic hooks
 1 add−file−hook "^#!/.*sh" fhook−shell ; UNIX shell files
 1 add−file−hook "^#!/.*wish" fhook−tcl
 1 add−file−hook "^#!/.*awk" fhook−awk
 1 add−file−hook "^#VRML" fhook−vrml
−4 add−file−hook "<html>" fhook−html
−1 add−file−hook "−[*!]−[\t]*c.*−[*!]−" fhook−c ; −*− C −*−
−1 add−file−hook "−[*!]−[\t]*c\\+\\+.*−[*!]−" fhook−cpp ; −*− C++ −*−

MicroEmacs '02

add−file−hook(2) 174

−1 add−file−hook "−[*!]−[\t]nroff.*−[*!]−" fhook−nroff ; −*− nroff −*−
−1 add−file−hook "−!−[\t]*shell.*−!−" fhook−shell ; −!− shell −!−
−1 add−file−hook "−!−[\t]*msdos.*−!−" fhook−dos ; −!− msdos −!−
−1 add−file−hook "−!−[\t]*makefile.*−!−" fhook−make ; −!− makefile −!−
−1 add−file−hook "−!−[\t]*document.*−!−" fhook−doc ; −!− document −!−
−1 add−file−hook "−!−[\t]*fvwm.*−!−" fhook−fvwm ; −!− fvwm −!−
−1 add−file−hook "−!−[\t]*erf.*−!−" fhook−erf ; −!− erf −!−
−1 add−file−hook "−!−[\t]*fold:.*−!−" fhook−fold ; −!− fold:... −!−

OBSCURE INFORMATION

This section includes some low−level information which is so obscure it is not relevant to the typical
user.

Resolving Loading Order Problems

There is a potential loading order problem involving auto−loading of file libraries and the setting up
of bhook and ehook. E.g. if the main fhook function has been defined as a define−macro−file(2), but
the bhook or ehooks have not the when a buffer is created as only the fhook is define, only the fhook
is set, the rest remain disabled even though the execution of the macro file will define these extra
hooks.

To solve this problem simply define the bhook/ehooks as well. Note that automatically loaded hooks
do not suffer from this problem as the macro file is executed before the hooks are assigned, thereby
ensuring the all the hooks are defined.

SEE ALSO

File Hooks, Language Templates, $buffer−bhook(5), $buffer−ehook(5), $buffer−fhook(5).

MicroEmacs '02

add−file−hook(2) 175

global−mode(2)

NAME

global−mode − Change a global buffer mode
add−global−mode − Set a global buffer mode
delete−global−mode − Remove a global buffer mode

SYNOPSIS

n global−mode "mode" (esc m)
add−global−mode "mode"
delete−global−mode "mode"

DESCRIPTION

global−mode changes the state of one of the hereditary global modes. A buffer's modes are initialized
to the global modes when first created. This command is very useful in changing some of the default
behavior such as case sensitive searching (see the example below). See Operating Modes for a full list
and description of modes. Also see buffer−mode(2) for a full description of the use of the argument n.

The about(2) command gives a list of the current global and buffer modes.

add−global−mode and delete−global−mode are macros defined in meme3_8.emf which use
global−mode to add or remove a global mode. They are defined for backward compatibility with
MicroEMACS v3.8 and for ease of use; they are simple macros, add−global−mode is defined as
follows:

define−macro add−global−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 global−mode @1
 !if ¬ $status
 ; No − use 1 global−mode to add a mode
 !nma 1 global−mode
 !endif
!emacro

EXAMPLE

The following example globally disables exact(2m) and magic(2m) modes, if these lines are copied to
the user setup file then are searches will be simple and case insensitive by default:

−1 global−mode "exact"
−1 global−mode "magic"

MicroEmacs '02

global−mode(2) 176

NOTES

Globally adding binary(2m), crypt(2m) and rbin(2m) modes is strongly discouraged as any file loaded
would be assigned these modes. Instead use the numeric argument of command find−file(2) or
commands find−bfile(3) and find−cfile(3).

auto(2m), autosv(2m), backup(2m), exact(2m), magic(2m), quiet(2m), tab(2m) and undo(2m) modes
are present on all platforms by default. On Windows and DOS platforms crlf(2m) is also present and
on DOS ctrlz(2m) is also present.

SEE ALSO

Operating Modes, buffer−mode(2), find−bfile(3), find−cfile(3), about(2).

MicroEmacs '02

global−mode(2) 177

buffer−mode(2)

NAME

buffer−mode − Change a local buffer mode
named−buffer−mode − Change a named buffer mode
add−mode − Set a local buffer mode
delete−mode − Remove a local buffer mode
unmark−buffer − Remove buffer change flag

SYNOPSIS

n buffer−mode "mode" (C−x m)
n named−buffer−mode "buffer−name" "mode"
add−mode "mode"
delete−mode "mode"
unmark−buffer

DESCRIPTION

buffer−mode changes the state of a given buffer mode, affecting only the current buffer. A buffer's
mode affects the behavior of MicroEmacs '02. The about(2) command gives a list of the current
global and buffer modes. Refer to Operating Modes for a description of the buffer modes.

The argument n when given, has the following meaning:

Delete Add toggle Mode

 −1 1 0 Use "mode"
 −2 2 130 auto
 −3 3 131 autosv
 −4 4 132 backup
 −5 5 133 binary
 −6 6 134 cmode
 −7 7 135 crlf
 −8 8 136 crypt
 −9 9 137 ctrlz
 −10 10 138 del
 −11 11 139 dir
 −12 12 140 edit
 −13 13 141 exact
 −14 14 142 hide
 −15 15 143 indent
 −16 16 144 justify
 −17 17 145 letter
 −18 18 146 line
 −19 19 147 lock
 −20 10 148 magic
 −21 21 149 nact
 −22 22 150 narrow

MicroEmacs '02

buffer−mode(2) 178

 −23 23 151 over
 −24 24 152 pipe
 −25 25 153 quiet
 −26 26 154 rbin
 −27 27 155 save
 −28 28 156 tab
 −29 29 157 time
 −30 30 158 undo
 −31 31 159 usr1
 −32 32 160 usr2
 −33 33 161 usr3
 −34 34 162 usr4
 −35 35 163 usr5
 −36 36 164 usr6
 −37 37 165 usr7
 −38 38 166 usr8
 −39 39 167 view
 −40 40 168 wrap

Note that when omitted the default argument is 0, i.e. prompt for and toggle a mode.

named−buffer−mode changes the state of a given buffer mode for a given buffer which may not be
the current buffer.

add−mode and delete−mode are macros which use buffer−mode to add and remove a buffer mode.
unmark−buffer is also a macro which removes the edit flag from the current buffer. They are defined
for backward compatibility with MicroEMACS v3.8 and can be found in meme3_8.emf; add−mode is
defined as follows:

define−macro add−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 buffer−mode @1
 !if ¬ $status
 ; No − use 1 buffer−mode to add a mode
 !nma 1 buffer−mode
 !endif
!emacro

NOTES

When a buffer is created it inherits the current global mode state.

SEE ALSO

Operating Modes, global−mode(2), about(2), &bmode(4).

MicroEmacs '02

buffer−mode(2) 179

add−next−line(2)

NAME

add−next−line − Define the searching behavior of command output

SYNOPSIS

n add−next−line "buffer−name" ["string"]

DESCRIPTION

add−next−line is used to set up the next−line functionality which is used by the get−next−line(2)
command. The next−line feature is aimed at giving the user easy access to file locations which are
stored in another buffer. This buffer may typically be the output from the grep(1) command or a
compiler (e.g. cc(1)) and needs to contain the file name and line number of the required location.

As long as the format of the buffer is consistent and there is a maximum of one location per line, the
next−line feature can be successfully configured.

The first argument, "buffer−name", gives the name the aforementioned buffer, this is "*grep*" for the
grep(3) command etc. There is no limit on the number of next−line formats, nor on the number of
add−next−line strings which are given. While there is no real need to initialize each new type, it is
advised that the first add−next−line is called with a numerical argument of zero, e.g.:

0 add−next−line "*grep*"
add−next−line "*grep*" "....."

This tells MicroEmacs to reinitialize the type by freeing off any strings currently stored, note that the
"string" argument is not used in this case. Resetting the next−line type safe guards against duplicate
strings being added to it, a common problem if MicroEmacs is reinitialized.

Following is a typical output from grep:

foo.c: 45: printf("hello world\n") ;
foo.c: 46: printf("hello again\n") ;

If we replace the file name with "%f" and the line number with "%l", this becomes:

%f: %l: printf("hello world\n") ;

get−next−line works on a left to right basis, as soon as it has enough information from the line it does
not need to continue. Therefore the previous example can be reduced to just "%f: %l:". This is the
string argument that should be given for the above example, i.e.:

add−next−line "*grep*" "%f: %l:"

MicroEmacs '02

add−next−line(2) 180

get−next−line takes the given string and replaces the "%f" with $file−template(5) and the "%l" with
the $line−template(5) and then uses the resultant string as a regular expression search string to find
the next location. Crudely these could be set to "foo.c" and "45" respectively to find the first
example, but this would fail to find any other. As a result the templates are usually magic search
strings which will match any file and line number.

Similarly, following is an example output of the gcc(1) compiler:

basic.c:522: warning: `jj' might be used uninitialized in this command
display.c:833: warning: implicit declaration of function `ScreenPutChar'

In this case the add−next−line given needs to be:

add−next−line "*compile*" "%f:%l:"

If a −ve numerical argument is given to add−next−line the given 'next−line' is ignored, this can be
useful when some warnings are to be ignored. For example a common warning from gcc is given
when a variable might be used uninitialized, given as follows:

bind.c:578: warning: `ssc' might be used uninitialized in this function

These warnings can be ignored using the following:

−1 add−next−line "*compile*" ...
 ... "%f:%l: warning: `.*' might be used uninitialized in this function"

Some versions of grep(1) give the file name first and then the lines on the following lines. This is not
a major problem as get−next−line remembers the last file name. The only problem occurs when
skipping some parts of the list at which point the last file name parsed may not be the current file.
Following is an example output of such a grep and the setup required:

File foo.c:
Line 45: printf("hello world\n") ;
Line 46: printf("hello again\n") ;

The configuration to locate the lines is defined as:

0 add−next−line "*grep*"
add−next−line "*grep*" "File %f:"
add−next−line "*grep*" "Line %l:"

NOTES

The reinitialize command format of this command changed in January 2001, the format changed
from:

add−next−line "*grep*" ""

SEE ALSO

MicroEmacs '02

add−next−line(2) 181

$file−template(5), $line−template(5), cc(1), compile(3), get−next−line(2), grep(1), grep(3).

MicroEmacs '02

add−next−line(2) 182

add−spell−rule(2)

NAME

add−spell−rule − Add a new spelling rule to the dictionary

SYNOPSIS

n add−spell−rule ["rule−letter" "base−ending" "remove" "derive−ending"]

DESCRIPTION

add−spell−rule adds a new spelling rule to the speller. The rules effectively define the prefix and
suffix character replacements of words, which is given an alphabetical identifier used within the
speller , in conjunction with the language dictionary. The letter conventions are defined by the Free
Software Foundation GNU ispell(1) package.

add−spell−rule is used in the MicroEmacs '02 dictionary initialization files called <language>r.emf,
e.g. americar.erf, britishr.erf supplied in the MicroEmacs macros directory.

The command takes a single numeric argument n to control the addition of a rule to the speller, as
follows:−

0 add−spell−rule

Removes all existing rules and re−initializes. This is, by convention, explicitly called before
instantiating a new set of rules.

−1 add−spell−rule "rule−letter" "base−ending" "" "deriv−ending"

−2 add−spell−rule "rule−letter" "base−ending" "" "deriv−ending"

Adds a prefix rule, an argument of −1 indicates that this prefix rule cannot be used with a suffix rule.
An argument of −2 indicates it can be matched with any suffix rule which can be used with a prefix
rule (e.g. argument of 2).

"rule−letter" is any character in the range A−z except '_', all rules of the given letter must be
a prefix rule of the same type (i.e. same argument). The start of a base word must match the
given "base−ending" regular expression string for the rule to be applied, the "remove" string
must be empty for a prefix and the "deriv−ending" is the prefix string. Example, for the
American language;−

−2 add−spell−rule "I" "" "" "in" ; As in disposed > indisposed

A prefix rule of type 'I' can be applied to any base word which has rule 'I' enabled, and it

MicroEmacs '02

add−spell−rule(2) 183

prefixes "in" to the word.

1 add−spell−rule "rule−letter" "base−ending" "remove" "deriv−ending"

2 add−spell−rule "rule−letter" "base−ending" "remove" "deriv−ending"

Add suffix rules. An argument of 1 indicates that this prefix rule cannot be used with a prefix rule. An
argument of 2 indicates it can be matched with any prefix rule which can be used with a suffix rule
(i.e. argument of −2).

"rule−letter" is any character in the range A−z, all rules of the given letter must be a suffix
rule of the same type (i.e. same argument). The end of a base word must match the given
"base−ending" regular expression string for the rule to be applied, the "remove" string must
be a fixed string and the "deriv−ending" must also be a fixed string which is appended to the
base−word after "remove" has been removed. Example, for the American language;−

2 add−spell−rule "N" "e" "e" "ion" ; As in create > creation
2 add−spell−rule "N" "y" "y" "ication" ; As in multiply > multiplication
2 add−spell−rule "N" "[^ey]" "" "en" ; As in fall > fallen

A suffix rule of type 'N' can be applied to any base word which has rule 'N' enabled, and it can
be used with prefixes, e.g. with rule;−

−2 add−spell−rule "A" "" "" "re" ; As in enter > reenter

to derive "recreation" from "create". A rule which cannot be used with prefixes, i.e.:

1 add−spell−rule "V" "e" "e" "ive" ; As in create > creative
1 add−spell−rule "V" "[^e]" "" "ive" ; As in prevent > preventive

While some prefix words are legal, such as "recreative" but some are not, such as "collect"
where "recollect" is correct, so is "collective" but "recollective" is not.

SPECIAL RULES

Following are special forms of add−spell−rule used for tuning the spell support, note that an argument
can not be given:−

add−spell−rule "−" "<y|n>"

Enables and disables the acceptance of hyphens joining correct words. By default the phrase
"out−of−date" would be accepted in American even though the phrase does not exist in
the American dictionary. This is because the three words making up the phrase are correct
and by default hyphens joining words are allowed. Some Latin language such as Spanish do
not use this concept so this feature can be disable.

add−spell−rule "#" "score"

MicroEmacs '02

add−spell−rule(2) 184

Sets the maximum allowed error score when creating a spelling guess list. When comparing a
dictionary word with the user supplied word, spell checks for differences, each difference or
error is scored in the range of 20 to 27 points, once the maximum allowed score has been
exceeded the word is ignored. The default guess error score is 60, allowing for 2 errors.

add−spell−rule "*" "regex"

Adds a correct word in the form of a regex if a word being spell checked is completely
matched by the regex the word is deemed to be correct. For example, the following rule can
be used to make the spell−checker allow all hex numbers:

add−spell−rule "*" "0[xX][[:xdigit:]]+"

This will completely match the words "0x0", "0xff" etc but not "0x00z" as the whole word is not
matched, only the first 4 letters.

NOTES

The format of the dictionary is a list of base words with each word having a list of rules which can be
applied to that word. Therefore the list of words and the rules used for them are linked e.g.

aback
abaft
abandon/DGRS
abandonment/S
abase/DGRS
abasement/S
abash/DGS
abashed/U
abate/DGRS

where the "/..." is the valid list of rules for that word.

The '_' character is used to separate different rule lists for a single word.

The format of the dictionary word list and the rule list is compatible with ispell(1).

SEE ALSO

add−dictionary(2), spell(2) spell−buffer(3), spell−word(3), ispell(1).

MicroEmacs '02

add−spell−rule(2) 185

alarm(3)

NAME

alarm − Set an alarm

SYNOPSIS

alarm "message" "hours" "minutes"

DESCRIPTION

alarm creates an alarm for the user which will print the given "message" in the given number of
"hours" and "minutes" time from the moment of creation.

The message is printed on the screen using osd(2).

NOTES

alarm is a macro defined in misc.emf.

SEE ALSO

osd(2).

MicroEmacs '02

alarm(3) 186

nroff(9)

SYNOPSIS

0−9, tni, so − UNIX t/nroff file.

FILES

hknroff.emf − UNIX t/nroff file.
nroff.etf − UNIX t/nroff template file
ntags.emf − t/nroff tags generator macro definition.

EXTENSIONS

1, 2, 3, 4, 5, 6, 7, 8, 9 − UNIX t/nroff files.
tni, so − UNIX t/nroff include files.
sm − [Special] Superman t/nroff file.

MAGIC STRINGS

−*− nroff −*−

Recognized by GNU and MicroEmacs. Denotes a t/nroff type file, may be used in .1/.9, .tni and .so files.
DESCRIPTION

The nroff file type templates handle UNIX n/troff type files.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, preprocessor definitions, comments,
strings and characters of the language to be differentiated and rendered in different colors.

Tags

A C−tags file may be generated within the editor using the Tools −> Nroff−Tools −> Create Tag
File. find−tag(2) takes the user to the file using the tag information. The tags are generated using the
.XI keyword, this may not be standard for all nroff pages.

MicroEmacs '02

nroff(9) 187

Folding and Information Hiding

Generic folding is enabled within the C and C++ files. The folds occur about sections .S[HS]....S[HS]
located on the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds
the current region. Note that folding does not operate on K&R style code.

Tools

The nroff buffer provides a facility to toggle the hilighting of the buffer on and off. If font change
inserts are used (\fB, \fR, etc), then the enclosed bold and italic regions are hilighted, hiding the
escape sequences. This allows the nroff text to be viewed in a more representative rendered format.

The local buffer command aman invokes, the following command sequence (defined in
hkman) to render a nroff man file into a buffer window;−

soelim <file> | tbl −TX | neqn | nroff −man | col −x

The command tex2nr attempts to convert a latex(9) file into an nroff file. The latex escape
sequences are converted into their nroff equivalents. The command is only made available
when an Nroff file is loaded (as the command is defined in the hknroff.emf file).

Short Cuts

The short cut keys used within the buffer are:−

C−c C−s − Insert a font size escape character \S0.
C−c C−r − Insert a roman font escape character \fR.
C−c C−b − Insert a bold font escape character \fB.
C−c C−i − Insert a italic font escape character \fI.
C−c C−c − Insert a courier font escape character \fC.
C−c C−p − Insert a previous font escape character \fP.
esc o, esc q − fill−paragraph(2) fills paragraph to next .XX command.
C−c b − Bold region by inserting \fB .. \fR.
C−c c − Courier region by inserting \fC .. \fR.
C−c c − Italic region by inserting \fI .. \fR.
C−c C−h − Toggle hilighting on/off.
C−c C−& − Adds nroff padding \f& about words.
C−x C−& − Removes nroff padding \f& about words.
esc h − Nroff help.

f2 − (un)fold the current region
f3 − (un)fold all regions

BUGS

The nroff language template is heavily biased towards the man macros only and includes all of the
extension macros used for generating the JASSPA hypertext documentation.

MicroEmacs '02

nroff(9) 188

The template in the current form has been used entirely by JASSPA in generating all of the
documentation (HTML, Winhelp, ehf, PostScript) used by MicroEmacs '02. It does not include all
of the troff/nroff keywords, or keywords for any of the standard macro packages.

The JASSPA documentation preparation tools are proprietary and have not been made publicly
available.

SEE ALSO

fill−paragraph(2), find−tag(2), fold−all(3), fold−current(3), ntags(3f), time(2m).

Supported File Types

MicroEmacs '02

nroff(9) 189

append−buffer(2)

NAME

append−buffer − Write contents of buffer to end of named file

SYNOPSIS

n append−buffer "file−name"

DESCRIPTION

append−buffer is used to write the contents of the current buffer into an EXISTING file. Use
save−buffer(2) if the buffer is to over−write the existing file already associated with the buffer. Use
write−buffer(2) if the buffer is to be written out to a new file, or to replace an existing file.

append−buffer writes the contents of the current buffer to the named file file−name. But unlike
write−buffer(2) the action of the write does not change the attributes associated with the file (if it
exists), it also does not effect the stats of the current buffer.

On writing the file, append−buffer ignores the time(2m) and backup(2m) mode settings. The current
buffer will not be time stamped and a backup will not be created for "file−name". If the buffer
contains a narrow(2m) it will automatically be removed before saving so that the whole buffer is
saved and restored when saving is complete

The argument n is a bit based flag, where:−

0x01

Enables validity checks (default). These include a check that the given file already exist, if not
confirmation of writing is requested from the user. Without this flag the command will always
succeed wherever possible. If "file−name" does not exist the buffer is written out in a similar fashion
to using the command write−buffer(2).

0x02

Disables the expansion of any narrows (see narrow−buffer(2)) before appending the buffer.

0x04

Truncate the existing file before writing out the contents of the buffer. This means that the file will
consist solely of the contents of the buffer, but it will still have the file attributes of the original file.

If n is not specified then the default argument of 1 is used.

MicroEmacs '02

append−buffer(2) 190

EXAMPLE

The following example appends the current buffer onto the end of a file, creating the file if it does not
exists

append−buffer "things_to_do.txt"

The following example truncates the users email file while maintaining the file attributes. This is
taken from vm(3) where it is used to remove the current mail from the system mail box.

find−buffer "*vm−empty−buffer"
−1 buffer−mode "ctrlz"
5 append−buffer %vm−mail−src
delete−buffer $buffer−bname

Note that the macro ensures that ctrlz(2m) mode is removed. If it was enabled then the file written
would not be empty.

SEE ALSO

write−buffer(2), save−buffer(2).

MicroEmacs '02

append−buffer(2) 191

ascii−time(3)

NAME

ascii−time − Return the current time as a string

SYNOPSIS

ascii−time

DESCRIPTION

ascii−time returns the current time as a formatted string in #p9 which is equivalent to #l9 for the
calling macro. The format of the time string is:

"WWW MMM DD hh:mm:ss yyyy"

Where: WWW − Week day, Sun − Sat
MMM − Month, Jan − Dec
DD − Day, 1 − 31
hh − Hour, 00 − 23
mm − Minute, 00 − 59
ss − Second, 00 − 59
yyyy − Year, 1998...

EXAMPLE

The following is taken from etfinsrt.emf, it uses ascii−time in replacing "$ASCII_TIME$" with the
current.

0 define−macro etfinsrt
 .
 .
 ; Change the create date $ASCII_TIME$.
 beginning−of−buffer
 ; Get ASCII time in #l9
 ascii−time
 !force replace−string "\\$ASCII_TIME\\$" #l9
 .
 .
!emacro

NOTES

ascii−time is a macro defined in utils.emf.

MicroEmacs '02

ascii−time(3) 192

SEE ALSO

$buffer−fhook(5), &find(4), ascii−time(3).

MicroEmacs '02

ascii−time(3) 193

auto−spell(3)

NAME

auto−spell − Auto−spell support
auto−spell−buffer − Auto−spell whole buffer
auto−spell−reset − Auto−spell hilight reset
auto−spell−ignore − Auto−spell ignore current word

SYNOPSIS

n auto−spell
auto−spell−buffer
auto−spell−reset
n auto−spell−ignore

DESCRIPTION

auto−spell enables and disables the auto spell checking of the current buffer. Auto spell detects word
breaks as you type and checks the spelling of every completed word hilighting any erroneous words in
the error color scheme (usually red).

The argument n determines whether auto−spell is enabled or disabled, a +ve argument enables and a
−ve argument disables. If no argument or 0 is supplied the auto−spell state is toggled.

auto−spell−buffer checks all words within the current buffer for spell, hilighting any unknown or
miss−spelled words found.

auto−spell−reset resets the buffer hilighting scheme, removing any added erroneous words.

auto−spell−ignore gets the current word and deletes the erroneous hilighting and adds the word to the
current temporary ignore dictionary, auto−spell and the spelling−checker will now ignore the word. If
an argument n of 2 is given to the command the word is added to the users personal dictionary instead
of the temporary ignore dictionary so the word is 'ignored' in all future sessions of MicroEmacs as
well.

NOTES

auto−spell, auto−spell−buffer, auto−spell−reset and auto−spell−ignore are macros defined in
spellaut.emf.

SEE ALSO

MicroEmacs '02

auto−spell(3) 194

user−setup(3), spell−buffer(3), spell(2).

MicroEmacs '02

auto−spell(3) 195

forward−char(2)

NAME

forward−char − Move the cursor right backward−char − Move the cursor left

SYNOPSIS

n forward−char (C−f)
n backward−char (C−b)

DESCRIPTION

backward−char moves the cursor n characters to the left. Move to the end of the previous line if the
cursor was at the beginning of the current line.

forward−char moves the cursor n characters to the right. Move to the beginning of the next line if the
cursor was already at the end of the current line.

NOTES

backward−char is also bound to left.
forward−char is also bound to right.

SEE ALSO

forward−line(2), backward−line(2).

MicroEmacs '02

forward−char(2) 196

forward−delete−char(2)

NAME

forward−delete−char − Delete next character at the cursor position
backward−delete−char − Delete previous character at the cursor position

SYNOPSIS

n forward−delete−char (C−d)
n backward−delete−char (backspace)

DESCRIPTION

forward−delete−char deletes the next n characters from the current cursor position. If the cursor is at
the end of a line, the next line is joined on the end of the current line. If an argument is given or
letter(2m) mode is enabled then the character is added to the kill buffer, otherwise the kill buffer is
unaltered.

backward−delete−char deletes the next n characters immediately to the left of the cursor (e.g. more
conventionally backspace). If the cursor is at the beginning of a line, this will join the current line on
the end of the previous one. If an argument is given or letter mode is enabled then the character is
added to the kill buffer, otherwise the kill buffer is unaltered.

NOTES

forward−delete−char is also bound to delete and S−delete.

backward−delete−char is also bound to S−backspace.

SEE ALSO

backward−kill−word(2), forward−kill−word(2), letter(2m).

MicroEmacs '02

forward−delete−char(2) 197

backward−delete−tab(2)

NAME

backward−delete−tab − Delete white space to previous tab−stop

SYNOPSIS

backward−delete−tab (S−tab)

DESCRIPTION

backward−delete−tab deletes all white characters left of the cursor back to the previous tab stop or
non−white space, the deleted text is not added to the kill buffer.

SEE ALSO

tab(2), $tabsize(5), $tabwidth(5).

MicroEmacs '02

backward−delete−tab(2) 198

forward−kill−word(2)

NAME

forward−kill−word − Delete next word at the cursor position
backward−kill−word − Delete previous word at the cursor position

SYNOPSIS

n forward−kill−word (esc d)
n backward−kill−word (esc backspace)

DESCRIPTION

forward−kill−word deletes the next n words starting at the current cursor position, the deleted text is
added to the kill buffer. See forward−word(2) for a description of word boundaries. If the argument n
is 0 the command has no effect. If a −ve argument is specified, +n words are deleted and the text is
not added to the kill buffer.

backward−kill−word deletes the previous n words before the cursor, the deleted text is added to the
kill buffer. The numeric argument has the same effect as with forward−kill−word.

NOTES

backward−kill−word is also bound to esc backspace.

The −ve argument is typically used from macro scripts where the kill buffer is more precisely
controlled.

SEE ALSO

backward−delete−char(2), forward−delete−char(2), forward−word(2), yank(2).

MicroEmacs '02

forward−kill−word(2) 199

forward−line(2)

NAME

forward−line − Move the cursor to the next line
backward−line − Move the cursor to the previous line

SYNOPSIS

n forward−line (C−n)
n backward−line (C−p)

DESCRIPTION

forward−line moves the cursor down n lines, default 1. If the line is not on the current screen then
display the next page and move to the line.

backward−line moves the cursor up n lines, if the line is not on the current screen then display the
previous page and move to the line.

For both invocations a negative value reverses the sense of movement as expected.

SEE ALSO

backward−word(2), forward−word(2), scroll−down(2), scroll−up(2).

MicroEmacs '02

forward−line(2) 200

forward−paragraph(2)

NAME

forward−paragraph − Move the cursor to the next paragraph
backward−paragraph − Move the cursor to the previous paragraph

SYNOPSIS

n forward−paragraph (esc n)
n backward−paragraph (esc p)

DESCRIPTION

forward−paragraph puts the cursor at the end of the nth paragraph after the cursor, default is 1.

backward−paragraph puts the cursor at the beginning of the nth paragraph before the cursor, default
is 1.

DIAGNOSTICS

The following errors can be generated, in each case the command returns a FALSE status:

[end of buffer]

When moving forwards, the given argument n was greater that the number of remaining paragraphs,
the cursor is left at the end of the buffer.

[top of buffer]

When moving backwards, the given argument n was greater than the number of paragraphs before the cursor,
the cursor is left at the beginning of the buffer. NOTES

For both invocations a negative value reverses the sense of movement as expected.♦
A paragraph break is defined as a blank line.♦

SEE ALSO

backward−line(2), forward−line(2), scroll−down(2), scroll−up(2).

MicroEmacs '02

forward−paragraph(2) 201

forward−word(2)

NAME

forward−word − Move the cursor to the next word
backward−word − Move the cursor to the previous word

SYNOPSIS

n forward−word (esc f)
n backward−word (esc b)

DESCRIPTION

forward−word places the cursor at the end of the nth word from the current position; the default is 1.

backward−word places the cursor at the beginning of the nth previous word, default 1.

NOTES

Words are distinguished by non−alphanumeric characters and need not be white space such as spaces
and tabs.

A character is considered to be part of a word if it is in the $buffer−mask(5) character set. The default
setting for $buffer−mask is "luh" which gives a word character set of the alphanumeric characters,
i.e. 0−9, A−Z, a−z, this may be changed by setting the $buffer−mask variable. The character sets
(including 4 user character sets 1−4) may be altered by using the command set−char−mask(2).

SEE ALSO

backward−line(2), backward−paragraph(2), forward−line(2), forward−paragraph(2), Locale Support,
$buffer−mask(5), set−char−mask(2).

MicroEmacs '02

forward−word(2) 202

beginning−of−buffer(2)

NAME

beginning−of−buffer − Move to beginning of buffer/file end−of−buffer − Move to beginning/end of
buffer/file

SYNOPSIS

beginning−of−buffer (esc <)
end−of−buffer (esc >)

DESCRIPTION

beginning−of−buffer places the cursor at the beginning of the buffer/file.

end−of−buffer places the cursor at the end of the buffer/file.

NOTES

beginning−of−buffer is typically bound to home.
end−of−buffer is typically bound to end.

SEE ALSO

beginning−of−line(2), end−of−line(2).

MicroEmacs '02

beginning−of−buffer(2) 203

beginning−of−line(2)

NAME

beginning−of−line − Move to beginning of line
end−of−line − Move to end of line

SYNOPSIS

beginning−of−line (C−a)
end−of−line (C−e)

DESCRIPTION

beginning−of−line places the cursor at the beginning of the line.

end−of−line places the cursor at the end of the line.

SEE ALSO

beginning−of−buffer(2), end−of−buffer(2).

MicroEmacs '02

beginning−of−line(2) 204

global−abbrev−file(2)

NAME

global−abbrev−file, buffer−abbrev−file − Set abbreviation file(s).

SYNOPSIS

n global−abbrev−file "abbrev−file"
n buffer−abbrev−file "abbrev−file"

DESCRIPTION

The abbreviation files allow the user to define a set of short−cut expansion text, whereby a short
sequence of chararacters are associated with a longer text segment. When the short sequence is
entered, the user may elect to maually expand the sequnce with the associated replacement text.
Provision for cursor positioning may be made in the replacement text.

buffer−abbrev−file sets the current buffer's abbreviation file (limit of one abbreviation file per
buffer). buffer−abbrev−file does the minimal amount of work to increase speed at load−up. The first
use of expand−abbrev(2) attempts to load the abbreviation file at which point errors may be reported.

An argument n of zero, forces the buffer abbreviation file to be uncached, such that the next
abbreviation that is expanded forces a re−load of the abbreviation file. This is typically only used
when an abbreviation file is being constructed and tested.

global−abbrev−file assigns a global set of abbreviations accross ALL buffers, such that the
abbreviation is available regardless of the current buffer type. The global abbreviation file has a lower
presidence than the buffer−abbrev−file, hence the currently assigned buffer−abbrev−file is
searched before the global−abbrev−file.

Similarly for global−abbrev−file, an argument of zero forces the global abbreviation file to be
uncached and re−loaded on the next use.

An abbreviation is a string which is expanded to an alternate form, e.g.

e.g. −> for example

or

PI −> 3.1415926536
etc.

An abbreviation file is an ordinary text file with a strict format, it is loaded only once at the first call
to expand−abbrev(2), from then on it reminds buffered. An abbreviation file has an abbreviation per

MicroEmacs '02

global−abbrev−file(2) 205

line, they cannot use multiple lines. This is not a draw back as the expansion string is executed using
execute−string(2) so any MicroEmacs '02 command may also be called.

For example the following expansion string inserts the string "!continue" and a newline:−

"!abort\r"

Note that '\r' is used instead of '\n' as C−m is bound to newline(2) and not C−j. The expansion
string can also make use of a few useful abbreviations:−

\p

Mark the current position (expanded to "C−x C−a P")

\P

Move cursor to the marked position (expanded to "C−x a P")

See help on execute−string(2) for more useful abbreviations.

EXAMPLE

The abbreviation must be on the left hand side followed by at least 1 space, the expansion string must
then be on the same line in quotes. So for the given examples, the abbreviation file would be:

|
|e.g. "for example"
|PI "3.1415926536"
|

The following abbreviation could be used for a C if−else statement.

|
|if "if(\p)\r{\r\r}\relse\r{\r\r}\r\P"
|

This is particularly useful for email address, e.g.

|
|JA "\"JASSPA\" <support@jasspa.com>"
|

The following example is MicroEmacs '02 C−Mode abbreviation file for constructing C files.
Remember \p is where the cursor is positioned following the expansion.

#i "#include <\p>\r\P"
#d "#define "
if "if(\p)\r{\r\r}\r\P"
ef "else if(\p)\r{\r\r}\r\P"
el "else\r{\r\p\r}\r\P"
wh "while(\p)\r{\r\r}\r\P"

MicroEmacs '02

global−abbrev−file(2) 206

sw "switch(\p)\r{\rcase :\rdefault:\r}\r\P"

NOTES

Abbreviation files are given the extension .eaf in the MicroEmacs '02 home directory.

One of the easiest ways to create more complex abbreviations is to record a keyboard macro, name it
and then insert the resultant macro. See notes on commands start−kbd−macro(2),
name−kbd−macro(2) and insert−macro(2).

Try to avoid using named key, such as "up" and "return", as the keyboard macro equivalent is not
readable and is likely to change in future releases.

FILES

c.eaf − C−Mode abbreviation file. emf.eaf − Macro code abbreviation file.

SEE ALSO

execute−string(2), expand−abbrev(2), insert−macro(2), iso−accents−mode(3), name−kbd−macro(2),
start−kbd−macro(2), eaf(8).

MicroEmacs '02

global−abbrev−file(2) 207

buffer−bind−key(2)

NAME

buffer−bind−key − Create local key binding for current buffer
buffer−unbind−key − Remove local key binding for current buffer

SYNOPSIS

n buffer−bind−key "command" "key"
n buffer−unbind−key "key"

DESCRIPTION

buffer−bind−key creates a key binding local to the current buffer, binding the command command to
the keyboard input key. This command is particularly useful in conjunction with file loading hooks
(see add−file−hook(2)) allowing local key bindings dependent upon the context of the buffer.

The message line input is not effected by the current buffers local bindings.

buffer−unbind−key unbinds a user created local key binding, this command effects only the current
buffer. If a −ve argument is given to buffer−unbind−key then all the current buffer's bindings are
removed.

NOTES

The prefix commands cannot be rebound with this command.

Key response time linearly increases with each local binding added.

SEE ALSO

global−bind−key(2), ml−bind−key(2), osd−bind−key(2), global−unbind−key(2).

MicroEmacs '02

buffer−bind−key(2) 208

buffer−help(3)

NAME

buffer−help − Displays help page for current buffer

SYNOPSIS

buffer−help

DESCRIPTION

buffer−help opens a dialog giving the user a brief help page on tools available for the current buffer.
The help page changes depending on the type of the current buffer.

SEE ALSO

buffer−setup(3).

MicroEmacs '02

buffer−help(3) 209

buffer−info(2)

NAME

buffer−info − Status information on current buffer position

SYNOPSIS

buffer−info (C−x =)

DESCRIPTION

buffer−info reports on the current and total lines and characters of the current buffer. It also gives the
hexadecimal code of the character currently under the cursor.

The output of the command is displayed on the message line e.g.

Line 1845/3955 Col 0.0 Char 78267/167172 (46%) Win Line 99/48 Col/0/0 char = 0xA

$result(5) is set to the same output string.

SEE ALSO

$result(5), $mode−line(5), about(2).

MicroEmacs '02

buffer−info(2) 210

buffer−setup(3)

NAME

buffer−setup − Configures the current buffer settings

SYNOPSIS

buffer−setup

DESCRIPTION

buffer−setup provides a dialog interface to configuring the setup of the current buffer's file type
within MicroEmacs. user−setup may be invoked from the main help menu or directly from the
command line using execute−named−command(2).

The changes made to a configuration in buffer−setup are maintained in future MicroEmacs sessions
by storing them within the user's setup registry file, "<logname>.erf". Note that not all file types
may be supported by buffer−setup, if not the help menu item will not be available.

The contents of the dialog change, depending on the features the current buffer's file type supports.
These features are implemented and installed within the buffer's file hook. The following buttons are
always present at the bottom of the dialog:

Save

Saves the changes made to the configuration back to the users registry file, i.e. "<Log−Name>.erf"
but does not re−initialize the current buffer. No changes made will effect the current buffer unless the
Current button is pressed. Buffers of the same type created after the save may inherrit some of the
changes.

Current

Makes the current buffer reflect the changes made, dismissing the buffer−setup dialog. This also
performs the above 'Save' operation. Some changes such as dialog creation changes, will only take
effect when MicroEmacs is restarted.

Exit

Quits buffer−setup, if changes where not Saved or made Current they will be lost.

Following is a list of configurable features which may be available:

Create Help Page

MicroEmacs '02

buffer−setup(3) 211

Enables/disables the creation of a help page dialog for the tools available for the current file type.

Create Tools Menu

Enables/disables the creation of a file type specific sub menu located within the main menu's Tools
sub−menu.

Use Author Mode

For file types which have an automatic formatter/viewer (currently only html) enabling this will
simply load the file enabling the source code to be viewed and edited. When disabled files of this type
will be automatically processed giving a more readable 'formatted' representation.

Insert New Template

When creating a new buffer/file of this type, a default template will be inserted if this is enabled.
When disabled the buffer will remain empty.

Fence Display

Enables or disables the displaying of matching fences for this file type. Note that the way in which the
matching fence is display is determined by the Fence Display option on the Platform page of
user−setup(3); the buffer−setup option is ignored if this option is set to "Never Display".

Setup Hilighting

Creates and enables the token hilighting for the current file type.

Setup Auto Indent

Enables automatic formating (indenting) for the current file type. The indentation rules are either the
built in 'C' indentation cmode(2m) or created using the indent(2) command. When enabled the
tab(2m) is still adhered to, but the indent(2m) mode is ignored; when disabled the indent mode can be
used.

Setup Auto Spell

Enables the setting up of auto−spell(3). When enabled the auto−spell key bindings are created and
auto−spell is enabled if enabled within the user−setup dialog.

Setup Folding

Enables the setting up of section folding, when enabled the folding key bindings are created.

Add Abbreviations

Adds the file type's abbreviation file to the buffer using buffer−abbrev−file(2)

Search Modes: Exact

MicroEmacs '02

buffer−setup(3) 212

Enables/disables the exact(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Search Modes: Magic

Enables/disables the magic(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Buffer Modes: Auto

Enables/disables the auto(2m) mode.

Buffer Modes: Backup

Enables/disables the backup(2m) mode.

Buffer Modes: Indent

Enables/disables the indent(2m) mode.

Buffer Modes: Justify

Enables/disables the justify(2m) mode.

Buffer Modes: Tab

Enables/disables the tab(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Buffer Modes: Time

Enables/disables the time(2m) mode.

Buffer Modes: Undo

Enables/disables the undo(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Buffer Modes: Wrap

Enables/disables the wrap(2m) mode. NOTES

buffer−setup is a macro using osd(2), defined in buffstp.emf.

SEE ALSO

buffer−help(3), user−setup(3). File Hooks.

MicroEmacs '02

buffer−setup(3) 213

c−hash−eval(3)

NAME

c−hash−eval − Evaluate C/C++ #defines
c−hash−del − Remove C/C++ #define evaluation
c−hash−set−define − Set a C/C++ #define
c−hash−unset−define − Unset a C/C++ #define

SYNOPSIS

n c−hash−eval
c−hash−del
c−hash−set−define "variable" "value"
c−hash−unset−define "variable"

DESCRIPTION

c−hash−eval evaluates C/C++ '#' lines, hiding sections of code which have been 'hashed' out.
c−hash−eval evaluates the following '#' lines:−

#define <variable>
#ifdef <variable>
#if ...
#else
#endif

For #defines c−hash−eval creates a user variable "%cd<variable>", setting it to the value
found. For #ifdef a simple check for the existence of variable "%cd<variable>" is made. If
defined then code between the #ifdef and either its matching #else or #endif is displayed and
code between the #else and #endif is hidden. If it is not defined then the reverse happens.

The state of #if's are evaluated using calc(3), the following code is then displayed as for #ifdef.

Code is hidden by setting the $line−scheme(5) to a color similar to the back−ground. If an argument
is given to the command the code is also narrowed out using narrow−buffer(2).

c−hash−del undoes the effect of c−hash−eval by restores hidden code.

c−hash−set−define and c−hash−unset−define can be used to manually set and unset #define
variables.

NOTES

MicroEmacs '02

c−hash−eval(3) 214

c−hash−eval, c−hash−del, c−hash−set−define and c−hash−unset−define are macros defined in
cmacros.emf.

Executing c−hash−eval in a project header file (h file) which contains all used #define definitions
will set up all #define variables ready for the main C files.

SEE ALSO

calc(3), $line−scheme(5), narrow−buffer(2).

MicroEmacs '02

c−hash−eval(3) 215

calc(3)

NAME

calc − Integer calculator

SYNOPSIS

n calc "string"

DESCRIPTION

calc can perform simple integer based calculations given by "string", where the "string" takes the
following form:−

"[b]<s>"

Where 'b' is an optional letter setting the required output base which can be one of the following:

b − Binary
o − Octal
d − Decimal
x − Hexadecimal

Default when omitted is 'd' (decimal). "s" is the sum to be calculated, which should be bodmas in
form. Following is a list of valid symbols.

(..) − Parentheses (contents calculated first)
! − Logical not
&& − Logical and
|| − Logical or
== − Logical equals
!= − Logical not equals
~ − Bitwise not
& − Bitwise and
| − Bitwise or
^ − Bitwise xor
/ − Divide
* − Multiply
% − Modulus
+ − Addition
− − Subtraction
0xNN − Hexadecimal number
0NN − Octal number
LR − Last calculation recall

MicroEmacs '02

calc(3) 216

Any MicroEmacs variables can be used in the calculation. The result of the calculation is stored in
.calc.result(5). The argument n is a bitwise flag where:

0x01

Print out the result on the message−line.

0x02

Use string comparisons for == and != comparisons. This has the advantage of being able to calc "Foo"
== "Bar" etc.

When omitted the default argument is 1.

EXAMPLE

To calculate the number of hours in a year:

calc "365*24"

To then calculate the number of seconds in the year:

calc "LR*60*60"

NOTES

calc is a macro defined in calc.emf.

SEE ALSO

.calc.result(5).

MicroEmacs '02

calc(3) 217

capitalize−word(2)

NAME

capitalize−word − Capitalize word
lower−case−word − Lowercase word (downcase)
upper−case−word − Uppercase word (upcase)
lower−case−region − Lowercase a region (downcase)
upper−case−region − Uppercase a region (upcase)

SYNOPSIS

n capitalize−word (esc c)
n lower−case−word (esc l)
n upper−case−word (esc u)

lower−case−region (C−x C−l)
upper−case−region (C−x C−u)

DESCRIPTION

capitalize−word capitalizes the next n words.

lower−case−word changes the next n words to lower case.

upper−case−word changes the next n words to upper case.

lower−case−region changes all alphabetic characters in the marked region to lower case (see
set−mark(2)).

upper−case−region changes all alphabetic characters in the marked region to upper case

SEE ALSO

set−mark(2).

MicroEmacs '02

capitalize−word(2) 218

change−buffer−name(2)

NAME

change−buffer−name − Change name of current buffer

SYNOPSIS

n change−buffer−name "buffer−name" (esc C−n)

DESCRIPTION

change−buffer−name changes the name of the current buffer to buffer−name. Buffer names must be
unique as they act as the identity handle. By default the buffer name is derived from the buffer's file
name excluding the path. This can lead to conflicts, when editing files with the same name and
different paths, in which case a counter is appended to the end of the buffer name to make the name
unique. For example:

File Name Buffer Name

/etc/file.c file.c
/tmp/file.c file.c<1>

By default, or an argument is given with bit 1 set, change−buffer−name will fail if a buffer with the
given name already exists. This behavior can be changed by giving an argument with the first bit
cleared, e.g. 0, in which case if a buffer with that name already exists then a counter as appended.

SEE ALSO

$buffer−fname(5), change−file−name(2). delete−buffer(2).

MicroEmacs '02

change−buffer−name(2) 219

change−directory(2)

NAME

change−directory − Change the current working directory

SYNOPSIS

change−directory "dir−name" (C−x C−d)

DESCRIPTION

change−directory changes the current working directory to dir−name, on certain platforms
(MS−DOS) this can also change the current drive. This command is largely redundant as any shell
command automatically inherits the directory of the current buffer's file.

SEE ALSO

change−file−name(2).

MicroEmacs '02

change−directory(2) 220

change−file−name(2)

NAME

change−file−name − Change the file name of the current buffer

SYNOPSIS

change−file−name "file−name" (C−x n)

DESCRIPTION

change−file−name changes the file name of the current buffer to file−name. A validity check is made
on the given file name and if found to be invalid (e.g. its a directory) the name is rejected.

SEE ALSO

change−buffer−name(2), change−directory(2), write−buffer(2).

MicroEmacs '02

change−file−name(2) 221

change−font(2)

NAME

change−font − Change the screen font

SYNOPSIS

[X−Windows]
change−font "fontName"

[IBM−PC / MS−DOS]
change−font "mode−no" "spec"

[Microsoft Windows]
n change−font "name" charSet weight width height

DESCRIPTION

change−font is a platform specific command which allows the displayable font to be modified. The
selection of font is determined by the monitor resolution and the capabilities of the graphics adapter.

This command is available on all systems except termcap. While MS−DOS does not support the
concept of different fonts, it does (or at least the graphics card does) support the concept of changing
screen resolution, which has the effect of changing the font. Each platform takes different arguments
and are considered independently, as follows:

X−Windows

The X−Windows UNIX environments accept a single argument which is a fully qualified font name.
Simply give the font X name and the font will change if it is available. The window size changes to
attempt to retain the same number of rows and columns so ensure that when changing to a larger font
then there is enough room (or a way) to resize a window which is larger than the actual screen.

The X font string describes the attributes of the font in terms of it's size name etc. as follows:−

−foundry−family−weight−slant−width−−pixels−point−hres−vres−space−av−set

Where

foundry

The type of foundry that digitized and supplied the font.

MicroEmacs '02

change−font(2) 222

family

Font Family.

weight

Modifies the appearance of the font, the weight is usually medium or bold.

slant

Determines the orientation of the font. slant is usually roman (upright), italic or oblique.

width

Describes the proportionate width of the font. Typical widths include normal, condensed, narrow,
double.

pixels

Pixel size of the font

point

The resolution of the font in tenths of a dpi (i.e. dpi*10)

hres

Horizontal resolution of the font in dpi.

vres

Vertical resolution of the font in dpi.

space

The spacing of the font. Typical spacing values include monospaced (i.e. fixed width), proportional
and character cell.

av

Mean width of all font characters, measured in tenths of a pixel.

set

Character set − character set standards e.g. iso8859−1.

The default font used by MicroEmacs '02 is

−*−fixed−medium−r−normal−−15−*−*−*−c−90−iso8859−1

MicroEmacs '02

change−font(2) 223

A good font to try is:

change−font "−misc−fixed−medium−r−normal−−13−*−*−*−c−80−iso8859−1"

The font may also be changed in your .Xdefaults file by inserting the line:−

MicroEmacs.font "−misc−fixed−medium−r−normal−−13−*−*−*−c−80−iso8859−1"

IBM−PC / MS−DOS

MS−DOS may only change the screen resolution, the standard screen resolution is either 80 columns
by 25 rows or 80 by 50. A more advanced graphics card can typically support up to 132 by 60,
MicroEmacs in theory has no limit but it has only been tested up to this size.

The main problem with MS−DOS machines is that there is no standard and this is no exception. The
graphics mode needed to get a 132 by 60 screen (if available) varies from one card to the next so
MicroEmacs '02 needs to know the graphic mode number your card uses to get your required screen
resolution.

MicroEmacs '02 can also attempt a little bit of magic to double the number of rows on the screen for a
given screen resolution. This is how 50 lines are obtained from the standard 25 line mode 3. If the
value of "spec" is non−zero then this is attempted, to the authors knowledge this will either work or
not depending on the direction of the wind and no harm will befall the users equipment. However the
author also quickly disclaims anything and everything, the user uses this at their own peril, like
everything else.

MicroEmacs '02 attempts to determine the new screen width and depth itself, in case this fails the
commands change−frame−width(2) and change−frame−depth(2) may be used to correct the problem.

Following are the standard MS−DOS text modes:

change−font "2" "0" ; Simple monochrome or EGA monitor, 80 by 25.
change−font "3" "0" ; Simple EGA/VGA monitor, again 80 by 25.
change−font "3" "1" ; Simple EGA/VGA monitor using spec, 80 by 50.

Most Trident cards support the following text mode:

change−font "86" "0" ; Sweet 132 by 60

A Diamond Stealth supports the following mode:

change−font "85" "1" ; Nice 132 by 50

Cirrus video cards (1MB) seem to support:

change−font "84" "1" ; PT−526 (132x50)

Time to start digging out your graphics card manual!

MicroEmacs '02

change−font(2) 224

Microsoft Windows

The Microsoft Windows environments utilize font files to drive the display. When change−font is
invoked with no arguments, or a −ve argument then a font dialog is presented to the user to allow the
font to be selected. The current font is not changed if a −ve argument is given, in both cases the
variable $result(5) is set the the user selected font. The format of the returned string is
"OWwwwwhhhhhFontName", where:−

O

The type of character set (0 for OEM and 1 for ANSI).

W

The font weight (0 − 9).

wwww

The font width.

hhhh

The font height.

FontName

The font name.

If a +ve argument is specified with change−font then the arguments are explicitly entered, arguments
are defined as follows:−

font

The name of the font − maximum of 32 characters. Select Fixed mono fonts only.
Proportional fonts may be specified but the cursor will not align with the characters on the
screen.

An empty name ("") may be specified resulting in the selection of the default system OEM
font. No other arguments are required when specified.

Note that Courier New is not actually a fixed mono font as might be expected.

charSet

The type of character set required, this is an integer value of:−

 0 − ANSI or Western (True Type etc)
161 − Greek

MicroEmacs '02

change−font(2) 225

162 − Turkish
204 − Russian
255 − OEM (or bitmapped)

weight

The weight of the font. The values are defined as:−

0 − Don't care (Automatically selected).
1 − Thin
2 − Extra Light
3 − Light
4 − Normal
5 − Medium
6 − Semi−Bold
7 − Bold
8 − Extra−Bold
9 − Heavy

Note that you may request a weight and it is not honored. Typically 4 and 7 are honored by
most font definitions. 4 is typically used.

width

The width of the font. Specifies the average width, in logical units, of characters in the
requested font. If this value is zero, the font mapper chooses a "closest match" value. The
"closest match" value is determined by comparing the absolute values of the difference
between the current device's aspect ratio and the digitized aspect ratio of available fonts.

Note that if the width is specified as zero then the height should be specified and the width
will be automatically selected.

height

The height of the font. Specifies the desired height, in logical units, of the requested font's character
cell or character. (The character height value is the character cell height value minus the
internal−leading value.) If this value is greater than zero, the font mapper matches it against available
character cell height values; if this value is zero, the font mapper uses a default height value when it
searches for a match; if this value is less than zero, the font mapper matches it against available
character height values.

Note: as with the weight the width and height may not be honored if the font cannot support
the specified width/height in which case the closest matching height is automatically selected

Notes on the Standard Windows Configuration

For releases prior to '99, the Terminal font is the standard MS−DOS font used for the MS−DOS
window. This is an OEM fixed width character set which contains all of the conventional symbols

MicroEmacs '02

change−font(2) 226

found in the DOS shell.

Releases of MicroEmacs post '99 may utilise any of the windows fonts, typically Courier New or
Lucida Console are used, these provide the best screen rendering of characters. Lucida
Console is slightly better with a smaller font size as this allows a '1' (one) and 'l' (lower case L) to
be distinguished.

The Terminal fonts are the same as shown in the DOS window the last 2 arguments are the width x
height, the terminal equivalents (Bit Mapped) are commented here.

7x12

Regular weight seems to offer the best resolution for 14/15" monitors.

6x8

Regular weight is more suitable for 17−21" monitors which offer better resolutions.

The best options for the fonts are defined as follows:−

;Standard Terminal Fonts − standard weight
;change−font "Terminal" 0 4 4 6
change−font "Terminal" 0 4 6 8
;change−font "Terminal" 0 4 8 8
;change−font "Terminal" 0 4 5 12
;change−font "Terminal" 0 4 7 12
;change−font "Terminal" 0 4 8 12
;change−font "Terminal" 0 4 12 16
;change−font "Terminal" 0 4 10 18

;Standard Terminal Fonts − heavy weight
;change−font "Terminal" 0 7 4 6
;change−font "Terminal" 0 7 6 8
;change−font "Terminal" 0 7 8 8
;change−font "Terminal" 0 7 5 12
;change−font "Terminal" 0 7 7 12
;change−font "Terminal" 0 7 8 12
;change−font "Terminal" 0 7 12 16
;change−font "Terminal" 0 7 10 18

The "Courier New" font is not actually a fixed mono font as might be expected.

SEE ALSO

change−frame−width(2), change−frame−depth(2), $result(5), user−setup(3).

MicroEmacs '02

change−font(2) 227

change−frame−depth(2)

NAME

change−frame−depth − Change the number of lines on the current frame
change−frame−width − Change the number of columns on the current frame

SYNOPSIS

n change−frame−depth ["depth"]
n change−frame−width ["width"]

DESCRIPTION

change−frame−depth changes the depth of the current frame, if the numeric argument n is given
then the frame depth is changed by n lines. If n is not specified the user is prompted for the new depth
and the frame depth will be changed to this value. It is assumed that the screen can draw the requested
n lines and MicroEmacs draws the lines at the users peril.

A change in depth causes all of the internal windows currently displayed in the frame to be re−sized,
the vertical position of the windows are modified to match the new screen dimension, the horizontal
position of the windows remains unaltered. If the window is down−sized and the currently displayed
windows are not able to fit into the new screen space then all windows are deleted with the exception
of the current window.

change−frame−width changes the width of the current frame, if the numeric argument n is given
then the frame width is changed by n characters. If n is not specified the user is prompted for the new
width and the frame width will be changed to this value. It is assumed that the screen can draw the
requested n columns and MicroEmacs draws them at the users peril. The windows are reorganized as
change−frame−depth working horizontally rather than vertically.

NOTES

Within windowing environments such as X−Windows and Microsoft Windows these commands
cause the canvas window to be re−sized to accommodate the change in screen size.

In MS−DOS and UNIX Termcap environments the physical size of the screen is determined by the
characteristics of the display adapter. change−frame−depth may be used to correct anomalies
(usually on portables) in the displayable screen area and the graphics mode. e.g. In DOS the graphics
mode utilizes 50 lines, and only 47 lines are viewable. In this case change the screen depth to 47 and
MicroEmacs will not utilize the remaining lines which are not viewable.

SEE ALSO

MicroEmacs '02

change−frame−depth(2) 228

$frame−depth(5), $frame−width(5).

MicroEmacs '02

change−frame−depth(2) 229

change−window−depth(2)

NAME

change−window−depth − Change the depth of the current window
grow−window−vertically − Enlarge the current window (relative change)
shrink−window−vertically − Shrink the current window (relative change)
resize−window−vertically − Resize the current window (absolute change)

SYNOPSIS

n change−window−depth ["depth"]

n grow−window−vertically
n shrink−window−vertically
n resize−window−vertically

DESCRIPTION

change−window−depth changes the depth of the current window, if the numeric argument n is given
then the window depth is changed by n lines. If n is not specified the user is prompted for the new
depth and the window depth will be changed to this value. The command aborts if the requested size
cannot be achieved (the window becomes too small or a neighbouring one does).

NOTES

Commands grow−window−vertically, shrink−window−vertically and resize−window−vertically
were replaced by the new change−window−depth command in April 2002. Following are macro
implementations of the old commands:

define−macro grow−window−vertically
 @# change−window−depth
!emacro

define−macro shrink−window−vertically
 &neg @# change−window−depth
!emacro

define−macro resize−window−vertically
 !if ¬ @?
 !abort
 !endif
 change−window−depth @#
!emacro

SEE ALSO

MicroEmacs '02

change−window−depth(2) 230

change−window−width(2), resize−all−windows(2), split−window−vertically(2).

MicroEmacs '02

change−window−depth(2) 231

change−window−width(2)

NAME

change−window−width − Change the width of the current window
grow−window−horizontally − Enlarge current window horizontally (relative)
shrink−window−horizontally − Shrink current window horizontally (relative)
resize−window−horizontally − Resize current window horizontally (absolute)

SYNOPSIS

n change−window−width ["width"]

n grow−window−horizontally
n shrink−window−horizontally
n resize−window−horizontally

DESCRIPTION

change−window−width changes the width of the current window, if the numeric argument n is given
then the window width is changed by n characters. If n is not specified the user is prompted for the
new width and the window width will be changed to this value. The command aborts if the requested
size cannot be achieved (the window becomes too small or a neighbouring does).

EXAMPLE

Refer to mouse.emf for an example of window growth using the mouse to manipulate the size of
the windows.

NOTES

Commands grow−window−horizontally, shrink−window−horizontally and
resize−window−horizontally were replaced by the new change−window−width command in April
2002. Following are macro implementations of the old commands:

define−macro grow−window−horizontally
 @# change−window−width
!emacro

define−macro shrink−window−horizontally
 &neg @# change−window−width
!emacro

define−macro resize−window−horizontally
 !if ¬ @?

MicroEmacs '02

change−window−width(2) 232

 !abort
 !endif
 change−window−width @#
!emacro

SEE ALSO

change−window−depth(2), resize−all−windows(2), split−window−horizontally(2).

MicroEmacs '02

change−window−width(2) 233

charset−change(3)

NAME

charset−change − Convert buffer; between two character sets
charset−iso−to−user − Convert buffer; ISO standard to user character set
charset−user−to−iso − Convert buffer; user to ISO standard character set

SYNOPSIS

charset−change
charset−iso−to−user
charset−user−to−iso

DESCRIPTION

charset−change opens a dialog allowing the user to select a From and To character set. If the
Convert button is selected the current buffer is converted to the destination character set. The
command assumes that the current buffer is written in the From character set, no attempt is made to
verify this.

charset−iso−to−user converts the current buffer, assumed to be in ISO−8859−1 (Latin 1) font
format, to the current user's character set (defined by user−setup(3)). This process typically corrects
any foreign language display problems.

Conversely, charset−user−to−iso converts the current buffer from the user's character set to
ISO−8859−1 (Latin 1), this is typically used for the transfer of text files between different systems.

The current character set is configured using the user−setup(3) dialog (see Display Font Set). This in
turn uses the command set−char−mask(2) to create the low level character conversion tables.

NOTES

charset−change, charset−iso−to−user and charset−user−to−iso are macros defined in
langutl.emf.

SEE ALSO

user−setup(3), set−char−mask(2), Locale Support.

MicroEmacs '02

charset−change(3) 234

check−line−length(3)

NAME

check−line−length − Check the length of text lines are valid

SYNOPSIS

check−line−length

DESCRIPTION

check−line−length checks that the length of each line of the current buffer, starting with the current
line, is less than or equal to fill−col(5). The command aborts if a line too long is found, leaving the
cursor on the offending line. If no invalid lines are found the command succeeds leaving the cursor at
the end of the buffer.

NOTES

check−line−length is a macro implemented in misc.emf.

SEE ALSO

$fill−col(5).

MicroEmacs '02

check−line−length(3) 235

clean(3)

NAME

clean − Remove redundant white spaces from the current buffer

SYNOPSIS

n clean

DESCRIPTION

clean removes redundant white spaces from the current buffer, there are three types this command
remove:

1)

Any space or tab character at the end of the line. All are removed until the last character is not a space
or a tab, or the line is empty. Note that an empty line is not removed unless at the end of the buffer.

2)

Space characters are removed when the next character is a tab, making the space redundant, e.g. the
strings " Hello World" and " Hello World" will look identical because the tab character (' ')
will indent the text to the 8th column with or without the space so the space can be removed.

3)

Superfluous empty lines at the end of the buffer are removed, leaving only one empty line.

4)

If argument n is given (value is not used) multiple blank lines are reduced to a single blank line.
DIAGNOSTICS

[Command illegal in view mode]

Caused by a redundant white space being found and the buffer being in view mode. Note that if clean
completes while the buffer is in view mode then no superfluous white spaces where found. NOTES

clean is a macro defined in format.emf.

Most of this command's operation is performed by simple regex search and replace strings:

MicroEmacs '02

clean(3) 236

a)

Search for: "[\t]+$" Replace with: "\\0"

b)

Search for: "[]+\t" Replace with: "\t"

c)

Search for: "\n\n\n" Replace with: "\n\n" SEE ALSO

replace−string(2), tab(2m), delete−blank−lines(2), tabs−to−spaces(3).

MicroEmacs '02

clean(3) 237

command−apropos(2)

NAME

command−apropos − List commands involving a concept

SYNOPSIS

command−apropos "string" (C−h a)

DESCRIPTION

command−apropos compiles a list of all commands with string in their name, also giving their
current key bindings.

EXAMPLE

To find all of the commands with "command" in their name space then issue the command "C−h a
command" which generates a list of commands such as:−

abort−command "C−g"
 "esc C−g"
 "C−x C−g"
command−apropos "C−h a"
command−complete
execute−named−command "esc x"
help−command "C−h C−c"
ipipe−shell−command "esc \\"
list−commands "C−h c"
pipe−shell−command "esc !"
 "esc @"
 "C−x @"
shell−command

SEE ALSO

describe−bindings(2).

MicroEmacs '02

command−apropos(2) 238

command−wait(2)

NAME

command−wait − Conditional wait command

SYNOPSIS

n command−wait

DESCRIPTION

When a +ve argument n is given command−wait waits for n milliseconds before returning, this wait
cannot be interrupted. If a −ve argument is given, command−wait waits for −n milliseconds but the
command will return if the user interrupts with any input activity (i.e. presses a key).

When no argument is given command−wait loops getting and processing events (user input, screen
updates etc) until either the calling commands .wait command variable is undefined or set to false (0).
This more complex use of the command is used when a main macro must wait and process input until
an exit criteria has been met, the input is best processed by setting the $buffer−input(5) variable to a
second macro. The macro gdiff(3) uses this command in this way.

EXAMPLE

The following macro code will display a message on the screen for a fixed 5 seconds:

16 screen−poke 10 10 0 "Hello World!"
5000 command−wait

Similarly the following macro code will display a message for up to 5 seconds or till the user presses
a key:

16 screen−poke 10 10 0 "Hello World!"
−5000 command−wait

SEE ALSO

ml−write(2), $buffer−input(5).

MicroEmacs '02

command−wait(2) 239

compare−windows(2)

NAME

compare−windows − Compare buffer windows, ignore whitespace.
compare−windows−exact − Compare buffer windows, with whitespace.

SYNOPSIS

n compare−windows
compare−windows−exact

DESCRIPTION

compare−windows compares the textural content of ALL the current windows from their current
cursor position. These commands are generally used to locate the next difference in the windows
displayed. Returns TRUE if the buffers of the windows do not differ from the current position to the
end of the file (inclusive), else returns FALSE setting the cursor of each buffer to the first point of
difference.

The default mode of operation ignores white−space, a numeric argument n of zero (0) then an exact
white−space match is performed.

compare−windows−exact is a macro short cut for 0 compare−windows, forcing a white space
comparison.

SEE ALSO

diff(3), diff−changes(3), gdiff(3).

MicroEmacs '02

compare−windows(2) 240

compile(3)

NAME

compile − Start a compilation process

SYNOPSIS

n compile "compile−command"

DESCRIPTION

compile gets and executes the compile command using a pipe execution (incremental pipe on UNIX
platforms), loading the output into a buffer called "*compile*", with go to error parsing using the
command get−next−line(2). The default compile execution is set by variable %compile−com(5), the
error parsing is setup using the command add−next−line(2).

Before the compile command is executed save−some−buffers(2) is executed to allow the user to
ensure that all relevant buffers are saved. If an argument is given to compile then it is passed on to
this command, so if an argument of 0 is given, all buffers are automatically saved.

NOTES

compile is a macro defined in tools.emf.

SEE ALSO

add−next−line(2), %compile−com(5), get−next−line(2), save−some−buffers(2), grep(3).

MicroEmacs '02

compile(3) 241

copy−region(2)

NAME

copy−region − Copy a region of the buffer

SYNOPSIS

copy−region (esc w)

DESCRIPTION

copy−region copies all the characters between the cursor and the mark set with the set−mark(2)
command into the kill buffer (so they can later be yanked elsewhere).

If the last command also entered text into the kill buffer (or the @cl(4) variable is set to one of these
commands) the copy−region text is appended to the last kill.

USAGE

To copy text from one place to another, using the copy−region command, the following operations
are performed:

Move to the beginning of the text you want to copy.♦
Set the mark there with the set−mark (esc−space) command.♦
Move the point (cursor) to the end of the text.♦
Use copy−region to copy the region you just defined. The text will be saved in the kill buffer.
(If you accidentally delete the text use yank (C−y) immediately or undo (C−x u) to restore
the text).

♦

Move the point to the place you want the text to appear.♦
Use the yank (C−y) command to copy the text from the kill buffer to the current point.♦

Repeat the last two steps to insert further copies of the same text.

NOTES

Windowing systems such as X−Windows and Microsoft Windows utilize a global windowing kill
buffer allowing data to be moved between windowing applications (cut buffer and clipboard,
respectively). Within these environments MicroEmacs '02 automatically interacts with the windowing
systems kill buffer, the last MicroEmacs '02 copy−region entry is immediately available for a paste
operation into another windowing application.

SEE ALSO

MicroEmacs '02

copy−region(2) 242

exchange−point−and−mark(2), kill−region(2), set−mark(2), yank(2).

MicroEmacs '02

copy−region(2) 243

count−words(2)

NAME

count−words − Count the number of words in a region

SYNOPSIS

count−words (esc C−c)

DESCRIPTION

count−words Counts the number of words between the set−mark(2) position and the current cursor
position. The command also gives statistics on the number of characters and the average characters
per word. The output appears on the message line in a format such as:−

54 Words, 345 Chars, 8 Lines

$result(5) is set to the same output string.

SEE ALSO

$result(5), buffer−info(2), set−mark(2).

MicroEmacs '02

count−words(2) 244

create−callback(2)

NAME

create−callback − Create a timer callback

SYNOPSIS

n create−callback "command"

DESCRIPTION

create−callback creates a timer based callback command. The given command is called back in n
milliseconds time. This can be used by the user to monitor system events (such as incoming mail).
The command is called only once, but if the command creates a callback of itself a loop is created.

If a −ve argument n is given any pending callback for command is cancelled.

EXAMPLE

The following example creates a callback that is invoked every 10 minutes.

define−macro Example−callback
 ml−write "It was 10 minutes since you last saw me!"
 600000 create−callback Example−callback
!emacro
Example−callback

NOTES

A call−back cannot interrupt while MicroEmacs is active, instead the call−back is delayed until
MicroEmacs becomes inactive. MicroEmacs is considered to be inactive when it is waiting for user
input, this could be during the execution of another macro. If a command or macro requires no user
input then once execution has started, it cannot be interrupted by a call−back macro.

The resolution of the clock is platform dependent, some platforms limit the minimum timer period to
10 milliseconds.

MicroEmacs does not guarantee to service the callbacks within any set time constraints, the resultant
callback intervals may be of a slightly different duration than requested.

When a callback macro is executed, the key given by @cck(4) is "callback. If the current buffer
has a $buffer−input(5) command set, this command will be called instead of the callback command
with @cc and @cck set appropriately. It is the responsibility of the input macro to deal with the

MicroEmacs '02

create−callback(2) 245

callback.

SEE ALSO

$auto−time(5), define−macro(2).

MicroEmacs '02

create−callback(2) 246

create−frame(2)

NAME

create−frame − Create a new frame

SYNOPSIS

n create−frame

DESCRIPTION

create−frame creates a new frame for the current MicroEmacs session. MicroEmacs support the
creation of 'internal' multiple frames on all platforms and 'external' frames on windowing platforms
(such as Windows and XTerm). An external frame creates a new OS window so both the existing
frame and the new frame are visible, whereas an internal frame uses the same OS window or console
which means that the existing frame is hidden and the new frame takes its place.

The numeric argument n can be used to define which type of frame is to be created. If an argument of
1 is given (the default argument) an external frame will be created, whereas an internal frame will be
created if an argument of 0 is given.

NOTES

Internal frames can only be accessed via the next−frame(2) command, external frames can usually be
accessed via the OS as well.

MicroEmacs is not multi−threaded in that only one frame can be active at any one time (the
complexity of being able to run a command in one frame while editing in another would rapidly lead
it away from the 'Micro' status). This means that if a command is left active (such as a search) in one
frame and the focus is changed to another the input is 'sent' to the frame with the active command and
the message '[NOT FOCUS]' will appear in the message−line of the frame with the OS focus.

create−frame may be useful in macros that rely on a window layout, this is because they can
preserve the users current window layout by creating and new internal frame in which to run.

SEE ALSO

delete−frame(2), next−frame(2).

MicroEmacs '02

create−frame(2) 247

cvs(3)

NAME

cvs − MicroEmacs CVS interface
cvs−add − MicroEmacs CVS interface − add file
cvs−checkout − MicroEmacs CVS interface − checkout files and directories
cvs−commit − MicroEmacs CVS interface − commit changes
cvs−diff − MicroEmacs CVS interface − diff changes
cvs−gdiff − MicroEmacs CVS interface − graphical diff changes
cvs−log − MicroEmacs CVS interface − log changes
cvs−remove − MicroEmacs CVS interface − remove file
cvs−resolve−conflicts − MicroEmacs CVS interface − resolve conflicts
cvs−state − MicroEmacs CVS interface − list state of directory files
cvs−update − MicroEmacs CVS interface − update directory files

SYNOPSIS

cvs

cvs−add
cvs−checkout
cvs−commit
cvs−diff
cvs−gdiff
cvs−log
cvs−remove
cvs−resolve−conflicts
cvs−state
cvs−update

DESCRIPTION

The cvs and sub−commands provide MicroEmacs with an interface to cvs(1). CVS is a version
control system; using it, you can record the history of your source file modifications. CVS is licensed
under the GNU General Public License and is freely available on the Internet, see the documentation
provided with CVS for more information on its features and use.

The MicroEmacs cvs command opens up a modified file−browser(3) with an additional
"*cvs−console*" window. The "*files*" window includes additional columns showing the
CVS state, revision and repository date. The functionality of the file−browser is the same as a
non−CVS folder with the exception that additional CVS item controls are located in the mouse
context menu (opened by clicking the right mouse button in the *files* buffer). This menu item
opens another sub−menu providing access to the following items:

MicroEmacs '02

cvs(3) 248

Checkout files

Checks out a file or directory from the repository into the current directory. The file or directory is
specified by typing the name into a dialog which is opened when this option is selected. This runs the
command "cvs checkout <file>".

Update files

Updates the currently selected files, files are selected by clicking the left button to the left of the
required file name. Multiple files may be selected by 'dragging' a hilight region over the required files.
This runs the command "cvs update <files>".

Commit files

Commits any changes made to the selected files back to the CVS repository. This runs the command
"cvs commit <files>".

Diff files

Displays any differences between the selected files and the CVS repository version in the
cvs−console window. This runs the command "cvs diff <files>".

Log files

Displays the CVS logs for the selected files in the *cvs−console* window. This runs the command
"cvs log <files>".

Status files

Displays the CVS status for each of the selected files in the *cvs−console* window. This runs the
command "cvs status −v <files>".

Add files

Adds the selected files to the CVS repository. Note this command only performs the local add, a CVS
commit is required to make the addition permanent. This runs the command "cvs add <files>".

Remove files

This command is deliberately not implemented as its far to dangerous! Instead it opens a dialog
informing the user to use the cvs−remove command instead.

Graphical diff

This command opens a gdiff(3) window showing the differences between the currently selected file
and the CVS repository version. Note this command only works with a single file.

Resolve conflicts

MicroEmacs '02

cvs(3) 249

This command may be used to resolve merge conflicts created by a CVS update operation. The
command opens a gdiff(3) window showing the areas of conflict allowing the user to select the
correct version and saving the resultant version back to the local file. Note this command only works
with a single file.

Clear cvs console

Clears the *cvs−console* buffer.

The cvs−add command adds the current buffers file to the repository. Note that this command only
performs the local addition, a CVS commit is required to make the addition permanent.

The cvs−checkout command checks out a file or directory from the repository into the current
directory. The user specifies the file on the message line.

The cvs−commit command commits any changes made to the currently buffer's file (including
additions) to the repository. The user is prompted for a commit log message.

The cvs−diff command opens a *cvs−diff* window displaying the differences between the current
buffer's local file and repository version. If the current buffer is a directory list it will list all the
differences found in all files within the directory.

The cvs−gdiff command opens a gdiff(3) window displaying the differences between the current
buffer's local file and repository version.

The cvs−log command opens a *cvs−log* window displaying the CVS log of the current buffer's file.

The cvs−remove command removes the current buffer's file from the repository − PLEASE NOTE
THIS CAN LEAD TO LOST DATA!!! This command only performs the local removal; as it deletes
the buffer and file the cvs−commit command cannot be used to commit the removal to the CVS
repository. Instead the main cvs file−browser menu or cvs(1) itself must be used.

The cvs−resolve−conflicts command may be used to resolve any conflicts created by CVS when the
current buffer's file is updated. The command opens a gdiff window displaying the areas of conflict,
the user may then select the correct version in each case and save the resultant new version over the
local file.

The cvs−state command opens a *cvs−state* window listing the state of any file in the current
directory which is not up−to−date. Note that unlike most cvs sub commands this command executes
over all files in the current buffer's file directory.

The cvs−update command updates all files in the current directory, the output being reported to a
new *cvs−update* window. Note that unlike most cvs sub commands this command executes over all
files in the current buffer's file directory.

NOTES

cvs and sub−commands are macros defined in file cvs.emf.

MicroEmacs '02

cvs(3) 250

By default MicroEmacs's cvs commands skip all files ignored by cvs(1). This is configured by the
variable .cvs.filter, defining this variable to 0 disables this special filtering.

SEE ALSO

file−browser(3).

MicroEmacs '02

cvs(3) 251

cygnus(3)

NAME

cygnus − Open a Cygwin BASH window
%cygnus−bin−path − Cygwin BASH directory
%cygnus−hilight − Cygwin shell hilight enable flag
%cygnus−prompt − Cygwin shell prompt

PLATFORM

Windows '95/'98/NT − win32 ONLY

SYNOPSIS

cygnus

%cygnus−bin−path "path"
%cygnus−hilight [0|1]
%cygnus−prompt "hilightString"

DESCRIPTION

cygnus creates an interactive BASH shell window within a MicroEmacs buffer window, providing a
UNIX command line facility within the Microsoft Windows environment. This is a preferable
environment to the MS−DOS shell and is certainly far more comfortable for those people familiar
with UNIX.

Within the window BASH commands may be entered and executed, the results are shown in the
window. Within the context of the BASH shell window then directory naming conforms to the
cygwin standard conventions (as opposed to the Microsoft directory naming).

On running cygnus a new buffer is created called *cygnus* which contains the shell. Executing the
command again creates a new shell window called *cygnus1*, and so on. If a cygwin window is
killed off then the available window is used next time the command is run.

Additional controls are available within the shell window to control the editors interaction with the
window. The operating mode is shown as a digit on the buffer mode line, this should typically show
"3", which corresponds to F3. The operating modes are mapped to keys as follows:−

F2

Locks the window and allows local editing to be performed. All commands entered into the window
are interpreted by the editors. F2 mode is typically entered to cut and paste from the window, search

MicroEmacs '02

cygnus(3) 252

for text strings etc. In mode 2, a 2 is shown on the mode line.

F3

The normal operating mode, text typed into the window is presented to the shell window. Translation
of MicroEmacs commands (i.e. beginning−of−word) are translated and passed to the shell. For
interactive use this is the default mode. In mode 3, a 3 is shown on the mode line.

F4

All input is passed to the shell, no MicroEmacs commands are interpreted and keys are passed straight
to the shell window. This mode is used where none of the keys to be entered are to be interpreted by
MicroEmacs. Note that you have to un−toggle the F4 mode before you can swap buffers as this
effectively locks the editor into the window.

F5

Clears the buffer contents. This simply erases all of the historical information in the buffer. The
operation of the shell is unaffected.

To exit the shell then end the shell session using "exit" or "C−d" as normal and then close the
buffer. A short cut "C−c C−k" is available to kill off the pipe. However, it is not recommended that
this method is used as it effectively performs a hard kill of the buffer and attached process

%cygnus−bin−path is a user defined variable that defines the file system location of the cygwin
directory. This variable MUST be defined within the user start up script in order for the cygnus
command to start the shell. With a default installation of cygwin then the settings are typically defined
as:−

Release B19

set−variable %cygnus−bin−path "C:/Cygnus/B19/h−i386~1/bin"

Release B20

set−variable %cygnus−bin−path "c:/cygnus/cygwin−b20/H−i586−cygwin32/bin"

%cygnus−hilight is a boolean flag which controls how the cygnus command shell window is
hilighted. This value MUST be defined within the user start up script prior to executing cygnus if
hilighting is to be enabled; by default hilighting is disabled. A value of 1 enables shell hilighting i.e.

set−variable %cygnus−hilight 1

%cygnus−prompt is an optional variable that is used in conjunction with %cygnus−hilight, it
defines the hilighting string identifying the prompt. This allows the prompt to be rendered with a
different color. The default prompt is bash−2.01$ and may be hilighted using a definition:−

set−variable %cygnus−prompt "bash−2.01$"

MicroEmacs '02

cygnus(3) 253

The user typically overrides the prompt definition within the BASH startup file, a more appropriate
definition of the prompt may be:−

set−variable %cygnus−prompt "^[a−z]*@[^>]*>"

NOTES

The cygnus command uses the ipipe−shell−command(2) to manage the pipe between the editor and
the bash shell. The window is controlled by the macro file hkcygnus.emf which controls the
interaction with the shell.

The macro cygnus in hkcygnus.emf defines the parameter setup to connect to the cygwin bash
shell (Version 19), installed in the default location c:/cygnus. If your installation of cygnus is in a
different location then correct the macro to match your install location, preferably correct by creating
a mycygnus.emf file in your user directory simply containing a re−defined cygnus macro.

If you have exported some of the cygwin environment variables in your autoexec.bat then you
will have to figure out for yourself what variables macro cygnus needs to export − the current
configuration is for a vanilla install.

The bash shell is executed with options i, for interactive shell and m to enable job control.

TESTED CONFIGURATIONS

This configuration has only been tested on a Windows '98 installation, whether this works on NT and
Windows '95 (OEM SR2) is unknown.

We have only been running "make" operations in the shell and do not know how the likes of "more",
"man" or anything other terminal interaction works.

Tested Configurations

Windows '98 (Pentium 120MHz/Pentium Pro 200MHz/Cyrix 300MHz/Pentium II 450MHz)

cygwin version B19.3 − this is the original "cygwin" distribution + the latest
"coolview.tar.gz" patch.
cygwin version B20 − the latest cygwin distribution.

BUGS

Break Key

A break in a bash shell is C−c, the macros define the key C−c C−c to perform the break. This
sequence is sent to the process but is not enacted by the shell. This is a property of the Bash shell
rather than MicroEmacs.

MicroEmacs '02

cygnus(3) 254

Slow Response

If you are getting a very slow response from the bash shell then check the directory where bash was
started. Sometimes there are problems if the shell is started in "c:/" (which is typically "/") then the
bash shell is very unresponsive and tends to 'ignore me' for periods of time. If it is started in another
location, i.e. "c:/temp" directory, then this problem does not occur.

You can see the start−up location in the top of the buffer when the shell is started.

Prompt at top of buffer

Very, very occasionally the ishell sticks at the top of the buffer with only a couple of lines showing. A
swap of the buffers or a quick window resize sorts out the problem. A fix for this problem has been
applied but still may occasionally occur.

WinOldAp

Winoldap is created by the Microsoft environment whenever a BASH shell is created. On occasions
where processes have terminated badly the user may be prompted to kill these off; this is the normal
behaviour of windows. It is strongly advised that all of the BASH processes are killed from within the
Bash shell itself and the shell is always exited correctly (i.e. exit) before leaving the editor. The
Windows operating system for '95/'98 is not particularly resilient to erroneous processes (for those of
us familiar with UNIX) and can bring the whole system down. I believe that NT does not suffer from
these problems (much).

Locked Input

There are occasions after killing a process the editor appears to lock up. This is typically a case that the old
application has not shut down correctly. Kill off the erroneous task (Alt−Ctrl−Del − End Task) then bring
the editor under control using a few C−g abort−command(2) sequences. SEE ALSO

ipipe−shell−command(2), ishell(3).
Cygnus Win32 home sites www.cygnus.com and www.cygnus.co.uk

MicroEmacs '02

cygnus(3) 255

define−help(2)

NAME

define−help − Define help information

SYNOPSIS

define−help "string" ["section"]

Free form text

!ehelp

DESCRIPTION

define−help provides a mechanism to define help information for commands and variables within
macro files. The command allows user defined macros to be documented with help information that is
accessible from the command line via the normal help commands such as help−item(2).

The help information is typically embedded in the macro file with the macro command that it is
documenting. When the macro file is loaded then the help information is loaded and integrated into
the existing help database.

string is the name of the item that is being defined, section defines what section the item belongs to.
Following is a table of standard MicroEmacs '02 sections:

1 MicroEmacs command line arguments.
2 Built−in commands.
2m MicroEmacs buffer modes.
3 Macro commands.
4 Macro language commands.
5 MicroEmacs variables.
8 MicroEmacs file formats.

When section is omitted is defaults to the general section which is usually used for the higher level
help pages.

Text following the define−help line contains the help information, this is a free form text area that is
reproduced when the help information is requested. The end of the text area is delimited by a !ehelp
construct. The help text is usually displayed using a special hilighting scheme to control the colors
and hyper−text links to other help pages. As a result the text may contain escape ('^[') key sequences,
see ehf(8) for more information on the format.

EXAMPLE

MicroEmacs '02

define−help(2) 256

The following example is a define−help representation for the paragraph−to−line(3) macro.

define−help "paragraph−to−line" "3"

^[cENAME^[cA

 paragraph−to−line − Convert a paragraph to a single line
$a

^[cESYNOPSIS^[cA

 n paragraph−to−line

^[cEDESCRIPTION^[cA

 paragraph−to−line reduces each of the next n paragraphs of text to a
 single line. This is used to prepare a document to go into a word
 processor environment where end of line marks represent paragraph marks.

^[cENOTES^[cA

 This command is a macro defined in format.emf.

^[cESEE ALSO^[cA

 ^[ls^[lm^[cGfill−paragraph(2)^[cA^[le.

!emacro

SEE ALSO

ehf(8), help−item(2), define−macro(2), help−command(2), help−variable(2).

MicroEmacs '02

define−help(2) 257

define−macro(2)

NAME

define−macro − Define a new macro

SYNOPSIS

n define−macro macro−name

Macro body
!emacro DESCRIPTION

define−macro starts the definition of an macro named macro−name, only used within macro files or
buffers. After the above header line, the body of the macro is added, one command or expression on a
line. The macro definition is completed by the !emacro directive.

The numeric argument n, specified as zero, defines the macro as private such that it does not appear
on a command completion list. A zero argument is generally used on helper macro's that form part of
a larger macro. If the argument is omitted, or non−zero, then the macro appears in the command
completion list.

See execute−file(2) for a complete definition and examples of the MicroEmacs '02 macro language.

Once the macro has been defined, it becomes indistinguishable from a standard MicroEmacs '02
command, i.e. execute−named−command(2) (esc x) can be used to execute the macro and
global−bind−key(2) can be used to globally bind the command to a key combination.

There are no restrictions on the number of macros that may be defined, provided that the name space
is managed properly. Consideration must be given as to when any additional macros that are created
are loaded into MicroEmacs '02. We usually like start−up to be rapid and macros are loaded as and
when requested by the user, or by the buffer hooks as new files are loaded (see add−file−hook(2) and
define−macro−file(2)).

User defined macros may be documented with on−line help by including a define−help(2) construct
within the macro file.

EXAMPLE

The following are two standard macros provided with MicroEmacs '02. The first is a macro called
clean, this strips trailing white space from the ends of lines in a file and removes blank lines from the
end of the file.

define−macro clean
 ;

MicroEmacs '02

define−macro(2) 258

 ; Prepare to clean up file.
 ; Remember line & magic mode
 set−variable #l0 $window−line
 set−variable #l1 ¬ &bmod magic
 !if #l1
 1 buffer−mode "magic"
 !endif
 ;
 ; Get rid of trailing white space on EOL
 beginning−of−buffer
 replace−string "[\t]+$" "\\0"
 beginning−of−buffer
 replace−string "[]+\t" "\t"
 ;
 ; Strip trailing blank lines.
 end−of−buffer
 backward−line
 !while &and &gre $window−line 1 &sequal @wc "\n"
 kill−line
 backward−line
 !done
 ;
 ; Clean up − restore buffer modes etc.
 ; Move back to starting line & restore original magic mode
 !force goto−line #l0
 !if #l1
 −1 buffer−mode "magic"
 !endif
 screen−update
 ml−write "Cleaned up file."
!emacro

The second example converts all of the <tab> characters in the file to their <SPACE> character
equivalent.

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 ; Remember line
 set−variable #l0 $window−line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 set−variable #l1 $window−acol
 backward−delete−char
 &sub #l1 $window−acol insert−space
 !force search−forward "\t"
 !done
 goto−line #l0
 screen−update
 ml−write "[Converted tabs]"
!emacro

Both of these commands are available from the command line, they are indistinguishable from the
built in commands.

MicroEmacs '02

define−macro(2) 259

Macros may also be nested, as shown in the next example, this macro contains a define−macro
within itself, when executed the macro creates another macro dynamically − dynamic macros are
generally given a prefix of % and are highlighted differently in describe−bindings(2).

The following example is taken from the alarm(3) macro, executing alarm the user is prompted for a
message, and the time interval before the alarm expires in hours and minutes. It then creates a new
macro with a callback so that the new macro will be called at the correct time.

!if &seq %alarm−numb "ERROR"
 set−variable %alarm−numb 0
 set−variable %osd−alarm &pinc %osd 1
!endif

define−macro alarm
 set−variable %alarm−numb &add %alarm−numb 1
 set−variable #l0 &cat "%alarm−" %alarm−numb
 !force set−variable #l2 @3
 !if ¬ $status
 set−variable &ind #l0 @ml "Message"
 set−variable #l1 @ml "Hours"
 set−variable #l2 @ml "Minutes"
 !else
 set−variable &ind #l0 @1
 set−variable #l1 @2
 !endif
 set−variable #l1 &mul 60000 &add &mul 60 #l1 #l2
 define−macro #l0
 !bell
 set−variable #l0 &add &len &ind @0 10
 osd %osd−alarm 0 "bat" 9 3
 osd %osd−alarm 1 ""
 osd %osd−alarm 2 "c" "ALARM"
 osd %osd−alarm 3 ""
 osd %osd−alarm 4 "" &ind @0
 osd %osd−alarm 5 ""
 osd %osd−alarm 6 "Bcf" " OK " f void
 %osd−alarm osd
 !emacro
 #l1 create−callback #l0
!emacro

SEE ALSO

Refer to !return(4) and !abort(4) for details macro termination.

!emacro(4), add−file−hook(2), define−macro−file(2), define−help(2), describe−bindings(2),
execute−file(2), execute−named−command(2), global−bind−key(2), insert−macro(2),
start−kbd−macro(2).

MicroEmacs '02

define−macro(2) 260

define−macro−file(2)

NAME

define−macro−file − Define macro file location

SYNOPSIS

define−macro−file "file−name" ["macro−name" "macro2−name" ...]

DESCRIPTION

Macros are loaded as late as possible using an on−demand mechanism, this speeds up the load time of
MicroEmacs '02, it also keeps the startup file clean since macros are not defined within the start−up
file. Only when the user first executes a macro defined via define−macro−file is the file loaded, the
macro becomes defined and is executed. Subsequent calls to the macro will not reload the file as the
macro will now be fully defined.

define−macro−file binds macros (macro−name ...) to a file name (file−name). This operation
informs MicroEmacs '02 which file should be loaded when macro−name is first executed. The
macro−name arguments may be omitted if the file contains only one exported macro which has the
same name as file−name.

Alternatively the macro file may contain many macros all of which can be defined by a single call to
define−macro−file, listing all macros on the same line after the file−name. If a macro−name is given
then the default macro file−name is not created, if a macro of that name does exist it must be added to
the macro−name list.

EXAMPLE

The following definitions are found in the me.emf start−up file:−

0 define−macro−file utils ascii−time regex−forward regex−backward
define−macro−file format clean sort−lines−ignore−case tabs−to−spaces ...
define−macro−file cvs cvs cvs−state cvs−update cvs−commit cvs−log ...
define−macro−file abbrev expand−abbrev−handle expand−iso−accents ...
define−macro−file misc symbol check−line−length alarm time
define−macro−file search replace−all−string query−replace−all−string
define−macro−file tools compile grep rgrep which diff diff−changes
define−macro−file hkdirlst file−browser file−browser−close
define−macro−file comment comment−line uncomment−line comment−to−end−of−line
define−macro−file spell spell−word spell−buffer spell−edit−word find−word
define−macro−file games Metris Patience Triangle Mahjongg Match−It
define−macro−file buffstp buffer−setup buffer−help buffer−tool
define−macro−file fattrib file−attrib
define−macro−file osd osd−main
define−macro−file gdiff

MicroEmacs '02

define−macro−file(2) 261

define−macro−file calc
define−macro−file draw

Hilighting a number of entries as examples; macro file calc is defined with no macro definition, the
macro is assumed to be calc. The file tools.emf contains multiple macros compile, grep, diff and
diff−changes; all can be defined by a single define−macro−file entry.

NOTES

Macro files are searched for in the current directory and along the $search−path(5).♦
The macro file is not loaded unless a binding has been defined using define−macro−file.♦
Any other macros that exist in the file−name macro file become defined when the entry point
macro is loaded and are available for use. This is potentially useful as a single entry macro
may be defined using define−macro−file, when invoked other helper macros become
available.

♦

SEE ALSO

add−file−hook(2), define−macro(2), $search−path(5), start−up(3).

MicroEmacs '02

define−macro−file(2) 262

delete−blank−lines(2)

NAME

delete−blank−lines − Delete blank lines about cursor

SYNOPSIS

delete−blank−lines (C−x C−o)

DESCRIPTION

delete−blank−lines deletes all the blank lines before and after the current cursor position. Note that
the deleted lines are not added to a kill buffer.

SEE ALSO

delete−indentation(3), clean(3), kill−line(2).

MicroEmacs '02

delete−blank−lines(2) 263

delete−buffer(2)

NAME

delete−buffer − Delete a buffer

SYNOPSIS

n delete−buffer "buffer−name" (C−x k)

DESCRIPTION

delete−buffer disposes of buffer buffer−name in the editor and reclaim the memory. This does not
delete the file that the buffer was read from.

If the buffer has been edited and its name does not start with a '*' then the user is prompted as to
whether the changes should be discarded. Also if the buffer has an active process running in it then
confirmation is sort from the user before the process is killed.

The argument n can be used to change the default behavior of delete−buffer described above, n is a bit
based flag where:−

0x01

Enables loss of work checks (default). These include a check that the buffer has not been modified, if so the
user is prompted. Also if a process is running then user must confirm that the process can be killed. If this flag
is not supplied then the buffer is killed without any user prompts (useful in macros). SEE ALSO

next−buffer(2).

MicroEmacs '02

delete−buffer(2) 264

delete−dictionary(2)

NAME

delete−dictionary − Remove a spelling dictionary from memory

SYNOPSIS

n delete−dictionary ["dictionary"]

DESCRIPTION

delete−dictionary removes the given dictionary from memory, where n is a bitwise flag determining
the removal mode, defined as follows:−

0x01

Prompt the user before loosing any changes (except to the ignore dictionary).

0x02

Delete all the dictionaries other than the ignore dictionary.

0x04

Delete the ignore dictionary.

If the argument does not have bit 0x02 or 0x04 set, which specify the dictionaries to be deleted, the
user is prompted for the "dictionary". The default argument is 1.

NOTES

The ignore dictionary is a temporary dictionary that exists in memory for duration of the MicroEmacs
session; the dictionary holds words that have been ignored during any previous spell checks (see
spell(2)). All of the words that have been ignored may be discarded with:−

4 delete−dictionary

i.e. esc 4 esc x delete−dictionary.

SEE ALSO

spell−buffer(3), add−dictionary(2), save−dictionary(2), spell(2).

MicroEmacs '02

delete−dictionary(2) 265

delete−frame(2)

NAME

delete−frame − Delete the current frame

SYNOPSIS

n delete−frame

DESCRIPTION

delete−frame deletes the current frame.

SEE ALSO

create−frame(2), next−frame(2).

MicroEmacs '02

delete−frame(2) 266

delete−indentation(3)

NAME

delete−indentation − Join 2 lines deleting white spaces

SYNOPSIS

n delete−indentation

DESCRIPTION

delete−indentation deletes all white characters between the beginning of the current line and the end
of the previous line, including the line−feed. If the current line is not empty then a space is inserted to
divide the two lines now joined.

If a positive argument n is given then the process is repeated n times. Note that the deleted characters
are not added to a kill buffer.

NOTES

delete−indentation is a macro defined in format.emf.

SEE ALSO

delete−blank−lines(2), clean(3), kill−line(2).

MicroEmacs '02

delete−indentation(3) 267

delete−window(2)

NAME

delete−window − Delete the current window
delete−other−windows − Delete other windows

SYNOPSIS

n delete−window (C−x 0)
n delete−other−windows (C−x 1)

DESCRIPTION

delete−window attempts to delete the current window (remove window from the screen), retrieving
the lines for use in the window adjacent to it. The command fails if there is no other window or if the
current window is protected from deletion (see $window−flags(5)). The deletion protection can be
overridden by giving the command a numerical argument n of 2.

The window deletion policy is determined by the formation of the windows displayed on the screen.
The bias is for the previous window (above) the current window to be merged when split vertically,
and for the left window to be merged when split horizontally.

delete−other−windows deletes all of the other windows, the current window becomes the only
window, using the entire available screen area. Windows can be protected from deletion by using the
$window−flags variable, giving the command a numerical argument n of 2 overrides this protection.

SEE ALSO

set−position(2), grow−window−vertically(2), resize−window−vertically(2),
split−window−horizontally(2), split−window−vertically(2), $window−flags(5).

MicroEmacs '02

delete−window(2) 268

delete−registry(2)

NAME

delete−registry − Delete a registry tree

SYNOPSIS

delete−registry "root"

DESCRIPTION

delete−registry deletes a registry node root from the registry, any children belonging to the node are
also deleted.

DIAGNOSTICS

delete−registry fails if root does not exist.

SEE ALSO

get−registry(2), list−registry(2), read−registry(2), set−registry(2), erf(8).

MicroEmacs '02

delete−registry(2) 269

delete−some−buffers(2)

NAME

delete−some−buffers − Delete buffers with query

SYNOPSIS

n delete−some−buffers

DESCRIPTION

delete−some−buffers cycles through all visible buffers (buffers without mode hide(2m) set) and
prompts the user [y/n] as to whether the buffer should be deleted. A y response deletes the buffer, a n
response retains the buffer.

If a y response is given, the buffer has been edited, and its name does not start with a '*' then the user
is prompted as to whether the changes should be discarded. Also if the buffer has an active process
running in it then confirmation is sort from the user before the process is killed.

The argument n can be used to change the default behavior of delete−some−buffers described above,
n is a bit based flag where:−

0x01

Enables all checks (default). These include the initial y/n prompt on each buffer, the buffer has not been
modified check, if so the user is prompted. Also if a process is running then user must confirm that the process
can be killed. If this flag is not supplied then all visible buffers are killed without any user prompts (useful in
macros). SEE ALSO

delete−buffer(2), next−buffer(2), hide(2m).

MicroEmacs '02

delete−some−buffers(2) 270

describe−bindings(2)

NAME

describe−bindings − Show current command/key binding

SYNOPSIS

describe−bindings (C−h b)

DESCRIPTION

describe−bindings pops up a window with a list of all the named commands, and the keys currently
bound to them. Each entry is formatted as:

keyCode........... command

describe−bindings is buffer context sensitive and shows the bindings for the currently active buffer
(i.e. the buffer that is active when the command is invoked). The resultant command list is divided
into three sections as follows:

Buffer Bindings

The bindings for the active buffer when describe−bindings was invoked. These are the buffer
bindings set by buffer−bind−key(2).

Ml Bindings

The message line bindings as set by ml−bind−key(2).

Global Bindings

Global binding of keys as set by global−bind−key(2). EXAMPLE

The following is an example of the displayed output from describe−bindings. This was invoked
while editing buffer m2fun038.2 which is the Nroff file for this manual page; the local bindings for
the buffer are all Nroff related.

Buffer [m2cmd038.2] bindings:

 "C−c C−s" nroff−size
 "C−c C−r" nroff−roman
 "C−c C−b" nroff−bold
 "C−c C−i" nroff−italic
 "C−c C−c" nroff−mono
 "C−c C−o" nroff−para

MicroEmacs '02

describe−bindings(2) 271

 "esc o" nroff−para
 "esc q" nroff−para
 "C−c b" nroff−bold−block
 "C−c i" nroff−italic−block
 "C−c C−h" nroff−swap−hilight
 "C−c &" nroff−add−padding
 "C−x &" nroff−remove−padding
 "C−c C−p" nroff−prev
 "C−mouse−drop−1" nroff−tag

Ml bindings:

 "esc esc" tab

Global bindings:

 "C−a" beginning−of−line
 "C−b" backward−char
 "C−c" 4 prefix
 "C−d" forward−delete−char
 "C−e" end−of−line
 "C−f" forward−char
 "C−g" abort−command
 "C−h" 3 prefix
 "C−i" insert−tab
 "C−k" kill−line
 "C−l" recenter
 "C−m" newline
 "C−n" forward−line
 "C−o" insert−newline
 "C−p" backward−line
 "C−q" quote−char
 "C−r" isearch−backward
 "C−s" isearch−forward
 "C−t" transpose−chars
 "C−u" universal−argument
 "C−v" scroll−down
 "C−w" kill−region
 "C−x" 2 prefix
 "C−y" yank
 "C−z" scroll−up
 "C−_" undo
 "A−e" file−browser
 "A−r" replace−all−string
 "esc C−c" count−words
 "esc C−f" goto−matching−fence
 "esc C−g" abort−command
 "esc C−i" goto−matching−fence
 "esc C−k" global−unbind−key
 "esc C−n" change−buffer−name
 "esc C−r" query−replace−string
 "esc C−v" scroll−next−window−down
 "esc C−w" kill−paragraph
 "esc C−z" scroll−next−window−up
 "esc space" set−mark
 "esc !" pipe−shell−command
 "esc $" spell−word
 "esc ." set−mark
 "esc /" execute−file

MicroEmacs '02

describe−bindings(2) 272

 "esc <" beginning−of−buffer
 "esc >" end−of−buffer
 "esc ?" help
 "esc @" pipe−shell−command
 "esc [" backward−paragraph
 "esc \\" ipipe−shell−command
 "esc]" forward−paragraph
 "esc ^" delete−indentation
 "esc b" backward−word
 "esc c" compile
 "esc d" forward−kill−word
 "esc e" set−encryption−key
 "esc f" forward−word
 "esc g" goto−line
 "esc i" tab
 "esc k" global−bind−key
 "esc l" lower−case−word
 "esc m" global−mode
 "esc n" forward−paragraph
 "esc o" fill−paragraph
 "esc p" backward−paragraph
 "esc q" fill−paragraph
 "esc r" replace−string
 "esc t" find−tag
 "esc u" upper−case−word
 "esc v" scroll−up
 "esc w" copy−region
 "esc x" execute−named−command
 "esc y" reyank
 "esc z" quick−exit
 "esc ~" −30 buffer−mode
 "esc A−r" query−replace−all−string
 "C−x C−a" set−alpha−mark
 "C−x C−b" list−buffers
 "C−x C−c" save−buffers−exit−emacs
 "C−x C−d" change−directory
 "C−x C−e" execute−kbd−macro
 "C−x C−f" find−file
 "C−x C−g" abort−command
 "C−x C−h" hunt−backward
 "C−x C−i" insert−file
 "C−x C−l" lower−case−region
 "C−x C−o" delete−blank−lines
 "C−x C−q" rcs−file
 "C−x C−r" read−file
 "C−x C−s" save−buffer
 "C−x C−t" transpose−lines
 "C−x C−u" upper−case−region
 "C−x C−v" view−file
 "C−x C−w" write−buffer
 "C−x C−x" exchange−point−and−mark
 "C−x C−y" insert−file−name
 "C−x C−z" shrink−window−vertically
 "C−x #" filter−buffer
 "C−x (" start−kbd−macro
 "C−x)" end−kbd−macro
 "C−x /" isearch−forward
 "C−x 0" delete−window
 "C−x 1" delete−other−windows

MicroEmacs '02

describe−bindings(2) 273

 "C−x 2" split−window−vertically
 "C−x 3" next−window−find−buffer
 "C−x 4" next−window−find−file
 "C−x 5" split−window−horizontally
 "C−x 9" find−bfile
 "C−x <" scroll−left
 "C−x =" buffer−info
 "C−x >" scroll−right
 "C−x ?" describe−key
 "C−x @" pipe−shell−command
 "C−x [" scroll−up
 "C−x]" scroll−down
 "C−x ^" grow−window−vertically
 "C−x `" get−next−line
 "C−x a" goto−alpha−mark
 "C−x b" find−buffer
 "C−x c" shell
 "C−x e" execute−kbd−macro
 "C−x h" hunt−forward
 "C−x k" delete−buffer
 "C−x m" buffer−mode
 "C−x n" change−file−name
 "C−x o" next−window
 "C−x p" previous−window
 "C−x q" kbd−macro−query
 "C−x r" search−backward
 "C−x s" search−forward
 "C−x u" undo
 "C−x v" set−variable
 "C−x w" resize−window−vertically
 "C−x x" next−buffer
 "C−x z" grow−window−vertically
 "C−x {" shrink−window−horizontally
 "C−x }" grow−window−horizontally
 "C−h C−c" help−command
 "C−h C−i" help−item
 "C−h C−v" help−variable
 "C−h a" command−apropos
 "C−h b" describe−bindings
 "C−h c" list−commands
 "C−h d" describe−variable
 "C−h k" describe−key
 "C−h v" list−variables
 "backspace" backward−delete−char
 "delete" forward−delete−char
 "down" forward−line
 "end" end−of−buffer
 "esc" 1 prefix
 "f1" menu
 "home" beginning−of−buffer
 "insert" 141 buffer−mode
 "left" backward−char
 "mouse−drop−1" mouse−drop−left
 "mouse−drop−2" yank
 "mouse−drop−3" menu
 "mouse−pick−1" mouse−pick−left
 "mouse−pick−2" void
 "mouse−pick−3" void
 "page−down" scroll−down

MicroEmacs '02

describe−bindings(2) 274

 "page−up" scroll−up
 "redraw" screen−update
 "return" newline
 "right" forward−char
 "tab" tab
 "up" backward−line
 "S−backspace" backward−delete−char
 "S−delete" forward−delete−char
 "S−tab" backward−delete−tab
 "C−down" 5 forward−line
 "C−left" backward−word
 "C−mouse−drop−1" mouse−control−drop−left
 "C−mouse−pick−1" set−cursor−to−mouse
 "C−page−down" scroll−next−window−down
 "C−page−up" scroll−next−window−up
 "C−right" forward−word
 "C−up" 5 backward−line
 "A−down" 1 scroll−down
 "A−left" 1 scroll−left
 "A−right" 1 scroll−right
 "A−up" 1 scroll−up
 "esc backspace" backward−kill−word
 "esc esc" expand−abbrev
 "C−c g" grep

Note that both internal commands and macro commands are shown in the list.

SEE ALSO

buffer−bind−key(2), command−apropos(2), describe−key(2), describe−variable(2),
global−bind−key(2), list−commands(2), ml−bind−key(2).

MicroEmacs '02

describe−bindings(2) 275

describe−key(2)

NAME

describe−key − Report keyboard key name and binding

SYNOPSIS

describe−key (C−x ?)

DESCRIPTION

describe−key allows a key to be typed and it will report the name of the command bound to that key
(if any) and the internal key−code. This command is useful when trying to locate the identity of
keyboard keys for binding.

NOTES

describe−key is also bound to C−h k.

SEE ALSO

command−apropos(2), global−bind−key(2), describe−bindings(2), describe−variable(2).

MicroEmacs '02

describe−key(2) 276

describe−variable(2)

NAME

describe−variable − Describe current setting of a variable

SYNOPSIS

describe−variable (C−h v)

DESCRIPTION

describe−variable describes the current setting of the given variable (%, : and $ variables), returning
ERROR if the variable is undefined. If a $ variable is not found then it is tested for an environment
variable, i.e.

describe−variable $PATH

returns your environment $PATH setting. This is the easiest and best way of determining the current
platform from within a Macro file.

The returned value of any undefined variable is the string ERROR.

NOTES

Completion is enabled on the command line for variable names.

SEE ALSO

describe−key(2), help−variable(2), set−variable(2).

MicroEmacs '02

describe−variable(2) 277

describe−word(3)

NAME

describe−word − Display a dictionary definition of a word

SYNOPSIS

describe−word "word"

DESCRIPTION

describe−word can be used to interface to an external dictionary to get a definition of a given word.
The interface has two modes of interface, the first simply launches an external program which
provides the definition in its own user interface, e.g. MS Bookshelf. The second interface launches an
external program which prints out the definition to stdout, MicroEmacs can then pull out the
definition and display it in describe−word's own GUI.

When executed describe−word will use the current word under the cursor as the initial word or will
prompt the user if the cursor is not in a word.

When describe−word's dialog is used the information presented is defined as follows:

Word

The word being defined, the entry can be edited and the new word will be automatically looked−up
when the edit is completed.

Insert

The effect of this button is dependent on where describe−word was executed. If executed from the
Meaning button within the spell checker the Word entry is changed to the current word. When
executed outside the spell checker the definition of the current word is inserted into the current buffer.

Exit

Closes the dialog.

Main definition box

Displays the definition of the current word. The user can select a new word to describe by clicking the left
mouse button on any word within the current definition. NOTES

describe−word is a macro implemented in word.emf.

MicroEmacs '02

describe−word(3) 278

Due to the size and availability of dictionaries etc. MicroEmacs is released without describe−word set
up, the user must setup it up.

describe−word must be setup for each required language as follows:

1)

A command−line interface to a dictionary of the required language must be found. This could
simply be a text file containing one word definition per line and using grep(1) as the
command−line interface. In this example the text file could take the following form:

A () The first letter of the English...
Aam (n.) A Dutch and German measure of liquids...
Aardvark (n.) An edentate mammal...
.
.

The grep command−line interface required to look−up the word "aardvark" would be:

grep −i "^aardvark (" words.txt

The output produced from this will be the single line giving the required definition. A second
common interface would be executing an external dictionary program typically using a
command−line option to specify the word to define, e.g.:

mydict −d "aardvark"

2)

The MicroEmacs language name must be found, this can be done by first using user−setup(3) or
spell−buffer(3) to ensure that the current language is set the the require one and then running
describe−word. The command will probably fail, but before it does it will set the variable
.describe−word.lang, use the command describe−variable(2) to get the value of this variable,
this value is the internal language name. For example, when the current language is American or
American (Ext) the language name is american.

3)

To execute the command−line interface the variable
.describe−word.<language>−command must be set to the command−line required to
obtain a word definition with the string "%s" used in place of the word and "%%" using in
place of a single "%". For the first example in (1) above the following would be required:

set−variable .describe−word.american−command ...
 ... "grep −i \"^%s (\" /tmp/words.txt"

For the second example:

set−variable .describe−word.american−command "mydict −d \"%s (\""

4)

MicroEmacs '02

describe−word(3) 279

Only required for the second mode, for use with describe−word's own GUI, the setting of another
variable is required, the presence of this variable determines which mode is to be used.

The variable .describe−word.<language>−search must be set to a regex search
pattern which will match the required definition(s) in the command out put, the first group
("\(...\)") must enclose the required definition, again "%s" can be used in place of the
word and "%%" for a single "%". describe−word simply uses regex−forward(3) repeatedly to
find all definitions of the current word, it then uses the value of the variable @s1(4) to get the
individual definitions. For example for the first example the following is required:

set−variable .describe−word.american−search "^\(%s (.*\)\n"

Note that the word being defined should be kept in the definition if possible as the spell rules
are used to look−up base words when a derivitive of a word is not found, therefore the word
being defined may not be clear (e.g. deactivate can be derived from activate but their
meanings are very different). Also long text lines are automatically wrapped by the GUI.

The required variables should be added to the user setup file.

SEE ALSO

spell−buffer(3).

MicroEmacs '02

describe−word(3) 280

diff(3)

NAME

diff − Difference files or directories
diff−changes − Find the differences from a previous edit session
%diff−com − Diff command line

SYNOPSIS

diff "oldFile" "newFile"
diff−changes
%diff−com "string"; Default is "diff"

DESCRIPTION

diff executes the diff(1) command with the command line set by the %diff−com(5) variable and the
user supplied oldFile and newFile. The output of the command is piped into the *diff* buffer and is
hilighted to show the changes (GNU diff only).

Your version of diff(1) will determine whether it is possible to difference directories.

diff−changes is a simple macro that differences the current buffer and the last backup of the
associated file. It is a quick way to determine what has been modified recently. This macro only
works if a backup file exists.

%diff−com is the command line that is used to execute a diff(1) system command.

For GNU diff then the following command line setting is recommended:−

diff −−context −−minimal −−ignore−space−change \
 −−report−identical−files −−recursive

which should be defined in your personal user configuration. This is the default for Linux.

NOTES

diff and dif−changes are macros defined in tools.emf.

diff(1) must be executable on the system before diff or diff−changes can function.

diff(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU diff may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnudiff.zip>

MicroEmacs '02

diff(3) 281

For MS−DOS users, a DJGPP port of diff is also available on the net. A commercial version of diff is
also available from MKS.

SEE ALSO

compare−windows(2), compile(3), gdiff(3), grep(3), %grep−com(5).

MicroEmacs '02

diff(3) 282

directory−tree(2)

NAME

directory−tree − Draw the file directory tree

SYNOPSIS

n directory−tree ["directory"]

DESCRIPTION

directory−tree creates or manipulates a view of the file systems directory structure. The command is
quite complex to use directly so is largely used but macros such as file−browser(3).

The argument n is a bit based flag which is used to control the command, where the bits have the
following meaning:−

0x01

If set, the focal directory of the command is set by the given "directory" argument. Otherwise the
argument is not required and the command must be executed within the "*directory*" buffer; the
current line sets the focal directory.

0x02

Specifies that the current line in resultant "*directory*" window should be set to the focal directory. If
this bit is not set then the current line will be the last selected directory, or if none have been selected,
the first line in the buffer.

0x04

Specifies that any evaluations required during the commands operation should be performed. Without
this flag an open operation on a directory which has not previously been evaluated will not be perform
an evaluation and the results will likely be incomplete.

0x08

Specifies that the current focal directory should be opened. This means that sub−directories within the
current focal directory will also be drawn in the directory tree.

0x10

Specifies that the current focal directory should be closed. This means that sub−directories within the
current focal directory will not be drawn in the directory tree.

MicroEmacs '02

directory−tree(2) 283

0x20

Specifies that the current focal directory's open state should be toggled. This means that if the
sub−directories are currently hidden they will now be drawn and vice−versa.

0x40

When specified any directory opened will be re−evaluated, ensuring the accuracy of the information.

0x80

Enables a recursive behavior, for example if this flag was specified with the open then not only will
the focal directory be opened, but all of it's children, and their children etc. Note that if the Evaluation
flag is not specified then only the already evaluated directories can be opened.

directory−tree creates a new buffer "*directory*" and draws the known directory tree. Every drawn
directory is preceded by a character flag giving the user an indication of the directory state, where:

?

Directory has not been evaluated.

−

Directory has been evaluated and is visible.

+

Directory has been evaluated but is currently hidden.

Directories which have been evaluated and found to have no children use the '−' $box−chars(5)
instead of a '−' character.

On UNIX platforms, if a directory is a symbolic link to another directory, the link name is given after
the directory name.

EXAMPLE

The best example of the use of directory−tree is file−browser(3) which can be found in hkdirlst.emf.

SEE ALSO

file−browser(3), $box−chars(5).

MicroEmacs '02

directory−tree(2) 284

display−white−chars(3)

NAME

display−white−chars − Toggle the displaying of white characters

SYNOPSIS

display−white−chars

DESCRIPTION

display−white−chars toggles the displaying of white characters in the main display. By default white
characters, space tab and new−lines, are represented with invisible characters such as one or more ' 's
for spaces and tabs and text moving to the next line for new−lines. The user can make this characters
become 'visible' using this function.

When this function is first called it toggle enables the displaying of these characters, other characters
are drawn in their place to make them visible. A subsequent call will disable the displaying of them.

NOTES

display−white−chars is a macro implemented in misc.emf and uses bit 0x80000 of the
$system(5) variable.

The displaying of white characters can be enabled or disabled at start−up using user−setup(3).

This feature may be more confusing on some terminals due to the lack of characters available for
displaying the white characters. The characters used when displaying white characters are defined in
the variable $window−chars(5).

SEE ALSO

$system(5), user−setup(3), $window−chars(5).

MicroEmacs '02

display−white−chars(3) 285

draw(3)

NAME

draw − Simple line drawing utility

SYNOPSIS

draw

DESCRIPTION

draw provides a simple way of drawing lines into the current buffer, this has a variety of uses such as
drawing tables. draw copies the current buffer into a temporary buffer and then allows the user to
draw using simple commands until the user either aborts, discarding any changes, or exits insert the
changes back into the buffer.

The keys for draw are defined as follows:−

esc h

Display a help dialog.

up, down, left, right

The cursor keys (or any other keys bound the the same commands) will move the cursor, drawing in
the current mode.

d

Change the current mode to draw (default), cursor movement will result in drawing in the current
style.

e

Change the current mode to erase, cursor movement will result in erasing to spaces.

m

Change the current mode to move, no drawing is performed with cursor movement.

u

Change the current mode to undo, cursor movement will result in undoing the character to the original
or a space.

MicroEmacs '02

draw(3) 286

−

Sets the current horizontal line drawing style to use '−'s (default).

=

Sets the current horizontal line drawing style to use '='s.

C−g

Abort − changes are lost.

return

Exit, inserting any changes into the current buffer. NOTES

draw is a macro defined in draw.emf.

MicroEmacs '02

draw(3) 287

edit−dictionary(3)

NAME

edit−dictionary − Insert a dictionary in a buffer
restore−dictionary − Save dictionary user changes

SYNOPSIS

edit−dictionary "dictionary"
restore−dictionary

DESCRIPTION

edit−dictionary dumps the contents of "dictionary" into the temporary buffer "*dictionary*", if this
buffer already exists then edit−dictionary simply swaps to this buffer. This enables the user to
correct and prune the words in any dictionary. The given dictionary must have already been added as
a main dictionary using add−dictionary(2).

The format of the created buffer is one word on each line, each word takes one of the following 3
forms:

xxxx − Good word xxxx with no spell rules allowed
xxxx/abc − Good word xxxx with spell rules abc allowed
xxxx>yyyy − Erroneous word with an auto−replace to yyyy

Executing restore−dictionary in a buffer created by edit−dictionary will first call
delete−dictionary(2) to remove the original dictionary from memory. It then uses add−dictionary(2) to
create a new dictionary with the same name and then uses spell−add−word(3) to add all the words in
the current buffer into the new dictionary.

restore−dictionary does not save the new dictionary.

NOTES

edit−dictionary and restore−dictionary are macros defined in file spellutl.emf. They are not
defined by default so spellutl.emf must be executed first using execute−file(2).

SEE ALSO

spell−add−word(3), add−dictionary(2), save−dictionary(2), delete−dictionary(2).

MicroEmacs '02

edit−dictionary(3) 288

start−kbd−macro(2)

NAME

start−kbd−macro − Start/stop recording keyboard macro end−kbd−macro − Stop recording keyboard
macro

SYNOPSIS

start−kbd−macro (C−x ()
end−kbd−macro (C−x))

DESCRIPTION

A keyboard macro is a short hand way to repeat a series of characters. In effect, a recording is made
of the sequence of keys that you hit while defining a keyboard macro. The recording is started with
start−kbd−macro and ended with end−kbd−macro. The recording is then repeated whenever you
execute the keyboard macro using execute−kbd−macro(2).

Since it is key−strokes that are being saved, you can freely intermix commands and text to be inserted
into the buffer.

You can save a keyboard macro for later using the name−kbd−macro(2) command, which saves the
keyboard macro as a named macro. Otherwise if you start another keyboard macro recording session,
the previously defined macro is lost. So make sure that you are done with the current keyboard macro
before defining another one. If you have a series of commands that you would like to record for later
use, insert−macro(2) can be used to insert the macro into a text file and can be reloaded using the
execute−file(2) or execute−buffer(2) commands.

Recording commences with start−kbd−macro (C−x () and terminates when an end−kbd−macro
(C−x) is encountered.

NOTES

Once start−kbd−macro has been executed, the mouse is disabled until end−kbd−macro is executed.
This is because the mouse events cannot be successfully recorded in macros. The main menu can still
be used, but only via the keyboard bindings and hot−keys (note that the layout of the menu may
change).

SEE ALSO

execute−kbd−macro(2), insert−macro(2), kbd−macro−query(2), name−kbd−macro(2).

MicroEmacs '02

start−kbd−macro(2) 289

etfinsrt(3)

NAME

etfinsrt − Insert template file into current buffer

SYNOPSIS

etfinsrt "template"

DESCRIPTION

etfinsrt is generally called by file hooks when the new buffer has been created as opposed to loaded
from a file (see $buffer−fhook(5)).

etfinsrt uses &find(4) to locate and insert the required "template.etf" file. If successful, etfinsrt then
replaces the following strings in the template:

$ASCII_TIME$

To the current time. Inserts the output of ascii−time(3).

$BUFFER_NAME$

To the buffer name. The name is capitalized, '.'s are replaced with '_' and any trailing "<##>" digits
(used to make the buffer name unique) are removed.

$COMPANY_NAME$

To the value of %company−name, or if not defined to the value used for $USER_NAME$.
%company−name is usually set up in the company setup file defined in User setup.

$USER_NAME$

To the value of the registry entry "/history/user−name", or if not defined to the value
"<unknown>". The user name is usually set up in the User setup dialog.

$YEAR$

To the current year (4 digit number).

$CURSOR$

To leave the cursor at this point, only one of these tokens should be used in the template and the token is
removed. EXAMPLE

MicroEmacs '02

etfinsrt(3) 290

The following is taken from hkmake.emf and inserts the "makefile.etf" template if the buffer has been
created.

define−macro fhook−make
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "makefile"
 !endif
 set−variable $buffer−hilight .hilight.make
 −1 buffer−mode "tab" ; Normal tabs please !!!
 1 buffer−mode "indent"
 1 buffer−mode "time"
!emacro

NOTES

etfinsrt is a macro defined in etfinsrt.emf.

magic(2m) mode is always used to perform the the search/replace so the replace strings should be
appropriate for magic.

SEE ALSO

$buffer−fhook(5), &find(4), ascii−time(3).

MicroEmacs '02

etfinsrt(3) 291

exchange−point−and−mark(2)

NAME

exchange−point−and−mark − Exchange the cursor and marked position

SYNOPSIS

exchange−point−and−mark (C−x C−x)

DESCRIPTION

exchange−point−and−mark moves the cursor to the current marked position (see set−mark(2)) in
the current window and moves the mark to where the cursor was. This is very useful in finding where
a mark was, or in returning to a position previously marked.

SEE ALSO

set−mark(2), copy−region(2).

MicroEmacs '02

exchange−point−and−mark(2) 292

execute−buffer(2)

NAME

execute−buffer − Execute script lines from a buffer
execute−line − Execute a script line from the command line

SYNOPSIS

execute−buffer "buffer−name"
execute−line ["command−line"]

DESCRIPTION

execute−buffer executes script lines in the named buffer buffer−name. If the buffer is off screen and
an error occurs during execution, the cursor is left on the line causing the error.

execute−line executes a in script line entered from the command line. Typically this is used in
macros.

SEE ALSO

execute−file(2), execute−string(2), execute−named−command(2).

MicroEmacs '02

execute−buffer(2) 293

execute−file(2)

NAME

execute−file − Execute script lines from a file

SYNOPSIS

n execute−file "file" (esc /)

DESCRIPTION

execute−file executes script lines from the given file n times in succession, this is the normal way to
execute a MicroEmacs '02 script. The command prompts for a file name, and will then search for
<file>[.emf] in the search path. If the file is found then the file is loaded and the buffer is executed n
times.

SEE ALSO

execute−buffer(2), execute−line(2), execute−named−command(2), execute−string(2).

MicroEmacs '02

execute−file(2) 294

execute−kbd−macro(2)

NAME

execute−kbd−macro − Execute a keyboard macro

SYNOPSIS

n execute−kbd−macro (C−x e)

DESCRIPTION

execute−kbd−macro executes a keyboard macro. The entire sequence of recorded key−strokes is
repeated starting at the current point. The result is exactly as if you were retyping the sequence all
over again. A numeric argument n prefixing the execute−kbd−macro command repeats the stored
key−strokes n times.

Keyboard macros are recored with start−kbd−macro(2); recording is terminated with
end−kbd−macro(2).

SEE ALSO

end−kbd−macro(2), kbd−macro−query(2), name−kbd−macro(2), start−kbd−macro(2).

MicroEmacs '02

execute−kbd−macro(2) 295

execute−named−command(2)

NAME

execute−named−command − Execute a named command

SYNOPSIS

n execute−named−command "command−string" esc x

DESCRIPTION

execute−named−command command prompts the user for the name of a command to execute and
then executes the command n times. MicroEmacs '02 offers command completion and history
facilities, see ml−bind−key(2).

SEE ALSO

execute−buffer(2), describe−bindings(2), ml−bind−key(2).

MicroEmacs '02

execute−named−command(2) 296

execute−string(2)

NAME

execute−string − Execute a string as a command

SYNOPSIS

n execute−string "string"

DESCRIPTION

execute−string executes the given string n times as if it is being typed. This is the writable format of
a keyboard macro, it can be placed in any emf file. Any characters may form the string (unprintables
as \xXX) and key−strokes that are bound to a command will execute that command. This command is
used by macros to store user defined keyboard macros.

EXAMPLE

The following example uses keyboard strokes with execute−string in a macro to format nroff(1) text
located between . commands:

define−macro nroff−para
 beginning−of−line
 !if ¬ &sequal @wc "."
 1 buffer−mode "magic"
 execute−string "\CXS^\\.\CM\CB\CM\CX\CH\CN\CM"
 −1 fill−paragraph
 execute−string "\CD\CX\CH\CN\CD\CXH\CB"
 !endif
 forward−line
!emacro

execute−string has the advantage that execution is very fast as the amount of parsing and decoding to
be performed is limited. The disadvantage is that you cannot quickly discern which operations are
being performed !!

NOTES

Try to avoid using named key, such as "up" and "return", as the keyboard macro equivalent is not
readable and is likely to change in future releases.

For this reason the following special abbreviations may be used

\E

MicroEmacs '02

execute−string(2) 297

The "escape" key.

\N

The "return" key.

\T

The "tab" key.

\b

The backspace character (0x08).

\d

The delete character (0x7f).

\e

The escape character (0x1b).

\f

The form−feed character (0x0c).

\n

The carriage−return character (0x0a).

\r

The line−feed character (0x0d). SEE ALSO

buffer−abbrev−file(2), global−abbrev−file(2), insert−macro(2), name−kbd−macro(2),
start−kbd−macro(2).

MicroEmacs '02

execute−string(2) 298

execute−tool(3)

NAME

execute−tool − Execute a user defined shell tool

SYNOPSIS

n execute−tool "tool−name"

DESCRIPTION

execute−tool launches a predefined shell tool, the tools are typically defined by the user−setup(3)
Tools page and executed using the MicroEmacs main Tools menu. See help on user−setup(3) for
more information on the basic facilities given by execute−tool.

If the numeric argument n is supplied it is used as the tool name to be executed, otherwise the
argument "tool−name" must be given.

A tool with a numeric name can be executed via a key binding, for example, to execute tool 3 (as
defined by user−setup) to 'C−3' add the following line to the user setup file:−

3 global−bind−key execute−tool "C−3"

NOTES

The registry entries for a tool must be located in registry directory
"/history/$platform/tool/tool−name" where $platform is the current setting of variable
$platform(5) and tool−name is the name of the tool as given to the command. The following registry
entries are used:−

name

The name of the tool as displayed in the user−setup Tools dialog and the Main Tools menu. This is
only used for tools 0 to 9.

command

The command−line to be launched when the tool is executed, the following special tokens
may be used in the command−line which are substituted at execution:−

%ff

The current buffer's full file name, including the path.

MicroEmacs '02

execute−tool(3) 299

%fp

The current buffer's file path.

%fn

The current buffer's file name without the path.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the file name does
not have an extension.

Note that "%ff" is always the same as "%fp%fn" and "%fp%fb%fe". If any of these tokens
are used, the tool will fail to execute if the current buffer does not have a file name.

flag

A bit based flag setting the tool characteristics, where:−

0x01

Enable current buffer saving.

0x02

Enable prompt before saving current buffer.

0x04

Enable all edited buffers saving.

0x08

Enable prompt before saving an edited buffer.

0x10

Enable output capturing.

0x20

Enable concurrent running, not available on all platforms, see variable $system(5).

bname

MicroEmacs '02

execute−tool(3) 300

The name of the buffer to be used if the output is captured. The following special tokens may
be used in the buffer name which are substituted at execution:−

%fn

The current buffer's file name without the path, set to the buffer name if the current buffer
does not have a file name.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension. Set to
the buffer name if the current buffer does not have a file name.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the current buffer
does not have a file name or it does not have an extension.Note that "%fn" is always the same as
"%fb%fe". Default buffer name when this field is left empty is "*command*", or "*icommand*" if
Run Concurrently is enabled.

If more than 10 tools are required (maximum number definable by user−setup) or names are
preferred, it is recommended that the user−setup dialog is used to define the tool and then use the
registry copy utility bound to 'c' in a list−registry(2) buffer.

SEE ALSO

user−setup(3), ipipe−shell−command(2), pipe−shell−command(2), shell−command(2), system(5).

MicroEmacs '02

execute−tool(3) 301

exit−emacs(2)

NAME

exit−emacs − Exit MicroEmacs

SYNOPSIS

n exit−emacs

DESCRIPTION

Exit MicroEmacs back to the operating system. If no argument n is given and there are any unwritten,
changed buffers, the editor prompts the user to discard changes. If an argument is specified then
MicroEmacs exits immediately.

NOTES

All buffers with a name starting with a '*' are assumed to be system buffers (i.e. *scratch*) and are
not saved.

SEE ALSO

quick−exit(2), save−buffers−exit−emacs(2).

MicroEmacs '02

exit−emacs(2) 302

expand−abbrev(2)

NAME

expand−abbrev − Expand an abbreviation

SYNOPSIS

expand−abbrev

DESCRIPTION

expand−abbrev expands an abbreviation to an alternate form. The abbreviation must be an
alpha−numeric string and the cursor must be one position to the right of the abbreviation (which must
not be alpha−numeric) when this command is called. If the abbreviation is found, it is deleted and the
alternate form is inserted leaving the cursor at the end of the insertion unless \p is used. If not found,
a space is inserted.

SEE ALSO

buffer−abbrev−file(2), global−abbrev−file(2), expand−abbrev−handle(3), eaf(8).

MicroEmacs '02

expand−abbrev(2) 303

expand−abbrev−handle(3)

NAME

expand−abbrev−handle − Expand an abbreviation handler

SYNOPSIS

expand−abbrev−handle (esc esc)

DESCRIPTION

expand−abbrev−handle pulls together all forms of abbreviation expansion into a single command so
that it can be bound to a single key. The abbreviation must be an alpha−numeric string and the cursor
must be one position to the right of the abbreviation (which must not be alpha−numeric) when this
command is called. The command attempts to expand the abbreviation using the following commands
in turn:

expand−abbrev(2)

Uses a buffer specific and global abbreviation files, if set, to look up the abbreviation. The
use of the abbreviation file can be disabled using buffer−setup(3).

expand−iso−accents(3)

Expands ISO accent letter if the expansion mode is enabled via either the user−setup(3)
General Page or by using the iso−accents−mode(3) command.

expand−look−back(3)

Looks for a word starting the same in the current buffer's last 100 lines, this can be enabled in
the user−setup(3) General page.

Buffer specific expansion

Executes a buffer specific abbreviation expansion if the current buffer's file hook supports
abbreviation expansion.

Word expansion

If the current buffer does not support file type specific expansion and Word Expansion is
enabled via the user−setup(3) General page (Dict'n setting) expansion is attempted using
the expand−word(3) command which expands the current partial word using the dictionary of
the user's current language; warning − this can be slow!

MicroEmacs '02

expand−abbrev−handle(3) 304

The command exits after first command to successfully expand or if none expand the command fails.
See the help in the individual expansion commands for more help.

SEE ALSO

user−setup(3), expand−abbrev(2), expand−iso−accents(3), expand−look−back(3), expand−word(3).

MicroEmacs '02

expand−abbrev−handle(3) 305

expand−look−back(3)

NAME

expand−look−back − Complete a word by looking back for a similar word

SYNOPSIS

expand−look−back

DESCRIPTION

expand−look−back attempts to complete the word at the current position by looking backward for
another word which starts the same. If such a word is found within 100 lines of the current cursor
position the current partial word is replaced with the word found.

expand−look−back is automatically invoked from the expand−abbrev−handle(3) macro in response
to an expansion command, it is only invoked if enabled in the user−setup(3) => General => Abbrev
Expansion => Lookbk setting is enabled.

NOTES

expand−look−back is a macro implemented in abbrev.emf.

The user−setup configuration simply sets the macro variable .expand−look−back.on to TRUE,
i.e.:

set−variable .expand−look−back.on 1

It may be subsequently disabled by setting the variable back to 0.

SEE ALSO

expand−abbrev−handle(3), user−setup(3).

MicroEmacs '02

expand−look−back(3) 306

expand−word(3)

NAME

expand−word − Complete a word by invocation of the speller

SYNOPSIS

expand−word

DESCRIPTION

expand−word attempts to complete the word at the current position through the use of the current
language dictionary. The user is presented with a list of endings for the given word portion. These
may be selected with the cursor or mouse.

expand−word is automatically invoked from the expand−abbrev−handle(3) macro in response to an
expansion command, it is only invoked if enabled in the user−setup(3) => General => Abbrev
Expansion => Dict'n setting is enabled.

NOTES

expand−word is a macro implemented in abbrev.emf.

The user−setup configuration simply sets the macro variable .expand−word.on to TRUE, i.e.:

set−variable .expand−word.on 1

It may be subsequently disabled by setting the variable back to 0.

SEE ALSO

expand−abbrev−handle(3), spell−buffer(3), find−word(3).

MicroEmacs '02

expand−word(3) 307

file−attrib(3)

NAME

file−attrib − Set the current buffers system file attributes

SYNOPSIS

file−attrib

DESCRIPTION

file−attrib opens a dialog enabling the user to change the system properties of the current buffer's
file. Top of the dialog give the current buffer name and its file name. The Save Changes button
writes the current buffer out with any current edits and changes to its file attributes. The Ok button
closes the file−attrib dialog, any changes made to the file attributes will be applied next time the
buffer is written.

The type allow the changing between UNIX, MS Windows and DOS text file formats. UNIX has a
single new line character ('\n') where as Windows and Dos have a double new line character
('\r\n'). Also a Dos text file is terminated with a C−z (0x1A) character which the other two do not.
These attribute are set in MicroEmacs by using buffer modes crlf(2m) and ctrlz(2m).

The central part of the dialog contains system dependent attributes which are defined as follows:

UNIX Platforms

Allow the setting of user, group and global, read, write and execute permissions, see man pages on
chmod(1) for more information. This is a front end to setting the variable $buffer−fmod(5).

Win32 Platforms

Allow the setting of MS Windows file attributes, i.e. read−only, hidden, archive etc. Note that the
directory attribute is displayed but cannot be altered. This is a front end to setting the variable
$buffer−fmod(5).

DOS Platform

Allow the setting of MS Dos file attributes, i.e. read−only, hidden, archive etc. Note that the directory
attribute is displayed but cannot be altered. NOTES

file−attrib is a macro implemented in fattrib.emf.

SEE ALSO

MicroEmacs '02

file−attrib(3) 308

find−file(2), write−buffer(2), crlf(2m), ctrlz(2m), $buffer−fmod(5).

MicroEmacs '02

file−attrib(3) 309

file−browser(3)

NAME

file−browser − Browse the file system file−browser−close − Close the file−browser
file−browser−swap−buffers − Swap between file−browser windows

SYNOPSIS

file−browser (f10)
file−browser−close
file−browser−swap−buffers

DESCRIPTION

file−browser can be used to browse around the file system. When first executed file−browser creates
2 buffers, "*directory*" displaying the directory structure and "*files*" listing the files in the
current directory with information on each file. file−browser displays these buffers side by side,
splitting the current window horizontally if required.

Once open the user can browse through the system using the following keys in the *directory*
buffer:

space

Selects the directory on the current line and up−dates the *files* buffer with the information on
this directory. This can also be done by clicking the left mouse button on the directory name.

return

Selects the directory on the current line, if open (sub−directories displayed) then closes it or if closed
it is opened. The *files* buffer is up−dated with the information on the directory. This can also be
done by clicking the left mouse button on the '+' or '−' symbol just before the directory name.

C−return

As with return expect sub−directories are recursively opened or closed, note that this could take
some time on large file systems. This can also be done by clicking the right mouse button on the '+' or
'−' symbol just before the directory name.

tab

Move to the *files* buffer.

delete

MicroEmacs '02

file−browser(3) 310

Closes file−browser.

The following keys can be used in the *files* buffer:

return

If the current line is a directory, this because the current directory, updating both the *directory*
and *files* buffers. If the line is a file then it is opened using find−file(2). This can also be done
by clicking the left mouse button on the file name.

space

Toggles the tag state of the file on the current line, see x command. This can also be done by clicking
the left mouse button anywhere before the file name, or for multiple files drag a region with the left
mouse button.

X or x

Executes a shell−command(2) on all tagged files. The user is prompted for the command line
which can contain the following special tokens:

%p Full file name, including path.
%f The file name without the path.
As the shell−command is executed in the directory %f is safe to use in a command such as "del
%f".

D or d

Deletes all the tags in the buffer.

tab

Move to the *directory* buffer.

delete

Closes file−browser.

file−browser−swap−buffers swaps between the *directory* and *file* windows, making the
other the current window, this is usually locally bound to the tab key.

file−browser−close hides both the *directory* and *file* windows, closing the file−browser,
this is usually locally bound to the delete key.

SEE ALSO

directory−tree(2), find−file(2), shell−command(2).

MicroEmacs '02

file−browser(3) 311

file−op(2)

NAME

file−op − File system operations command

SYNOPSIS

n file−op [(["from−file" "to−file"]) |

(["delete−file"]) | (["dir−name"])] DESCRIPTION

file−op can be used to perform numerous file system operations. The given argument n must be used
to determine the required operation, the value is a bit based flag denoting the operation as follows:

0x010

Log−off and close down the current ftp connect (not a file system operation but functionality was
required and it had to go somewhere).

0x020

When this bit is set the command functionality is changed to delete−file, the single argument
delete−file is deleted.

0x040

When this bit is set the command functionality is changed to move−file, the specified from−file is
moved to to−file.

0x080

When this bit is set the command functionality is changed to copy−file, the specified from−file is
copied to to−file.

0x100

When this bit is set the command functionality is changed to making a new directory, the specified
dir−name is the name of the new directory. A file or directory of the given name must not already
exist.

Only one operation can be performed per invocation. The following bits in the given argument n can
be used to effect the behaviour of these operations:

0x01

MicroEmacs '02

file−op(2) 312

Enables validity checks, these include a check that the proposed file does not already exist, if so
confirmation of writing is requested from the user. Also MicroEmacs checks all other current buffers
for one with the proposed file name, if found, again confirmation is requested. Without this flag the
command will always succeed wherever possible.

0x02

Creates a backup of any file about to be deleted or over−written. Set help on $buffer−backup(5) for backup
file−name generation. NOTES

http files are not supported except as the source file when copying. ftp files are fully supported with
the restriction that the from and to files cannot both be url (http or ftp) files.

The command is used by file−browser(3) and ftp(3) which provides an easy to use interfaces for file
manipulation.

SEE ALSO

file−browser(3), ftp(3), find−file(2), write−buffer(2), $temp−name(5).

MicroEmacs '02

file−op(2) 313

fill−paragraph(2)

NAME

fill−paragraph − Format a paragraph

SYNOPSIS

n fill−paragraph (esc o)

DESCRIPTION

fill−paragraph this takes all the text in the current paragraph (as defined by surrounding blank lines,
or a leading indent) and attempts to fill it from the left margin to the current fill column as defined by
$fill−col(5). When an argument n is supplied n paragraphs are filled. If n is positive then MicroEmacs
'02 performs indented filling (i.e. indentation for a bullet mark etc). If n is negative then indented
filling is disabled. If no argument n is supplied then the paragraph is filled and the point and mark
positions are retained. This allows paragraphs to be filled, whilst in the middle of the paragraph and
the word position is maintained.

If justify mode is enabled the variable $fill−mode(5) determines how the paragraph is filled (i.e. left,
right, both or center). The variable $fill−eos−len(5) determines the trailing space used after a period
(.) character (the trailing characters are specified by $fill−eos(5)), typically defined as 2.

A set of characters defined by $fill−bullet(5) enable bullet markers to be placed in the text at the
beginning of the paragraph causing the left margin to be moved to the right of the bullet. The search
depth for fill to locate a bullet character is defined by $fill−bullet−len(5). When the paragraph is
formatted and one of the bullet characters is encountered then the user is prompted as to whether the
paragraph should be indented following the marker or not. The point of indentation is shown with a
<<<< marker.

Filling is automatically disabled on paragraphs which start with characters in the $fill−ignore(5) set.

The simple text formatting is generally used for mail messages, ASCII text README files etc.

EXAMPLE

The following examples show how the text is formatted with indented filling enabled and both
justification enabled:−

This is regular text that is on the
margin

 This is a regular paragraph that is
 offset from the margin. Note how
 MicroEmacs '02 retains the indent.

MicroEmacs '02

fill−paragraph(2) 314

 * With the introduction of one of
 the special characters, in this
 case a bullet, a format of the
 paragraph offsets the text from
 the bullet.

 1) Numbered lists are the same.
 Note that the paragraphs are all
 separated with a blank line.

 1. Numbered lists ending with a
 period.

 label − Or labeled lists, separated
 with a dash.

 > '>' might be an ignore
 > character so it skips the paragraph
 >
 > it is up to the user to
 > format these.

SEE ALSO

$fill−bullet(5), $fill−bullet−len(5), $fill−col(5), $fill−eos(5), $fill−eos−len(5), $fill−ignore(5),
$fill−mode(5), ifill−paragraph(3), paragraph−to−line(3).

MicroEmacs '02

fill−paragraph(2) 315

filter−buffer(2)

NAME

filter−buffer − Filter the current buffer through an O/S command

SYNOPSIS

filter−buffer (C−x #)

DESCRIPTION

filter−buffer executes one operating system command, using the contents of the current buffer as
input, sending the results back to the same buffer, replacing the original text.

This would typically be used in conjunction with sort(1), awk(1) or sed(1) to translate the contents of
the buffer.

SEE ALSO

pipe−shell−command(2).

MicroEmacs '02

filter−buffer(2) 316

find−bfile(3)

NAME

find−bfile − Load a file as binary data
find−cfile − Load a crypted file

SYNOPSIS

n find−bfile "file−name" (C−x 9)
n find−cfile "file−name"

DESCRIPTION

find−bfile and find−cfile provide a simple interface to loading files in binary(2m) and crypt(2m)
modes respectively. The numeric argument has the same effect as with the find−file(2) command
except the respective modes are always enabled. See documentation on the modes an find−file
command for more information.

NOTES

find−bfile and find−cfile are macros defined in file tools.emf.

The command find−file(2) is bound to key "C−x 9" with a numeric argument of 2, this is equivalent
to executing find−bfile with no argument.

SEE ALSO

find−file(2), binary(2m), crypt(2m).

MicroEmacs '02

find−bfile(3) 317

next−buffer(2)

NAME

next−buffer − Switch to the next buffer
find−buffer − Switch to the next buffer

SYNOPSIS

n next−buffer (C−x x)
n find−buffer "buffer−name" (C−x b)

DESCRIPTION

next−buffer switches to the nth next buffer in the buffer list in the current window, the default n is 1,
if n is negative then the 0−nth previous buffer is selected. If 0 or a number greater than the number of
buffers is specified then the command fails.

find−buffer switches to buffer "buffer−name" in the current window. If the buffer does not exist and
a zero argument n is supplied then the command fails. If the buffer does not exist but no argument or
a +ve argument n is specified then a new buffer is created, at which point the file−hook is evaluated.

If a −ve argument n is given to find−buffer then the buffer will be hidden. Any window displaying
"buffer−name" will find another buffer to display. This functionality is often used with the hide(2m)
buffer mode. If a value of −1 is given then the buffer will not be hidden in a window whose
$window−flags(5) are set to lock the buffer to the window. If a value of less than −1 is given then the
buffer is hidden from all windows.

If the current buffer has an $buffer−ehook command set then this command is executed before the
new buffer is switched in. If the new buffer has a $buffer−bhook command set then this command is
automatically executed after the new buffer is switched in but before control returns to the user.

SEE ALSO

next−window−find−buffer(2), hide(2m).

MicroEmacs '02

next−buffer(2) 318

find−file(2)

NAME

find−file − Load a file

SYNOPSIS

n find−file "file−name" (C−x C−f)

DESCRIPTION

find−file finds the named file file−name. If it is already in a buffer, make that buffer active in the
current window, otherwise attempt to create a new buffer and read the file into it.

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files.

Text files are usually thought of as named collections of text residing on disk (or some other storage
medium). In MicroEmacs '02 the disk based versions of files come into play only when reading into
or writing out buffers. The link between the physical file and the buffer is through the associated file
name.

MicroEmacs '02 permits full file names, i.e. you can specify:

MicroEmacs '02

find−file(2) 319

disk:\directories\filename.extension

or (UNIX)

/directories/filename.extension

If the disk and directories are not specified, the current buffers disk/ directory is used. Several points
should be noted in respect to the methods that MicroEmacs utilizes in the handling of files:−

Without explicitly saving the buffer(s) to file, all edits would be lost upon leaving
MicroEmacs − you are asked to confirm whenever you are about to lose edits.

♦

MicroEmacs has a mechanism for "protecting" your disk−based files from overwriting when
it saves files. When instructed to save a file, it proceeds to dump the file to disk, making a
backup of the existing file when backup(2m) mode is enabled.

♦

Auto−saving files can be performed on edited buffers by setting the $auto−time(5) variable.
The file is saved in the same place with a '#' appended to the file name. This can be used
directly by the user or in the unlikely event of MicroEmacs crashing (or system crash), the
files are automatically recovered next time it is edited.

♦

If you do not wish to perform any edits but merely browse the file(s), add the view(2m) mode to the
buffer or ask for the file to be read in for viewing only.

RCS Support

If the file does not exist and the variable $rcs−file(5) is set then the existence of the RCS file is tested.
If the rcs file exists then it will be checked out using a command−line created from the variable
$rcs−co−com(5). If the check−out is successful then this file is loaded.

This raw interface for supporting file revision control systems has been adapted to support SCCS and
Visual Source Safe see help on variable $rcs−file for more information and examples.

HTTP Support

MicroEmacs supports http file loading, this is available by default on UNIX systems but must be
compiled in on win32 platforms (socket libraries not available on all win95 machines so cannot be
compiled in by default). When available a http file can be loaded by simply executing find−file and
giving the http file name, i.e. "http://user:password@address:port/file". Only the
http://, address and /file components are mandatory, the rest can usually be omitted. e.g.:

find−file "http://members.xoom.com/jasspa/index.html"

See help page on %http−proxy−addr(5) for information on HTTP proxy server support.

FTP support

MicroEmacs supports ftp file loading, this is identical to http except the prefix ftp:// is used as

MicroEmacs '02

find−file(2) 320

opposed to http://. The user name and password defaults to guest in the absence of both these
fields. If the user name is supplied but not the password the password will be prompted for; this can
be useful as the password will not be stored or written to the history file. Connection is by default on
port 21.

find−file "ftp://<me>:<password>@members.xoom.com/jasspa/index.html"

See also ftp(3).

The progress of the FTP transfer, and the FTP commands issued, may be viewed in the
ftp−console buffer. This is popped up depending on the setting of the %ftp−flags(5) variable.

NOTES

The base name part (i.e. not the path) of file−name can contain wild−card characters compatible
with most file systems, namely:−

?

Match any character.

[abc]

Match character only if it is a, b or c.

[a−d]

Match character only if it is a, b, c or d.

[^abc]

Match character only if it is not a, b or c.

*

Match any number of characters.

If the name matches more than one file, a buffer will be created for each matching file. Note that these
are not the same wild−card characters used by regex.

For ftp and http then a ftp console window is opened up to show the progress of the transfer (when
configured), this is described in ftp(3).

SEE ALSO

auto(2m), binary(2m), crypt(2m), rbin(2m), time(2m), view(2m), buffer−mode(2), find−bfile(3),
ftp(3), $rcs−file(5), %ftp−flags(5), %http−flags(5), %http−proxy−addr(5), next−window−find−file(2),

MicroEmacs '02

find−file(2) 321

read−file(2), save−buffer(2), view−file(2), write−buffer(2), file−op(2), file−attrib(3).

MicroEmacs '02

find−file(2) 322

find−registry(2)

NAME

find−registry − Index search of a registry sub−tree.

SYNOPSIS

find−registry "root" "subkey" index

DESCRIPTION

find−registry performs an indexed search of a registry sub−tree allowing the caller to determine the
names of the children that exist as sub−nodes of the specified node. root and sub−key form the root
whose children are to be determined, subkey may be specified as the null−string ("") if an absolute
registry path is specified. index is a value from 0..n and identifies the index number of the child
node. The name of the child node is returned in $result(5) if one exists, otherwise an error status is
returned.

EXAMPLE

The following example comes from addrbook.emf and shows how find−registry is used to iterate
through entries in the address book. Note that find−registry is used with !force(4) and the $status(5)
of the call is tested to determine if the invocation succeeded.

!force find−registry "/AddressBook" "Names" #l0
!if $status
 set−variable #l1 $result
 76 insert−string "_"
 2 newline
 insert−string &spr "Section: %s" #l1
 newline
 ; Iterate through all of the entries.
 set−variable #l2 0

 !repeat
 !force #l2 ab−buffer
 !if $status
 set−variable #l2 &add #l2 1
 !endif
 !until ¬ $status
 set−variable #l0 &add #l0 1
 !goto next
!endif

SEE ALSO

MicroEmacs '02

find−registry(2) 323

get−registry(2), list−registry(2), read−registry(2), set−registry(2), erf(8).

MicroEmacs '02

find−registry(2) 324

find−tag(2)

NAME

find−tag − Find tag, auto−load file and move to tag position

SYNOPSIS

n find−tag "string" (esc t)

DESCRIPTION

find−tag finds the current or given tag (string) in a tags file and goes to the given point, loading the
file if necessary. The tag is either the current word under the cursor or a user supplied word if the
cursor is not in a word. The buffer containing the tag is popped up in another window and the cursor
moved to the tag in the new window.

A tags file is usually created by an external program (e.g. ctags(1)) which stores word references (or
tags) and the name of the file containing the tag, with a search string to go to its local. It is an
indexing system which is often used in programming.

The argument n can be used to change the default behavior of find−tag described above, n is a bit
based flag where:−

0x01

Use popup−window to display the tag in a different window (default) when this flag is not given the
current window is used to display the tag.

0x02

Disable the use of the current cursor position to determine the tag. Instead the tag must always be
supplied through "string".

0x04

Find the next definition of the last tag (multiple tag support). This feature can only be used if multiple
tag support is enabled (see flag 'm' of variable %tag−option(5)) and find−tag has already been
successfully executed. In this situation the last invocation of find−tag defines the current tag and
executing again with an argument of 4 will jump to the next definition of the current tag or return the
message "[No more "<current>" tags]".

The next tag is typically bound to M−C−t.

The tags file is, by default, assumed to reside in the current directory of the currently viewed file. The

MicroEmacs '02

find−tag(2) 325

user variable %tag−option(5) may be specified with a value of 'r' (recursive) and 'c' (continue) flags,
which ascends the directory tree from the current directory and attempts to locate a recursively
generated tags file at a higher directory level. Recursive tag files are generally easier to maintain
where project source files are located in a number of project sub−directories, and enable the whole of
the project tree to be taggable.

Two user variables must be defined before find−tag will execute, if either %tag−file(5) or
%tag−template(5) are not defined the error message "[tags not setup]" is signaled.

NOTES

A tags file may be generated by MicroEmacs '02 from the menu (Tools−>XX Tools−>Create Tags
File). Alternatively a tags file may be generated by the ctags(1) utility. This is typically standard on
UNIX platforms. For Windows and DOS platforms then the Exuberant Ctags is recommended, this
is available from:−

http://darren.hiebert.com

A MicroEmacs '02 compatible tags file may be generated using the command line "ctags −N
−−format=1 ." cataloging the current directory. To generate tags for a directory tree then use
"ctags −NR −format=1 .". Refer to the Exuberant Ctags documentation for a more detailed
description of the utility.

SEE ALSO

%tag−file(5), %tag−option(5), %tag−template(5), generate−tags−file(3), ctags(1).

MicroEmacs '02

find−tag(2) 326

spell−buffer(3)

NAME

spell−buffer − Spell check the current buffer
spell−word − Spell check a single word
spell−edit−word − Edits a spell word entry
find−word − Find a using spelling dictionaries

SYNOPSIS

spell−buffer
n spell−word ["word"] (esc $)
spell−edit−word ["word"]
find−word ["word"]

DESCRIPTION

MicroEmacs '02 provides an integrated spell checker with the following features:−

Different languages.♦
Dialog control of the speller.♦
Best guess capability.♦
Replace and Replace all, Ignore and Ignore All♦
Undo capability.♦
Adding new words and endings to speller.♦
Auto correct of commonly occurring mistakes.♦
Word finder, allows words to be searched with wild cards.♦

spell−buffer spell checks the current buffer, from the current position, to the end of the buffer. On
invocation, an osd(2) dialog is opened and any corrections are made through this interface. If an error
dialog opens instead the current language is not setup, please see the Language setting in
user−setup(3) and Locale Support.

The dialog provides the user with an interface from which a new spelling may be selected, in addition
new words may be added to the spelling dictionary. The dialog entries are defined as follows:−

Word

The word entry contains the erroneous word, this is presented in a text dialog box which may be
manually edited to correct. If the word is manually corrected, then it is spell checked prior to
insertion, and a new guess list is created. The user may elect to replace the word, take one of the
suggestions or re−edit the misspelled word.

Meaning

MicroEmacs '02

spell−buffer(3) 327

The meaning button provides a convenient interface to describe−word(3) for looking up the meaning
of the current word. The Insert button within the describe−word dialog will replace the current word
in the spell−buffer.

Suggestions

The suggestions entry contains a list of suggestions as to the correct spelling of the word. The list is
ranked in order of the best match, typically the misspelled word appears at (or near) the top of the list,
unless the word is unknown or there are gross errors in the spelling. Selecting the word in the list with
a single click of the mouse selects the word as the replacement, the actual replacement is performed
by the Replace or Replace All buttons. Alternatively, double selecting a guess word replaces the
word.

Language

The language entry allows the user to select the current spelling language. The new language is
chosen from the dialog box. The language may be changed at any time during the spell operation and
is effective immediately. The Ext languages are extended dictionaries that contain additional words, it
is recommended that all spelling is performed with the extended dictionaries (where available).

Replace

The replace button is activated when a new word has been edited or selected as a candidate for
replacement. Selecting replace modifies the erroneous word in the buffer with the newly selected
word.

Replace All

The Replace All button is similar to the Replace button, except that it automatically replaces any
subsequent occurrences of the erroneous word with the newly selected word. The replacement words
are retained for the MicroEmacs edit session and are lost when the editor is closed.

Ignore

The ignore button requests that the speller ignore the erroneous word and continue to spell the buffer.

Ignore All

The Ignore All button is similar to the Ingore button, except that it automatically ignores the
erroneous word thereafter. The ignore words are retained for the MicroEmacs edit session and are lost
when the editor is closed.

Add

Add adds the current erroneous word to the dictionary, thereafter the word is recognized as a valid
word. Add should only be used for words which have no derivatives, it is generally better to add a
new word through the Edit interface where a new base word may be specified with it's derivatives.

Edit

MicroEmacs '02

spell−buffer(3) 328

The Edit button executes spell−edit−word giving the current erroneous word. This allows new words
and auto−corrections to be defined as well as existing words to be altered, see full description below.

Find

The Find button executes find−word giving the current word as a starting seed. This allows the user
to search for the word using a simple search criteria, see full description below.

Undo Last

The undo Last button restores the user to the previous spelling so that it may be re−entered, any
replacement text that was made is restored to it's original spelling.

Exit

Exits the speller and returns the user to the buffer.

spell−word checks a single word which is either supplied by the user, or if an argument is given, the
word under (or to the left of) the cursor position. If the word is correct, a simple message−line
print−out is given, otherwise the main spell osd dialog is opened and the user may check the spelling
within the context of the spell dialog as described above.

The default key binding of "esc $" supplies an argument forcing spell−word to check the current
buffer word. spell−word is often used to check the spelling of a word outside of the context of the
editor (i.e. when working on paper, or when doing at that prize crossword !!).

spell−edit−word allows words in dictionaries to be altered as well as new words and
auto−corrections to be defined. On invocation, an osd dialog is opened and changes are made through
this interface, defined as follows:−

Word

The word entry to be changed or added. If spell−edit−word was executed via spell−buffer Edit
button, this will be set to the current word.

No word set

The word entry is empty, most of the functionallity will not be available until a word is entered.

New Word

To add a new word, the derivatives of the new word should be selected using the prefix and suffix
options. Note that not all derivatives are listed, only one example derivative of each spell rule is
given.

BE CAREFUL WITH THE CASE OF THE BASE WORD: new words that are entered
are case sensitive, as a general rule the word in the Word text box should be edited to it's
base form and should be presented in lower case characters (unless it is a proper name, in
which case it should be capitalized, or is an abbreviation or acronym when it might be upper

MicroEmacs '02

spell−buffer(3) 329

case).

When the appropriate derivatives of the new word have been selected, it may be added to the
dictionary using the Add button. This adds the word to the users personal dictionary. Please
note that if there are numerous standard words missing then check that an extended dictionary
(designated by Ext in the language) is being used, the extended dictionaries more than double
the repertoire of words available.

Words added to the dictionary may be subsequently removed using the Delete button, typing
the existing word in the Word entry and selecting Delete button removes the existing word.

Auto−Correct

Selection of the Auto−Correct button allows a replacement word to be entered in the To text entry.
Selecting Add adds the automatic correction to the speller. Thereafter, whenever the erroneous word
is encountered the replacement word is always used to replace it, without user intervention.

Entering an exiting auto−correct word into the dialog and selecting Delete removes an
existing auto−correct entry.

Exit

Exits the Edit dialog.

find−word opens the word finder dialog. This allows the user to search for a word using a simple
search criteria. (This is ideal for cheating at crosswords !!). The word to be searched for is entered
into the Word Mask and may use wild cards * to represent any number of characters, ? to represent
an unknown character and [..] for a range of characters.

For example, searching for t?e?e presents the list theme, there and these. Searching for t*n lists all
of the words beginning with t and ending in n. See $find−words(5) for a full discription of the format
used by search engine.

The words that match are returned in the scrolling dialog, and may be selected with the mouse (or
cursor keys). The Insert button inserts the selected word into the current buffer or into the Word
entry if executed from the spell−buffer dialog. Note that the list presented is limited to 200 words,
selecting next gets the next 200 words, and so on. The Exit button exits the dialog.

NOTES

The words added to the speller during a MicroEmacs session are saved when the editor is closed. The
user is prompted to save the dictionary, if the dictionary is not saved then any words added are lost.

All ignore words accumulated during a spell session are lost when the editor is closed. In order to
retain ignore words, it is suggested that they are added to the personal dictionary rather than be
ignored.

MicroEmacs '02

spell−buffer(3) 330

The personal spelling dictionary is typically called <user><type>.edf, and is stored in the default
user location. The dictionary names are specified in the user−setup(3) dialog.

find−word may claim to have found more words than are actually listed. The use of derivatives in the
spell algorithm allows a single word to be present several times. find−word counts each occurrence
but it is only listed once.

SEE ALSO

user−setup(3), Locale Support, osd(2), spell(2), describe−word(3), $find−words(5).

MicroEmacs '02

spell−buffer(3) 331

find−zfile(3)

NAME

find−zfile − Compressed file support
zfile−setup − Compressed file support setup

SYNOPSIS

find−zfile "file−name"
zfile−setup "extension" "list−command" "cut−to"

"column" "file−end" "extract−command"
"remove−command" DESCRIPTION

find−zfile provides generic support for listing and extracting the contents of compressed files.
find−zfile also supports the extraction of the internal files into another buffer.

find−zfile must be configured for each compression format using zfile−setup. It relies on
command−line programs to generate content lists which are used to generate the main file listing, and
subsequently, the ability to extract individual files for file extraction support.

For basic content listing support the first 3 arguments must be given to zfile−setup. The first argument
"extension" is used as the compressed file id string. The compressed file type is derived from the file
extension, e.g. "zip" or "Z" for UNIX compressed files. The exact case of the extension is checked
first, followed by the lower case and upper case string.

The compressed file contents list is generated from executing the user supplied "list−command" and
dumping the output into the list buffer. The command is run from the directory containing the
compressed file and the following special tags may be used within the "list−command" which get
substituted as follows:−

%zb

The token is replaced with the compressed files base name, i.e. the file name without the path.

%zf

The token is replaced with the compressed files absolute file name, i.e. the file complete with the
path.

The head of the list output is often unwanted verbose printout, this can be automatically be removed
by the use of the "cut−to" argument. The argument, if supplied (not an empty string), must be a regex
search string matching the start of the required list. If found, all text before it is removed.

MicroEmacs '02

find−zfile(3) 332

For single file extraction support the last 4 arguments must be specified by zfile−setup. The file to
extract is selected either by selecting the file name using the left mouse button or by moving the
cursor to the line containing the file name and pressing the "return" key.

find−zfile assumes that the file name starts at a fixed column number, specified with the "column"
argument. The end of the file name is obtained by searching for the regular expression "file−end"
string, the file name is assumed to end at the start of the search string match.

The file is then extracted by executing the supplied "extract−command" and then loading the
extracted file into a new buffer. The command is run from the system temporary directory (i.e.
"/tmp/" on UNIX or $TEMP on Windows etc.). The following special tags may be used within the
"extract−command" which get substituted as follows:−

%zb

The token is replaced with the compressed files base name, i.e. the file name without the path.

%zf

The token is replaced with the compressed files absolute file name, i.e. the file name complete with
the path.

%fb

The name of the file to be extracted.

The file is assumed to be extracted to the temp directory due to the way the command is run, this file
is then loaded into a new buffer. The temporary file should then be removed using the supplied
"remove−command" with is run from the temp directory, the "%fb" special tag may be used in the
command. This argument may be given as an empty string, thereby disabling the removal.

EXAMPLE

For zip file support the freely available unzip(1) command can be used, following is the list of
arguments with suitable entries:

extension zip
list−command unzip −v %zb
cut−to ^ Length
column 58
file−end $
extract−command unzip −o %zf %fb
remove−command rm %fb

For the zip file "/usr/jasspa/memacros.zip", after substitution the list command becomes "unzip −v
memacros.zip" which will be executed in the "/usr/jasspa/" directory. This will produce the
following form of output:

Archive: memacros.zip
 Length Method Size Ratio Date Time CRC−32 Name

MicroEmacs '02

find−zfile(3) 333

 −−−−−− −−−−−− −−−− −−−−− −−−− −−−− −−−−−− −−−−
 565 Defl:N 258 54% 02−27−99 22:56 018a7f70 american.emf
 3409 Defl:N 872 74% 02−28−99 01:37 6a6f9722 americar.emf
 4201 Defl:N 772 82% 03−01−99 12:58 d4e3bc4a benchmrk.emf
 565 Defl:N 258 54% 02−27−99 22:56 dd394e24 british.emf
 3408 Defl:N 872 74% 02−28−99 01:37 32f3eeca britishr.emf
 7239 Defl:N 1923 73% 02−28−99 15:13 d408f0da calc.emf
 7292 Defl:N 2072 72% 01−23−99 12:49 5979d6b2 cbox.emf
 7104 Defl:N 1402 80% 02−28−99 15:13 6faf4fc5 cmacros.emf
 5967 Defl:N 1239 79% 02−13−99 16:38 27601523 ctags.emf
 1097 Defl:N 489 55% 02−16−99 10:58 53a55e36 dos.emf
 562 Defl:N 310 45% 01−16−98 07:54 ec24f65e dos2unix.emf
.
.
.

The top Archive line is not require, this is automatically removed by setting the "cut−to" to "^
Length" which matches the start of the next line.

For file extract, consider the file "ctags.emf", the first character 'c' is at column 58 and the first
character after the end of the file name is the end−of−line character ('\n') which is matched by the
regex string "$", hence the settings on "column" and "file−end". When this and the zip file name are
substituted into the extract−command, it becomes "unzip −o /usr/jasspa/memacros.zip
calc.emf" and is run from the "/tmp." directory. Note that the "−o" option disables any overwrite
prompts, these are not required as tests and prompting have already been performed by find−zfile.
The extracted file "/tmp/calc.emf" is then loaded into a new buffer.

The temporary file is removed by executing the substituted remove−command which becomes "rm
calc.emf" from the "/tmp/" directory.

For gzipped tar files, extension "tgz" the following setup can be used on UNIX platforms:

extension tgz
list−command unzip −v %zb
cut−to
column 43
file−end $
extract−command gunzip −c %zf | tar xof − %fb
remove−command rm %fb

For the tgz file "/usr/jasspa/memacros.tgz", this will produce the following listing:

tgz file: /usr/jasspa/memacros.tgz

rw−rw−r−− 211/200 565 Feb 27 22:56 1999 american.emf
rw−rw−r−− 211/200 3409 Feb 28 01:37 1999 americar.emf
rw−rw−r−− 211/200 4201 Mar 1 12:58 1999 benchmrk.emf
rw−rw−r−− 211/200 565 Feb 27 22:56 1999 british.emf
rw−rw−r−− 211/200 3408 Feb 28 01:37 1999 britishr.emf
rw−rw−r−− 211/200 7239 Feb 28 15:13 1999 calc.emf
rw−rw−r−− 211/200 7292 Jan 23 12:49 1999 cbox.emf
rw−rw−r−− 211/200 7104 Feb 28 15:13 1999 cmacros.emf
rw−rw−r−− 211/200 5967 Feb 13 16:38 1999 ctags.emf
rw−rw−r−− 211/200 1097 Feb 16 10:58 1999 dos.emf

MicroEmacs '02

find−zfile(3) 334

rw−rw−r−− 211/200 562 Jan 16 07:54 1998 dos2unix.emf
.
.
.

NOTES

find−zfile and zfile−setup are macros defined in zfile.emf.

SEE ALSO

find−file(2).

MicroEmacs '02

find−zfile(3) 335

fold−current(3)

NAME

fold−current − (un)Fold a region in the current buffer
fold−all − (Un)Fold all regions in the current buffer

SYNOPSIS

fold−current
fold−all

DESCRIPTION

MicroEmacs '02 provides a generic, albeit course, folding mechanism which is applied to some of the
well known file modes. The folding mechanism allows parts of the buffer to be scrolled up and
hidden, leaving a residue hilighting marker within the buffer indicating a folded region. A folded
buffer typically allows a summary of the buffer contents to be viewed within several windows, hiding
the detail of the buffer.

The folding mechanism uses well defined start and end markers which form part of the syntax of the
well known file mode. i.e. in 'C' this is the open and closed braces that appear on the left−hand margin
({ .. }). The intention is that the natural syntax of the text is used to determine the fold positions,
requiring no additional text formating or special text tags to be inserted by the user.

fold−current opens and closes a folded region within the buffer. If the current cursor position lies
between a start and end marker then the region between the start and end is folded out and hidden
from view, leaving a highlight marker in the buffer. If the fold already exists then, moving the cursor
to the folded line and invoking fold−current removes the fold marker and reveals the text.

fold−all opens and closes all folded regions within the buffer, if the current state is unfolded then all
of the start/end markers are located and their regions folded. Conversely, if the buffer is currently
folded and fold−all is invoked, then all folds are removed and the associated text revealed.

CONFIGURATION

In order to utilize the fold−current/all commands within a buffer, the start and end markers have to
be initialized for the syntactical contents of the buffer. This is performed within the hook function for
the buffer, using the hook−name. Buffer specific variables are defined within the context of the buffer
to configure that start and end fold handling. The buffer specific variables are defined as follows,
where xxxx is the file hook base name.

xxxx−fold−open

MicroEmacs '02

fold−current(3) 336

A regular expression search string used to locate the start of the string. For speed the search string
should include a regular expression start or end of line character whenever possible. i.e. in C the open
is defined as "^{".

xxxx−fold−close

A regular expression search string used to locate the end of the string. For speed the search string
should include a regular expression start or end line character whenever possible. i.e. in C the close is
defined as "^}".

xxxx−fold−mopen

An integer value that denotes the number of lines to move in a forward or (−ve) backward direction
from the start line located by the search string to the position in the buffer to be folded. If default
value when mopen is omitted is 0, starting the fold from the search string line.

xxxx−fold−mclose

The relative displacement from the close fold line to the fold position, this is a positive or negative
displacement depending on where the fold is to be positioned.

xxxx−fold−mnext

Specifies the number of lines to advance before the next search is continued on the fold operation. This is only
used by fold−all. EXAMPLE

The following examples show how the fold variables are set up in each of the buffer modes.

C and C++

C and C++ fold on the open and close brace appearing in the left−hand margin. The fold variables are
defined in hkc/hkcpp.emf as follows:−

set−variable %c−fold−open "^{"
set−variable %c−fold−close "^}"

Given a 'C' function definition:−

static void
myfunc (int a, int b)
{
 /* Function body */
}

the folded version appears as follows:−

static void
myfunc (int a, int b)
}

MicroEmacs '02

fold−current(3) 337

emf

MicroEmacs macro files emf support folding of macro definitions, the fold variables are defined in
hkemf.emf as follows:−

set−variable %emf−fold−open "^0? ?define−macro"
set−variable %emf−fold−close "^!emacro"
set−variable %emf−fold−mopen "1"

Given a macro definition:−

0 define−macro mymacro
; This is the body of the macro
; ... and some more ...
!emacro

the folded version of the macro is defined as:−

0 define−macro mymacro
!emacro

nroff

nroff is configured for manual pages only and folds between .SH and .SS sections, the hook
variables are defined as follows:−

set−variable %nroff−fold−open "^\.S[SH]"
set−variable %nroff−fold−close "^\.S[SH]"
set−variable %nroff−fold−mopen "1"
set−variable %nroff−fold−mnext "−1"

Given an nroff block of text defined as:−

.SH SYNOPSIS

.\" Some text

.\" Some more text

.SH DESCRIPTION

Then the folded version appears as:

.SH SYNOPSIS

.SH DESCRIPTION

tcl/tk

tcl/tk is configured to fold procedures. The fold variables are defined as:−

set−variable %tcl−fold−open "^proc "
set−variable %tcl−fold−close "^}"
set−variable %tcl−fold−mopen "1"

MicroEmacs '02

fold−current(3) 338

Given a tcl procedure definition:−

proc tixControl:InitWidgetRec {w} {
 upvar #0 $w data

 tixChainMethod $w InitWidgetRec

 set data(varInited) 0
 set data(serial) 0
}

The folded version of the same section appears as:−

proc tixControl:InitWidgetRec {w} {
}

NOTES

fold−current and fold−all are macros implemented in fold.emf. The folding is performed using
the narrow−buffer(2) command.

fold−current may also be bound to the mouse using the user−setup(3). The typical binding is
C−mouse−drop−1.

SEE ALSO

File Hooks, user−setup(3), narrow−buffer(2).

MicroEmacs '02

fold−current(3) 339

ftp(3)

NAME

ftp − Initiate an FTP connection

SYNOPSIS

ftp

DESCRIPTION

ftp initiates a File Transfer Protocol (FTP) connection to a remote host on the network. Using FTP,
editing of files may be performed in much the same way as on the local file system. Directory listings
may be retrieved and traversed using the mouse or cursor keys. Using the directory listing, files may
be transfered to/from the remote host to the local machine.

On issuing the command then a dialog is presented to the user which is used to open the connection.
The dialog entries are defined as follows:−

Registry File

The name of a MicroEmacs registry file which is used to store the FTP information. If a registry name
is provided then all FTP address information is stored in the registry file and saved for later sessions.
Be aware that password information is saved in this file as plain text if a password is entered into the
site information.

If the registry information is omitted then the information is not saved between sessions.

Site Name

An ASCII pseudo name for the remote host. The pull−down menu may be used to select existing sites
that have been previously entered.

Host Address

The address of the host, this may be an IP address (111.222.333.444) or a DNS name (i.e.
ftp.mysite.com).

User Name

The login name for the site. If this is omitted then guest is used by default.

Password

MicroEmacs '02

ftp(3) 340

The password used to enter the site for the given login name. If the password is NOT supplied then
the user is prompted for the password when a transaction takes place. If the password is omitted and
left to promt then it is not stored in the registry.

Take note of the comments provided above regarding the password information.

Initial Host Path

The starting directory at the remote host. If this is omitted then the root directory ('/') is used by
default.

On selecting Connect then a FTP connection is opened and the initial directory appears as a directory
listing, if the initial path is a file then the file is loaded into the editor.

Thereafter the file may be edited within the editor as normal, on a write operation then the file is
written back to the host, via FTP.

On opening a FTP connection the progress of the transfer, and the FTP commands issued, may be
viewed in the *ftp−console* buffer. This buffer may automatically appear depending upon the
value of the %ftp−flags(5) variable.

NOTES

ftp is a macro implemented in ftp.emf. This uses the underlying command find−file(2) to
implement the FTP transfer.

FTP files can be directly loaded and edited using the standard file commands such as find−file(2).

The FTP addresses are retained in a registry file (see erf(8)). The registry file is automatically loaded
when MicroEmacs starts up each session. The current site information may be viewed using
list−registry(2) and is located at the following registry addresses:−

/url

Data value is file system location of the FTP registry file.

/url/ftp/<hostName>

The name of the host to which the connection is to be made.

/url/ftp/<hostName>/host

The name or IP address of the remote host

/url/ftp/<hostName>/user

The user name used to log into the remote host.

MicroEmacs '02

ftp(3) 341

/url/ftp/<hostName>/pass

The user password to the remote host. If this entry is empty then the user is always prompted for the
password when the connection is made.

/url/ftp/<hostName>/path

The initial path at the remote site.

When a FTP connection is initiated then the connection (socket) remains open for a period of
approximately 4 minutes from the last transfer time, after that the connection is automatically closed
and is re−initiated if required again.

NOTE: For windows platforms then the resultant executable must be built with URL support
enabled, for UNIX platforms socket support is automatically enabled.

BUGS

Directory completion is not available when the current working directory is an FTP address. To work
around this from the command line, select <RETURN> to get a directory listing of the current
directory and select the file(s) from the directory to load.

SEE ALSO

%ftp−flags(5), erf(8), find−file(2), file−op(2), list−registry(2).

MicroEmacs '02

ftp(3) 342

gdiff(3)

NAME

gdiff − Graphical file difference
%gdiff−com − Gdiff diff(1) command line

SYNOPSIS

gdiff "version1" "version2"

%gdiff−com "string"; Default is "diff −c −w"

DESCRIPTION

gdiff is a macro utility that facilitates the merging of two files (typically with different modification
revisions). The changes between the revisions are hilighted with color, allowing modification regions
and lines to be selected for the generation of a newer revision file, which might encompass selected
modifications from each of the base revisions.

gdiff executes the diff(1) command with the command line set by the %gdiff−com(5) variable and the
user supplied version1 and version2. The output is displayed in two buffer windows, side by side, and
the differences in the lines are hilighted to show the changes. In addition the content of the two
buffers is normalized such that both windows are aligned at the same line position, allowing the
changes in the text to be viewed in both windows at the same time.

Whilst in gdiff view mode then both scroll bars (if visible) are locked, such that either scrolls BOTH
windows at the same time. Other key commands are disabled, as are the menu interactions. The short
cut keys are defined as follows:−

esc h/A−h − View the help page.

Invokes the display of a OSD help box, summarizing the interaction commands

C−up − Move to previous difference

Moves to the previous changed region above the current cursor position.

C−down − Move to next difference

Moves to the next changed region below the current cursor position.

left mouse button
space
enter

MicroEmacs '02

gdiff(3) 343

r − Select difference version

Selects the difference version of the currently selected window. The region is hilighted as the required
region to be incorporated into the new revision.

R − Select neither version.

Marks both regions as not required.

l − Line select current version

Selects the current line from the region as being included, without including ALL of the region
modifications.

L − Line select neither version

Discards lines from both revisions of the file.

g − Globally selects the current version.

Shortcut allows ALL modifications to the current side to be accepted. This is typically the fastest
method to select all changes, minor region adjustment may then be performed on those regions which
are inappropriately included by the selection.

G − Globally selects neither version.

Marks all regions as not being acceptable.

C−x C−s − Save current side

Saves the current window to the specified file, merging the selected changes between the two
revisions. Note that the save only operates iff all hilighted changes have been selected.

C−x C−w − Save current side as

Same as Save current side except the user is prompted to enter a new filename to which the
modifications are written.

C−x k − Exit graphical diff

Exits the gdiff utility. Hilighting

The hilighting within the windows is dependent upon the color scheme selected, in general the
following hilights apply:−

normal text

No change

MicroEmacs '02

gdiff(3) 344

cyan/grey

Addition/removal of line(s)/region(s) between files.

yellow

Modification in line(s)/region(s).

green/red

Selected region, red or green is attributed to a selection for each window. NOTES

gdiff is a macro defined in gdiff.emf, inspired by the GNU utility of the same name gdiff(1)

diff(1) must be executable on the system before gdiff can function. The diff(1) invocation must
include the context difference, which annotates the differences with a +, − or ! markers. diff(1) is
typically invoked with the options −c −w.

diff(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU diff may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnudiff.zip>

For MS−DOS users, a DJGPP port of GNU diff is also available on the net. A commercial version of
diff is also available from MKS.

SEE ALSO

compare−windows(2), compile(3), diff(1), gdiff(3f), grep(3), %grep−com(5).

MicroEmacs '02

gdiff(3) 345

generate−tags−file(3)

NAME

generate−tags−file − Generate a tags file

SYNOPSIS

n generate−tags−file ["tag−command"]

DESCRIPTION

The generate−tags−file command provides an interface to tag file generation. Typically the
"tag−command" argument will not be required as the current buffer will automatically configure
generate−tags−file on how tags are generated for the current buffer's file type. See the notes below
for more information on configuration.

generate−tags−file supports two different methods of tag generation, firstly via a MicroEmacs macro
file and secondly by an external shell command (such as ctags(1)). It is generally configured in the
current buffer's setup hook.

If a macro file is used a setup dialog is opened if an argument of 0 is given to generate−tags. This
dialog can be used to configure which type of tags are required and the starting directory (useful when
using recursive tags over a source tree). Note that not all tag types are available for all file types.

The generated tags file can then be used by the find−tag(2) command.

NOTES

generate−tags−file is a macro defined in file gentags.emf.

generate−tags−file can be configured in one of 2 ways:

When a MicroEmacs macro file (such as ctags.emf) is to be used, simply give the name of
the macro file to be run as the "tag−command" argument. Alternatively set the variable
.<$buffer−fhook>.tags to this name, e.g. for C files

 set−variable .fhook−c.tags "ctags"

Note the ".emf" extension is assumed.

When an external shell command is to be used, set the tag−command to the shell
command−line prefixed with a '!' character, for example to use ctags(1) try the following:

 set−variable .fhook−c.tags "!ctags *.c *h"

MicroEmacs '02

generate−tags−file(3) 346

Note that the generate−tags dialog is not available in this mode of execution.

SEE ALSO

find−tag(2).

MicroEmacs '02

generate−tags−file(3) 347

get−next−line(2)

NAME

get−next−line − Find the next command line

SYNOPSIS

get−next−line (C−x `)

DESCRIPTION

get−next−line is typically used in conjunction with the compile(3) and grep(3) commands to enable
the user to step through errors/locations one by one. The command looks for lines in the form defined
by add−next−line(2) in the order of definition. If a match is found the command attempts to find the
next error or warning found from the current location (See compile(3)). If the buffer was not found
then the next buffer set is searched for, and if found then the next expression from the cursor is
automatically located. The command fails if none of the buffers exist, or the end of the buffer is
reached.

SEE ALSO

$file−template(5), $line−template(5). add−next−line(2), compile(3), grep(3).

MicroEmacs '02

get−next−line(2) 348

get−registry(2)

NAME

get−registry − Retrieve a node value from the registry.
set−registry − Modify a node value in the registry.

SYNOPSIS

get−registry "root" "subkey"
set−registry "root" "subkey" "value"

DESCRIPTION

get−registry retrieves the value of a node defined by root/subkey from the registry into the variable
$result(5).

The node name is specified in two components, typically required when iterating over a registry tree,
where the root component is static and the subkey is dynamic, subkey may be specified as the null
string ("") if an absolute registry path is specified.

set−registry adds (or modifies) a new value to the registry. root is the root of the new entry and
MUST exist or the call fails. subkey is the node name (or path) if the path does not exist then it is
created. value is the value to assign to the node.

DIAGNOSTICS

get−registry fails if the node does not exist, otherwise the registry string is returned in $result(5).

set−registry fails if the root node does not exist.

EXAMPLE

The following call

set−registry "/history" "foo/win32/printer" "foo−bar"

constructs a registry hierarchy of the form:−

"history" {
 "foo" {
 "win32" {
 "printer"="foo−bar";
 }
 }

MicroEmacs '02

get−registry(2) 349

}

The value of the registry node may be retrieved using:−

get−registry "/history" "foo/win32/printer"

which would return "foo−bar".

SEE ALSO

find−registry(2), list−registry(2), read−registry(2), ®(4), erf(8).

MicroEmacs '02

get−registry(2) 350

global−bind−key(2)

NAME

global−bind−key − Bind a key to a named command or macro
global−unbind−key − "Unbind a key from a named command or macro"

SYNOPSIS

n global−bind−key "command" "key" (esc k)
n global−unbind−key "key" (esc C−k)

DESCRIPTION

global−bind−key takes one of the named commands and binds it to a key. Thereafter, whenever that
key is struck, the bound command is executed. If an argument n is given then the bound command is
executed n times when the key is struck. (i.e. the command is passed the numeric argument 'n').

global−unbind−key unbinds (detaches) a user entered key sequence (i.e. C−x C−f) from any
command to which it may be bound. This does not work with buffer or message line key bindings, see
buffer−unbind−key(2) and ml−unbind−key(2). If an argument of 0 is given to global−unbind−key,
only a single key is obtained for the user, if the character is currently bound to the prefix command,
the prefix binding and any sub−bindings are removed. global−bind−key calls global−unbind−key
first if the key to be bound is already bound to something else.

If a −ve argument is given to global−unbind−key then all bindings are removed, caution − removing
all bindings interactively will render the current MicroEmacs session unusable. This can only be used
within macro development where new bindings are created immediately afterwards.

The global−bind−key command, currently bound to esc k, prompts the user for the named
command and the key to which it is to be bound. This help file gives a complete list of all built in
commands, and some useful macros, a complete list of all commands and macros can be obtained by
using the command completion (type esc xtab tab, see ml−bind−key(2)) or using the command
describe−bindings(2).

The mouse buttons are considered to be keys, there is a key for each button press and release event,
use describe−key(2) to get the binding key string.

The non−ASCII standard keys such as the cursor keys have 'standard' key names to make cross
platform binding support easy. Some systems such as termcap do not have fixed key−bindings, for
these key the users must use the command translate−key(2) to convert the system key binding to the
standard key binding.

Permanent changes are done indirectly through the me.emf file. This is a file that MicroEmacs '02
reads and executes (see execute−file(2)) during startup and hence results in the appearance of a

MicroEmacs '02

global−bind−key(2) 351

permanent change in the key bindings. The syntax of commands in the me.emf file is described
under the execute−file command. Of principal concern here are the two commands global−bind−key
and global−unbind−key. The primary difference between the way parameters are passed to these
commands in the me.emf file is that the keys are not typed in directly (as in the control−I key when
you want C−i) but by symbolic names. Every key has a unique name which can be easily obtained
with the current binding by using the command describe−key(2).

See help on Key Names for a description of the symbolic naming system and a complete list of valid
key names. Also see Bindings for a complete list of default key bindings.

EXAMPLE

Alt P

global−bind−key "func" "A−p"

Control F2

global−bind−key "func" "C−f3"

Shift Alt Left Cursor

global−bind−key "func" "A−S−left"

Control Alt Delete

global−bind−key "func" "C−A−delete"

Note that binding Control−Alt−Delete is not recommended for MS−DOS systems for
obvious reasons.

NOTES

Some ASCII keys, such as <CR> (C−m), <tab> (C−i), <BACKSPACE> (C−h) have non−ASCII key
bindings, namely "return", "tab", "backspace" etc. this is to allow separate key−bindings for the real
"C−m" etc.

Be very careful in binding and unbinding keys since you could get into some very peculiar situations
such as being unable to abort out of a command (if you unbind CTRL−G or bind it to something else)
or recover from the bad binding/unbinding if you unbind execute−named−command(2) or the
global−unbind−key command. As long as you leave yourself the opportunity to do both of the last
two commands, you can recover from disastrous bindings/unbindings.

SEE ALSO

buffer−bind−key(2), buffer−unbind−key(2), describe−bindings(2), describe−key(2), ml−bind−key(2),
ml−unbind−key(2), translate−key(2).

MicroEmacs '02

global−bind−key(2) 352

goto−alpha−mark(2)

NAME

goto−alpha−mark − Move the cursor to a alpha marked location

SYNOPSIS

goto−alpha−mark "?" (C−x a)

DESCRIPTION

goto−alpha−mark prompts user for an alpha character and sets the cursor position to the preset
location. Alpha marks are specified on a per buffer basis, thus the current buffer is not changed,
merely the current location in the buffer. The alpha mark must already be defined using
set−alpha−mark(2). This functionality is useful for rapidly returning back to locations in large files.

SEE ALSO

set−alpha−mark(2).

MicroEmacs '02

goto−alpha−mark(2) 353

goto−line(2)

NAME

goto−line − Move the cursor to specified line

SYNOPSIS

n goto−line (esc g)
goto−line "num"

DESCRIPTION

goto−line moves the cursor to the specified line in the buffer. The user is prompted for the new line
number on the command line, which may be entered as a relative displacement ([+|−]number) from
the current position, or as an absolute line number (number). If the number is preceded by + or − then
this is treated as a relative displacement from the current line, otherwise it is an absolute line number.

If a +ve argument n is supplied, goto−line moves to this line, e.g. to move the cursor to line 240:

240 goto−line

A special case of goto−line is operative if an argument of 0 is supplied, argument "num" must also be
given as above except goto−line treats the line number or displacement as an absolute move, i.e.
includes narrowed out sections when calculating the new position. If the new line lies within a
narrowed out section (i.e. a section that has been hidden and is not visible on the screen) the narrow is
automatically expanded. See narrow−buffer(2) for more information on narrowing.

Supplying a −ve argument to goto−line results in an error.

NOTES

After successfully calling goto−line, variable $window−line(5) is set to the required line number.

SEE ALSO

goto−alpha−mark(2), goto−matching−fence(2), narrow−buffer(2), $window−line(5).

MicroEmacs '02

goto−line(2) 354

goto−matching−fence(2)

NAME

goto−matching−fence − Move the cursor to specified line

SYNOPSIS

goto−matching−fence (esc C−f)

DESCRIPTION

goto−matching−fence moves the cursor to the opposing fence character of the character currently
under the cursor. The set of fence characters include [], {} and (). i.e. if the character under the
cursor is `{' then goto−matching−fence moves the cursor to the opening fence `}', and visa versa.

goto−matching−fence can also be used to move the cursor to matching C/C++ #if, #elif, #else
and #endif constructs, cycling through them in the given order.

When the fence(2m) buffer mode is enabled the matching open fence is automatically displayed when
the closing fence is typed. The length of time the matching fence is displayed for can be controlled by
the $fmatchdelay(5) variable.

SEE ALSO

fence(2m), $fmatchdelay(5), goto−line(2).

MicroEmacs '02

goto−matching−fence(2) 355

set−position(2)

NAME

set−position − Store the current position
goto−position − Restore a stored position

SYNOPSIS

n set−position "label"
n goto−position "label"

DESCRIPTION

set−position stores current window, buffer, cursor and mark position information against the given
'label' (a single alpha−numeric character). goto−position takes the positional information stored
against the given 'label' and restores the window, buffer and cursor positions from those previously
set.

A call to set−position with the same label over−writes the previous stored information, a call to
goto−position does not alter the information and may be restored multiple times.

The numerical argument to set−position is used to define the information that is stored in the position
item. The argument is intrepreted as a bitmask, flagging what information is to be stored. The bit
mask is defined as follows:

0x001

Store the current window.

0x002

Store the current window's horizonal scroll (value of $window−x−scroll(5)).

0x004

Store the current window's current line horizonal scroll (value of $window−xcl−scroll(5)).

0x008

Store the current window's vertical scroll (value of $window−y−scroll(5)).

0x010

Store the current buffer.

MicroEmacs '02

set−position(2) 356

0x020

Store the current window's current line using an alpha mark.

0x040

Store the current window's current line number (value of $window−line(5)).

0x080

Store the current window's current column offset (value of $window−col(5)).

0x100

Store the current window's mark line using an alpha mark.

0x200

Store the current window's mark line number (value of $window−line(5) when mark was set).

0x400

Store the current window's mark column offset (value of $window−col(5) when mark was set).

When n is not specified, the default value is 0x0bf, i.e. store all information required to return to the
window, buffer and cursor position.

The argument supplied to goto−position similarly interpreted as a bitmask, restoring the positional
information. When the numerical argument n is omitted the same default is used when omitted on the
store. On restoring a position, information stored during the call to set−position which is not
requested in corresponding goto is ignored, similarly information requested in a goto which was not
stored in the set is also ignored.

EXAMPLE

The following example shows the typical use of these commands:

set−position "a"
 .
 .
goto−position "a"

The following example stores the current position at the start of a macro sequence, if my−command
is not successful ($status equals 0) the original position is restored:

set−position "\x80"
!force my−command
!if &equ $status 0
 ; command failed, return to the original position
 goto−position "\x80"

MicroEmacs '02

set−position(2) 357

!endif

Note '\x80' is interpreted as the character with the ASCII value of 0x80 which is a
non−alphanumeric character, this is permitted in macros to avoid using alphanumerics.

The following example shows how the current position can be restored after re−reading a file:

0xce set−position
read−file $buffer−fname @mna
; a numeric argument of 0xce is not
; required as this is the default
goto−position

NOTES

The position item may store and restore the current line by using an alpha mark or the line number.
The restrore strategy will determine what is required, as follows:−

The main benefit from using an alpha mark is that the position is maintained even when the buffer is
edited, for example if the position is stored at line 10 and a line is subsequently inserted at the top of
the buffer, if the line number was used then it would return back to the 10th line which is the old 9th
line whereas if an alpha mark were used it would correctly return to the 11th line, as expected.

The disadvantage of using an alpha mark is that it is only associated with that buffer. In some cases a
position may need to be restored in another buffer (e.g. when re−reading a buffer the original buffer
may be deleted first), in this situation the buffer line number must be used.

Commands set−window and goto−window, which simple stored and returned to the current window,
were replaced by set−position and goto−position in August 2000. The following macro
implementations can be used as a replacement:

define−macro set−window
 1 set−position "\x80"
!emacro

define−macro goto−window
 goto−position "\x80"
!emacro

SEE ALSO

set−alpha−mark(2), find−buffer(2), $window−x−scroll(5), $window−xcl−scroll(5),
$window−y−scroll(5), $window−line(5), $window−col(5).

MicroEmacs '02

set−position(2) 358

grep(3)

NAME

grep − Execute grep command rgrep − Execute recursive grep command

SYNOPSIS

grep "expression files..." rgrep "expression" "base−path" "file−mask"

DESCRIPTION

grep executes the grep(1) command with the command line set by the %grep−com(5) variable and
the user supplied expression and file list files.... The output of the command is piped into the *grep*
buffer ready for the get−next−line(2) command to step through all matched lines. The syntax from the
grep output must be setup using add−next−line(2).

If an argument is given then a pipe−shell−command(2) is used instead of ipipe−shell−command(2),
this is useful when used in macros as it ensures that grep has finished before the command returns.

rgrep is simpler to grep in that it uses grep(1) to search for all occurrences of expression, but rgrep
also uses find(1) to search for expression in all files matching the file−mask in all directories from
base−path down.

NOTES

grep is a macro defined in tools.emf.

grep(1) must be executable on the system before grep or rgrep can function, find(1) must also be
available for rgrep to work.

EXAMPLE

The grep command is generally set up in the startup files as follows:−

;
; setup the next−error stuff including grep and compiling
;
set−variable $line−template "[0−9]+"
set−variable $file−template "[a−zA−Z:]*[0−9a−zA−Z_.]+"
;
; Definitions for GNU grep utility.
;
set−variable %grep−com "grep −n "
0 add−next−line "*grep*"

MicroEmacs '02

grep(3) 359

add−next−line "*grep*" "%f:%l:"

SEE ALSO

grep(1), %grep−com(5), add−next−line(2), get−next−line(2), compile(3).

MicroEmacs '02

grep(3) 360

help(2)

NAME

help − Help; high level introduction to help
help−command − Help; command information
help−variable − Help; variable information
help−item − Help; item information

SYNOPSIS

n help (esc ?)
help−command "command" (C−h C−c)
help−variable "variable" (C−h C−v)
help−item "item" (C−h C−i)

DESCRIPTION

The help commands provide a quick on−line help facility within MicroEmacs '02 without invoking a
third party documentation system (e.g. a browser such as Netscape(1) or winhelp(1)).

The on−line help is assisted by a set of macros which enable key words within the help buffers to be
located by either tagging (esc t) or by selection with the left mouse button. The tag mechanism
supports command completion.

help provides general help on the philosophy and functionality of MicroEmacs '02, if an argument n
of 0 is given to the command it changes the current buffer to the internal help buffer, typically named
"*on−line help*". This is a hidden system buffer used to store all the on−line help and can be
used for a variety of things. Note that access to this buffer must be via the help command, not
find−buffer and the help command will also ensure the system help file is loaded first.

help−command describes the purpose of the given command.

help−variable Describes the purpose of the given variable, similar to help−command, only for
variables.

help−item Describes the purpose of any given item, where item could be a command, variable or any
aspect of MicroEmacs '02.

FILES

The help files are ASCII text files located in the MicroEmacs '02 home directory. The files are
defined as follows:−

MicroEmacs '02

help(2) 361

me.ehf − Help text file.
hkehf.emf − Help macros.

SEE ALSO

osd−help(3), command−apropos(2), describe−bindings(2), describe−key(2), list−commands(2),
list−variables(2).

MicroEmacs '02

help(2) 362

hilight(2)

NAME

hilight − Manage the buffer hilighting schemes

SYNOPSIS

0 hilight "hil−no" "flags" ["nol"] ["buffer−scheme" ["trunc−scheme"]]

hilight "hil−no" "type" "token" [["rtoken"]

[(["close" ["rclose"] "ignore"]) |

(["continue"]) |
(["b−hil−no"])]
"schemeNum"
hilight "hil−no" "0x200" "token"
hilight "hil−no" "0x400" "from−col" "to−col" "schemeNum"

−1 hilight "hil−no" "type" "token"

DESCRIPTION

The hilight command creates and manages the buffer hilighting, the process of creating a new
hilighting scheme is best described in File Language Templates. The command takes various forms as
defined by the arguments. Each of the argument configurations is defined as follows:−

Hilight Scheme Creation

0 hilight "hil−no" "flags" ["nol"] ["buffer−scheme" ["trunc−scheme"]]

With an argument of 0, hilight initializes or re−initializes the hilight scheme hil−no (1−255). Every
buffer has a hilight scheme, the default is 0 which means no hi−lighting and only the
$global−scheme(5) etc. are used. The hilighting scheme must be defined before use and is used to
specify how the buffer is to be hilighted. MicroEmacs '02 supports the following hilighting concepts:−

hilight string, a user specified string is hilighted in any color scheme.♦
Tokens, same as a hilight string except that the string must be enclosed in non alpha−numeric
characters.

♦

Start−of−line hilights, the start of the hilight must be the first non−white character of the
line.

♦

End−of−Line hilights, the hilight starts from the current position and continues until the end
of the line. Optionally, the hilight may continue onto the next line if the current line ends in a

♦

MicroEmacs '02

hilight(2) 363

given string. A bracket may also be searched for within the line.
Bracket hilight, hi−lights from the current position until the closing bracket token is found.♦
Replace string , allows the hilight string to be replaced with a different user specified string.
(i.e. the displayed representation is different from the buffer contents)

♦

Terminals that cannot display color directly may still be able to take advantage of the hi−lighting. A
terminal that has fonts (i.e. Termcap) can use them in the same way using the add−color−scheme(2)
command. The hi−light scheme is also used in printing (see print−buffer(2)). If your terminal cannot
display color in any way, it is recommended that hi−lighting is disabled (except when printing) as it
does take CPU time.

The "hil−no" argument specifies which hi−lighting scheme is being initialized. Once a hilighting
scheme has been initialized, hi−light tokens can be added to it and it can be used by setting the current
buffer's $buffer−hilight(5) variable to "hil−no". The "flags" argument is a bit based flag setting global
hi−light characteristics, where:−

0x01

The hi−light scheme is case insensitive, i.e. the following tokens become equivalent:−

house == HOUSE == hOuSe

When the hilight scheme is attributed as case insensitive then the tokens must all be specified
in lower case.

0x02

Set a hi−light look−back. During the process of determining the window hilighting then the
hilight process has to determine whether the top of the window starts in a hi−light bracket or
not. The look−back command tries looking "nol" lines backwards for an open bracket. If an
open bracket is found then the top of the window is assumed to start with that bracket, else it
is assumed that the top of the window is not in a bracket. For example, in `C', a comment
starts with "/*" and ends with "*/" so if the hilight was initialized with

0 hilight 1 2 10 $global−scheme

of the following, only the first would begin hi−lighted which is correct (assuming the "/*" is
10 or less lines away).

 /* /*.........
 */
−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−−−−−−−− top of
 */ window

The optional argument "buffer−scheme" specifies the default scheme to use if there is no specific
hi−light, when omitted the value of $global−scheme(5) is used. The buffer−scheme is a reference to a
set of foreground and background color pairs previously defined with add−color−scheme(2). The last
argument "trunc−scheme" is also optional and specifies the line truncation scheme, when omitted the
value of $trunc−scheme(5) is used.

MicroEmacs '02

hilight(2) 364

The hi−lighting scheme required is based on the type of file being edited and so is usually directly
related to the file extension, thus it can be automatically set using file hooks (see add−file−hook(2)).

Hilight Scheme Token Creation

hilight "hil−no" "type" "token" [["rtoken"]

[(["close" ["rclose"] "ignore"]) |

(["continue" ["rcontinue"]]) |
(["b−hil−no"])]
"schemeNum"
hilight "hil−no" "0x200" "token"
hilight "hil−no" "0x400" "from−col" "to−col" "schemeNum"

With the default argument of 1, hilight creates a hilight token to be used in hilight color scheme
identified by "hil−no" (1−255) (see the section on Hilight Scheme Creation for a overview of
hi−lighting). The second argument "type" specifies the token type and must always be specified, it
determines which other arguments required.

Typically the last argument, schemeNum, is also required. This identifies the color scheme to use
when hilighting the token, defining the foreground, background and selection color schemes. This is
an index generated from add−color−scheme(2). If the schemeNum argument is omitted the default
hilght color scheme is used.

The token "type" is a bit based flag of which 0, 1 or more of the bits may be set, the effect of the bits
are defined as follows:

0x001

The "token" must be surrounded by non−word characters (word characters are typically the
alpha−numeric characters), e.g. the following defines "if" as a token:

hilight 1 1 "if" .scheme.keyword

this hilights the 'if' in " if " but not in "aifa".

0x002

Color this to the end of the line, often used for comments etc. For example in MicroEmacs
macro language a ';' character signifies the rest of the line as a comment, hilighting is defined
as follows:

; this is a comment line
hilight 1 2 ";" .scheme.comment

0x004

MicroEmacs '02

hilight(2) 365

This is a bracket token, the closing bracket string "close" and an ignore character "ignore"
must also be supplied. The ignore character indicates that when found it should ignore the
next character; this prevents an early end on bracket miss−match. For example, in C a '"'
character can be inserted into a string by 'protecting' it with a '\' character, such as "this is a
string with a \" in it". In this example the ignore character should be '\' so the mid string '"' is
correctly ignored, as follows:

hilight 1 4 "\"" "\"" "\\" .scheme.string

An empty value, "", effectively disables the ignore feature. If replacing bit 0x040 is set the
replacement close bracket "rclose" must be supplied.

0x008

The token has a continuation string, usually used with 0x02 but cannot be used with token
types 0x004 and 0x080. The argument "continue" must be supplied and if the replacing bit
0x040 is set the replacement continue string "rcontinue" must also be supplied. The best
example of its use can again be found in C; macros defined using the #define
pre−processor construct may be constructed on single or multiple lines. The macro continues
onto another line if the current line ends with a backslash '\' character, e.g.:

#define a_single_line_macro() printf("hello world\n")

#define a_four_lined_macro() \
do { \
 printf("hello world\n") ; \
} while(0)

This can be correctly hilighted with the pre−processor scheme using:

; use to−end−of−line (2) and continuation (8), i.e. 2+8=10
hilight 1 10 "#" "\\" .scheme.prepro

0x010

If this is an end of line token (0x002) then

The rest of the line is checked for any valid brackets.

Else if this is a bracket token (0x004) then

This is still searched for after an end of line token is found.

Else

Ignored

This feature enables the searching and hilighting of specific brackets contained within a
to−end−of−line scheme. For example, consider the following C code:

#define My_Token 0x01 /* This is a multi−lined comment

MicroEmacs '02

hilight(2) 366

 * describing My_Token */

With the '#' pre−processor hilight (see bit 0x08 above) the #define line would all be hilighted
with the pre−process scheme, the comment would be missed causing incorrect hilighting of
the next line. Instead this feature may be used by both the pre−processor and comment hilight
tokens to correctly hilight the above example:

hilight 1 26 "#" "\\" .scheme.prepro
hilight 1 20 "/*" "*/" "" .scheme.comment

0x020

This token must be the first non−white character of the line.

0x040

The token (and closing bracket tokens) are to be replaced by the given replacement strings.
This is often utilized when displaying formated text such as MicroEmacs on−line help ehf(8)
pages, the output from UNIX man(1) etc. In MicroEmacs help pages, the start of bold text is
delimited with the character sequence "\C[cD" and ends with the character sequence
"\C[cA", e.g.

"the word \C[cDbold\C[cA is in \C[cDbold\C[cA"

Obviously the hilight delimiters should not appear so the character sequence may be correctly
drawn using a bracket token, starting with "\C[cD" and ending with "\C[cA", replacing
both with an empty string:

hilight 1 0x44 "\C[cD" "" "\C[cA" "" "" .scheme.bold

0x080

This is a branch token. When this token is found, the token (or the replace string) is colored using the
given color schemeNum and then the current hilighting scheme is changed to "b−hil−no" (which
MUST be defined by the time it is first used). The "b−hil−no" hi−light scheme should also contain a
branch token which branches back to "hil−no" or "0" (which branches to $buffer−hilight(5)). A
branch does not have to branch back to "hil−no", it may branch to any other hi−light scheme. The
branches are not stacked and there is no limit on the nesting.

0x100

The token must be at the start of the line.

0x200

This is an invalid token in its own right, which is used for optimizing a hi−lighting scheme.

This has the second highest precedence (see 0x400) and all other bits are ignored. Only the
first 3 arguments are required. For example, if there are 11 tokens starting with "delete−"
as with the hi−lighting of this buffer, then adding the token "delete−", while invalid in its

MicroEmacs '02

hilight(2) 367

own right, means that "delete−" is only checked for once. This also reduces the size of the
internal hilighting tables so if the message "Table full" appears, the hilighting scheme should
be reduced by removal of the common components.

0x400

This is a column hilighting token, which allows absolute columns within a window to be hilighted
(irrespective of the contents). This bit takes precedence over all other bits and all other bits are
ignored. Column highlighting is a different concept to token in that it requires a "from−col" and a
"to−col" column positions and a line will be hilighted in the given scheme between these two
columns.

0x800

The flag is used with bracket tokens (0x04) and indicates that the bracket is typically contained on a
single line. This information is used by MicroEmacs in trying to avoid hilighting anomalies caused
when the start and end tokens of the bracket are the same (e.g. a string's start and end token is '"').
Problems arise when the bracket starts on one line and closes on a later line, even with a large
look−back, eventually the start bracket will become too far back and only the end bracket is found.
But as this is the same as the open token it is mistaken for an open bracket and the strings become out
of synch. This test can reset this if further down the file an open and close bracket is found on the
same line. For this to have any effect, the hilighting scheme must use look−back (flag 0x02 of
Hilight Creation).

Note that 0x004, 0x008 and 0x080 are mutually exclusive and more than 1 should not be set in
any one hilight token, if 2 or more are set the effect is undefined. Other than this there is no
restrictions placed on the types of token used, although strange combinations like 0x006 may lead to
unexpected results −− hopefully not a core dump, but not guaranteed !

The token and close token of brackets may contain a limited subset of regular expression tokens as
follows:−

^

When specified as the first character of the token, the token must be at the start of the line.

$

The token must be at the end of the line, must be the last character.

\{

Indicates the start of the hilighted part of the token, only one may be used per token. This token use is
different from regex.

\}

Indicates the end of the hilighted part of the token, only one may be used per token. The rest of the
token must be matched for it to be used but is not considered part of the token, i.e. hilighting

MicroEmacs '02

hilight(2) 368

continues on the character immediately after the "\}", not at the end of the token. Similar to the \<
token, the length of the rest of the token must be fixed. This token use is different from regex.

\(.\)

Groups are supported in hilighting, but they must only enclose a single character, closures ('*', '?' and
'+') must come after the closure, i.e. use "\(.\)*", not "\(.*\)". Alternatives ("\|") are not supported.

.

Matches any character.

[...]

Matches a single buffer character to a range of characters, for example to hilight MicroEmacs
register variables (i.e. #g0−#g9, #p0−#p9, #l0−#l9) the following regex string may be
used:

hilight 1 1 "#[gpl][0−9]"

This matches a token which starts with a '#', followed by a 'g', 'p' or 'l' character and ends
with a numerical digit. If the user required the replacement (bit 0x40) of the "#" to "#register"
to aid readability, the replacement string some now needs to know whether the second
character was a 'g', 'p' or 'l' and which digit. Up to 9 groups ("\(.\)") can be use to store a
store a single search character, which can be used later in the search string and in the
replacement string by using the form "\#", where # is the range test number counting from the
left, e.g. for the given example use:

hilight 1 65 "#\\([gpl]\\)\\([0−9]\\)" "#register\\1\\2"

The content of the brackets ([...]) include a set of special short cuts and regular expression
syntax definitions as follows:−

[abc]

A list of characters.

[a−z]

A range of characters.

[−.0−9]

A combination of character lists and ranges.

[[:space:]]

A white space character. See set−char−mask(2) for a full description on MicroEmacs
character range support.

MicroEmacs '02

hilight(2) 369

[[:digit:]]

A digit, 0−9.

[[:xdigit:]]

A hexadecimal digit, 0−9, a−f, A−F.

[[:lower:]]

A lower case letter, by default a−z.

[[:upper:]]

An upper case letter, by default A−Z.

[[:alpha:]]

A lower or upper case letter.

[[:alnum:]]

A lower or upper case letter or a digit.

[[:sword:]]

A spell word character.

[^...]

Matches all characters except the given range of characters, e.g. "[^[:space:]]".

\#

The same character which matched the #th group token. This functionality is best
explained using UNIX man(1) output as an example, to create a bold character 'X' it
produces "X\CHX" where \CH is a backspace character thereby overstriking the first
'X' with another creating a bold character. This can be checked for and simulated in
MicroEmacs using the following:

hilight 1 64 "\\(.\\)\CH\\1" "\\1" .scheme.bold

The use of "\1" in the search string ensures that the second character is the same as the first.
This is replace by a single character drawn in the bold scheme.

? + *

Matches 0 or 1, 1 or more and 0 or more of the previous character or character range respectively.

MicroEmacs '02

hilight(2) 370

Following is a list of hilighting regular expression restrictions:

The number of characters to the left of a \{ and to the right of a \} token must be fixed, i.e. the
'?', '+' and '*' tokens cannot be used before this token. Consider the hilighting of a C function
name defined to be a token at the start of a line followed by 0 or more spaces followed by a
'('. The following hilight token looks valid but the variable space match is incorrect as it is to
the right of the \}:

hilight 1 0 "^\\w+\\}\\s−*(" .scheme.function

Instead either the space match must be include in the function token hilighting (which may
cause problems, particularly if printing with underlining) or by fixing the number of spaces as
follows:

; include the spaces in the function hilighting
hilight 1 0 "^\\w+\\s−*\\}(" .scheme.function
; or fix the number of spaces to 0, 1 ...
hilight .hilight.c 0 "^\\w+\\}(" .scheme.function
hilight .hilight.c 0 "^\\w+\}\\s−(" .scheme.function

The + and * tokens match the longest string and do not narrow, e.g. consider the hilighting of
a C goto label which takes the form of an alpha−numerical name at the start of a line followed
by a ':' character. The token "^.*:" cannot be used as . will also match and move past the
ending ':', ending only at the end of the line. As no narrowing is performed the final ':' in the
token will not match and the label will not be hilighted. Instead a character range which
excludes a ':' character must be used, e.g. "^[^:]*:".

A group should not be followed by a ? or * closure, it should either be a fixed single character
or followed by a + closure (in which case the last matching character is stored).

Following is a list of hilight type bit / token regex equivalents:

0x01

"[^word]\{????\}[^word]"

0x02

"????.*"

0x20

"^\s−*\{????" − (note that this is strictly incorrect as the \s−* is to the left of the \{, it is
correctly handled for the ease of use).

0x100

"^????" Hilight Scheme Token Deletion

MicroEmacs '02

hilight(2) 371

−1 hilight "hil−no" "type" "token" With a −ve argument hilight deletes the given "token" from a
hi−light color scheme identified by "hil−no". The token "type" must also be specified to distinguish
between normal and column token types.

EXAMPLE

Example 1

Hilighting a MicroEmacs character given in hex form, checking its validity (i.e. "\x??" where ? is a
hex digit):

hilight 1 0 "\\x[[:xdigit:]][[:xdigit:]]" .hilight.variable

Hilighting a C style variable length hex number (i.e. "0x???"):

hilight 1 1 "0[xX][[:xdigit:]]+" .hilight.variable

Example 2

Replacing a quoted character with just the character (i.e. 'x' −> x)

hilight 1 64 "'\\(.\\)'" "\\1" %magenta

Example 3

The following example uses the branch hilighting feature to hilight each window line a different color
to its neighbors by cycle through 3 different color schemes:

0 hilight .hilight.line1 0 $global−scheme
 hilight .hilight.line1 0x80 "\\n" .hilight.line2 .scheme.no1
0 hilight .hilight.line2 0 .scheme.no1
 hilight .hilight.line2 0x80 "\\n" .hilight.line3 .scheme.no2
0 hilight .hilight.line3 0 .scheme.no2
 hilight .hilight.line3 0x80 "\\n" .hilight.line1 $global−scheme

Example 4

Simulate the hilighting from the output of a UNIX man page (taken from hkman.emf):

0 hilight .hilight.man 0 $global−scheme
; ignore
hilight .hilight.man 64 ".\CH" "" $global−scheme
; normal underline/italic
hilight .hilight.man 64 "_\CH\\(.\\)\\}[^\CH]" "\\1" .scheme.italic
hilight .hilight.man 64 "\\(.\\)\CH_\\}[^\CH]" "\\1" .scheme.italic
; bold − first is for nroff −man
hilight .hilight.man 64 "\\(.\\)\CH\\1\\}[^\CH]" "\\1" .scheme.bold
hilight .hilight.man 64 "_\CH_\CH_\CH_\\}[^\CH]" "_" .scheme.header

MicroEmacs '02

hilight(2) 372

hilight .hilight.man 64 "\\(.\\)\CH\\1\CH\\1\CH\\1\\}[^\CH]" "\\1" .scheme.header
; bold underline
hilight .hilight.man 64 "_\CH_\CH_\CH_\CH_\\}[^\CH]" "_" .scheme.italic
hilight .hilight.man 64 "_\CH\\(.\\)\CH\\1\CH\\1\CH\\1\\}[^\CH]" "\\1" .scheme.italic

This replaces the complex nroff character string with a single hi−lighted character (don't believe me,
try it!).

NOTES

MicroEmacs hilight was written with speed and flexibility in mind, as a result the user is assumed to
know what they are doing, if not the effects can be fatal.

SEE ALSO

File Language Templates, $buffer−hilight(5), add−file−hook(2), add−color−scheme(2),
print−scheme(2), indent(2), $system(5), print−buffer(2).

MicroEmacs '02

hilight(2) 373

hunt−forward(2)

NAME

hunt−forward − Resume previous search in forward direction hunt−backward − Resume previous
search in backward direction

SYNOPSIS

n hunt−forward (C−x h)
n hunt−backward (C−x C−h)

DESCRIPTION

hunt−forward repeats the last search with the last search string in a forwards direction, from the
current cursor position. magic(2m) and exact(2m) modes are operational.

hunt−backward repeats the last search with the last search string in a backwards direction, as per
hunt−forward.

The numeric argument n is interpreted as follows:−

n > 0

The nth occurrence of the pattern is located.

n < 0

The first occurrence of the pattern is located in the next n lines. DIAGNOSTICS

The command returns a status of FALSE if no previous search string has been established, or if the
pattern could not be located (or nth pattern where n occurrences are requested). If the pattern is found
within the given search criteria the return status is TRUE.

SEE ALSO

exact(2m), isearch−forward(2), magic(2m), search−backward(2), search−forward(2),
Regular Expressions

MicroEmacs '02

hunt−forward(2) 374

ifill−paragraph(3)

NAME

ifill−paragraph − Format a paragraph

SYNOPSIS

n ifill−paragraph (esc q)

DESCRIPTION

ifill−paragraph, like fill−paragraph, fills the current paragraph from the left margin to the current
fill column. In addition ifill−paragraph also recognizes joined bullet lists and fills each bullet
paragraph separately.

See fill−paragraph(2) for more information on the process of filling paragraphs.

EXAMPLE

Following are 2 copies of the same paragraph, the first has been filled using ifill−paragraph:

This is the main paragraph which can be as long as required,
following is a list of bullets, some with a sub−bullet list. Here
is the list:
 a) The bullet paragraph can also be as long as required and it
 also can have a bullet list following (sub−bullet list)
 which will also be filled correctly. Here is the sub−bullet
 list:
 1. First sub−bullet − again no length restrictions, this
 will be filled correctly.
 2. second sub−bullet − no problems.
 3. Third sub−bullet − again no length restrictions, this is
 getting boring.
 b) This is the second major bullet and this can just carry on
 for ever, but all things must come to an

The following version has been filled using the normal fill−paragraph:

This is the main paragraph which can be as long as required,
following is a list of bullets, some with a sub−bullet list. Here
is the list: a) The bullet paragraph can also be as long as
required and it also can have a bullet list following (sub−bullet
list) which will also be filled correctly. Here is the sub−bullet
list: 1. First sub−bullet − again no length restrictions, this
will be filled correctly. 2. second sub−bullet − no problems. 3.
Third sub−bullet − again no length restrictions, this is getting
boring. b) This is the second major bullet and this can just carry
on for ever, but all things must come to an

MicroEmacs '02

ifill−paragraph(3) 375

NOTES

ifill−paragraph is a macro defined in format.emf.

SEE ALSO

fill−paragraph(2), paragraph−to−line(3).

MicroEmacs '02

ifill−paragraph(3) 376

indent(2)

NAME

indent − Manage the auto−indentation methods

SYNOPSIS

0 indent "ind−no" "flags" "look−back"

indent "ind−no" "type" "token" ["close" ["ignore"]] ["indent"]

DESCRIPTION

The indent command creates and manages the auto−indenting methods, the process of creating a new
indentation method is best described in File Language Templates. The command takes various forms
as defined by the arguments. Each of the argument configurations is defined as follows:−

Indentation Method Creation

0 indent "ind−no" "flags" "look−back"

With an argument of 0, indent creates a new indentation method with the integer handle ind−no. The
indentation method is assigned to a buffer by setting $buffer−indent(5) to ind−no. ind−no cannot be 0
as setting $buffer−indent to zero disables indentation. If the indentation method with the same
ind−no already exists, then the existing method is deleted and a new method may be created.

flags Sets the indent bit flags where:−

0x01

Indent method is case insensitive. Note that indent tokens must be specified in lower case.

look−back specifies the maximum number of lines, prior to the current line, considered when
calculating the indentation of a line, i.e. if there are look−back number of lines between the line to be
indented and the previous non−blank line then the current indentation is lost.

If look−back is set to 0 then the indentation is effectively disabled as the current indentation can never
be found. The value may be specified in the range 0−255, a value of 10 is typically sufficient.

Indentation Rule Creation

indent "ind−no" "type" "token" ["close" ["ignore"]] ["indent"]

MicroEmacs '02

indent(2) 377

With the default argument of 1, indent creates a new rule for the indentation method ind−no which
must have previously been defined and initialized.

The indentation of a line in a buffer, which is using an indentation method, is affected by the token
types matched on the line (typef, o, s) and the current indentation (if line is not of type f).

The current indentation is determined by searching the previous lines (look−back) for the indentation
of the last indented line. This may not simply be the indentation of the last non−blank line, the exact
indentation is determined by searching for tokens in the line and assessing their effect on the
indentation of the current line.

The format of the regex valid in the "token" and "close" arguments are the same as at used by hilight
token creation, see hilight(2) for more information.

The indent tokens may be assigned one of the following types, using the type argument. If the type is
specified in upper case then the token must be surrounded by non−alpha−numeric characters:

Fixed (type = 'f' or 'F')

A line containing a fixed indent token will be indented to the given indent column from the
left−hand edge. indent is the only argument specified. e.g. MicroEmacs macro !goto
labels:−

indent .hilight.emf f "*" 0

producing

*label

The fixed token must be the first non−white character on the line, the rest of the line is
ignored. The indentation of the previous line has no effect.

Indent−from−next−line−onward (type = 'n' or 'N')

The indentation changes by indent from the next line onwards from the current line. indent is
the only argument specified. e.g. MicroEmacs macro !if:−

indent .hilight.emf n "!if" 4

Keeps the indentation of the !if line the same as the previous indentation, change the
indentation on the following lines by an extra 4 characters, to produce:

....
!if

Indent−from−current−line−onward (type = 'o' or 'O')

MicroEmacs '02

indent(2) 378

Increment the current and following lines indentation by indent. indent is the only argument
specified. e.g. MicroEmacs macro !endif

indent .hilight.emf o "!endif" −4

decrement the indent of the !endif line and following lines by 4 spaces producing:

!endif
....

Indent−single (type = 's' or 'S')

Changes the indentation of the current line ONLY by indent. indent is the only argument
specified. e.g. MicroEmacs macro !elif:−

indent .hilight.emf o "!elif" −4

decrements the indentation of the !elif line by 4 characters, but restores the previous
indentation after the current line, producing:

!elif

Bracket (type = 'b' or 'B')

A bracket should be used when a starting token pairs with a closing token which may span
multiple lines. i.e. the opening and closing braces of a programming language. Note that the
opening and closing tokens must be different otherwise they cannot be differentiated. A
bracket has two main effects:

When the previous line has an unmatched open bracket

In this situation the current line is indented to the right of the mismatched bracket.

When the previous line has an unmatched close bracket

In this situation the matching open bracket is hunted for in previous lines until either the
look−back limit (See Indentation Method Creation) is exhausted or the bracket is matched,
in which case the indent of that line is used.

For a bracket the only other argument given is the close. e.g. tcl's '(' and ')' brackets

indent .hilight.tcl b "(" ")"

Which produces:

....

.... (....

MicroEmacs '02

indent(2) 379

 )
....

Continue (type = 'c' or 'C')

Indicates that when token is found on the current line, the next line is a continuation of the
current line. The indentation of the next line is the indentation of the first continuation line
plus the given indent. indent is the only argument specified. e.g. tcl's '\'

indent .hilight.tcl c "\\" 10

A simple example is

....
12345678901234567890 \

....

When used in conjunction with brackets, the following effect is observed:

....
12345678901234567890 \
 (.... \
 ) \
 \

....

This shows why the first continuation line (the 123456... line) must be located and used
as the base line from which the indentation is derived; again the look−back limits the search
for this line.

Exclusion (type = 'e' or 'E')

Used to exclude text between start token and close token from the indentation calculation,
typically used for quotes. The ignore argument is also specified (see hilight(2)type 0x004
type bracket) e.g. MicroEmacs macro quotes:−

indent .hilight.emf e "\"" "\"" "\\"

e.g. tcl's quotes

indent .hilight.tcl e "\"" "\"" "\\"

producing:−

....
".... ignore { ... \" ... ignore another { token ... "
....

Ignore (type = 'i' or 'I')

MicroEmacs '02

indent(2) 380

Text to the right of a line containing token is to be ignored; typically used for comments. e.g.
MicroEmacs macro ';' comment:−

indent .hilight.emf i ";"

Or tcl's '#' comment

indent .hilight.tcl i "#"

producing

....
... ignore this { indent token
....

EXAMPLE

Examples of indentation method creations can be found in macro files hkemf.emf, hktcl.emf
and hkvrml.emf. The following example is taken from hkemf.emf:−

!if &sequal .hilight.emf "ERROR"
 set−variable .hilight.emf &pinc .hilight.next 1
!endif

...

0 indent .hilight.emf 0 10
indent .hilight.emf N "define−macro" 4
indent .hilight.emf n "!if" 4
indent .hilight.emf s "!eli" −4
indent .hilight.emf s "!els" −4
indent .hilight.emf o "!end" −4
indent .hilight.emf n "!whi" 4
indent .hilight.emf o "!don" −4
indent .hilight.emf n "!rep" 4
indent .hilight.emf o "!until" −4
indent .hilight.emf o "!ema" −4
indent .hilight.emf e "\"" "\"" "\\"
indent .hilight.emf i ";"
indent .hilight.emf f "*" 0

SEE ALSO

File Language Templates, $buffer−indent(5), add−file−hook(2), hilight(2).

MicroEmacs '02

indent(2) 381

info(3)

NAME

info − Display a GNU Info database
info−on − Display Info on a given topic
info−goto−link − Display Info on a given link
$INFOPATH − GNU info files base directory
.info.path − Cached info search path

SYNOPSIS

info

info−on topic−str

info−goto−link link−str

$INFOPATH string

.info.path string

DESCRIPTION

info interprets the GNU info pages, and presents the info file information within a buffer window
called *info XXXXX, where XXXXX is the name of the info file. The root of the info page is
displayed and may be traversed by selecting the links with the mouse, or by using the standard info
traversal keys.

The root of the info tree is, by default, a file called dir, which points to the other information sources.
The default search paths for the info directories are:−

c:/info − MS−DOS and MS−Windows (all).
/usr/local/info − All UNIX platforms.

The root directory may also be specified with the $INFOPATH environment variable. This is a colon
(:) or semi−colon (;) separated list of directory paths which specify the locations of the info files, for
UNIX and Microsoft DOS/Windows environment's, respectively.

info−on gets info on a user specified top level topic, e.g. "gcc", the info file "topic−str.info" must
be found in the info search path.

info−goto−link gets and displays info on a user specified link or subject. The link may be within the
currently displayed topic (the link−str need only specify the subject node name) or a subject within
another topic (in which case the link−str takes the following form "(topic) subject").

MicroEmacs '02

info(3) 382

NOTES

info is a macro implemented in file info.emf.

When an info command is run for the first time, the info search path is constructed and stored locally
in the command variable .info.path. This variable must be directly changed by the user if changes to
the info search path are required.

SEE ALSO

info(9).

MicroEmacs '02

info(3) 383

insert−file(2)

NAME

insert−file − Insert file into current buffer

SYNOPSIS

n insert−file "file−name" (C−x C−i)

DESCRIPTION

insert−file inserts the named file file−name n times into the current buffer at the beginning of the
current line. The buffer mark is set to the start of the insertion and the cursor is moved to the end.

SEE ALSO

set−mark(2), find−file(2), insert−file−name(2), view−file(2).

MicroEmacs '02

insert−file(2) 384

insert−file−name(2)

NAME

insert−file−name − Insert filename into current buffer

SYNOPSIS

insert−file−name (C−x C−y)

DESCRIPTION

insert−file−name inserts the current buffer's file name into the current buffer or, if entering text on
the message line then enters the file name into the message line buffer.

SEE ALSO

insert−file(2), yank(2).

MicroEmacs '02

insert−file−name(2) 385

insert−macro(2)

NAME

insert−macro − Insert keyboard macro into buffer

SYNOPSIS

insert−macro "command"

DESCRIPTION

insert−macro inserts the named command into the current buffer in the MicroEmacs '02 macro
language, thus enables it to be saved, re−load and therefore re−used at a later date. This is often used
in conjunction with start−kbd−macro(2), end−kbd−macro(2) and name−kbd−macro(2). The given
command must have been defined either by a keyboard macro or in MicroEmacs '02 macro code.

NOTES

The insert−macro provides a good method of identifying unknown low level key codes. Simply
record the unknown key as a macro and insert the macro into the scratch buffer. The low level key
code appears within the string.

SEE ALSO

start−kbd−macro(2), name−kbd−macro(2), define−macro(2), execute−file(2).

MicroEmacs '02

insert−macro(2) 386

insert−newline(2)

NAME

insert−newline − Move the cursor to the next word

SYNOPSIS

n insert−newline (C−o)

DESCRIPTION

insert−newline inserts n new lines at the current cursor position, but does not move the cursor. Any
text following the cursor is moved to the newly created line.

SEE ALSO

newline(2).

MicroEmacs '02

insert−newline(2) 387

insert−space(2)

NAME

insert−space − Insert space(s) into current buffer

SYNOPSIS

n insert−space

DESCRIPTION

insert−space inserts n spaces at the current cursor position, moving the cursor position.

SEE ALSO

insert−string(2), insert−tab(2), insert−newline(2).

MicroEmacs '02

insert−space(2) 388

insert−string(2)

NAME

insert−string − Insert character string into current buffer

SYNOPSIS

n insert−string "string"

DESCRIPTION

insert−string inserts a string n times into the current buffer, moving the cursor position.

insert−string allows text to be built in a buffer without reading it from a file. Some special escape
characters are interpreted in the string, as follows:

\n − Enters a new line
\t − A tab character
\b − Backspace
\f − Form−feed
\\ − Literal backslash character '\'
\xXX − Hexadecimal value of character ASCII value

SEE ALSO

insert−file(2), insert−newline(2), insert−space(2), insert−tab(2), newline(2).

MicroEmacs '02

insert−string(2) 389

insert−tab(2)

NAME

insert−tab − Insert tab(s) into current buffer

SYNOPSIS

n insert−tab (C−i)

DESCRIPTION

insert−tab inserts n tab characters at the current cursor position, moving the cursor. The command is
not affected by the tab(2m) mode as it always inserts literal tab characters.

SEE ALSO

insert−space(2), insert−string(2), insert−newline(2), tab(2), normal−tab(3), tab(2m).

MicroEmacs '02

insert−tab(2) 390

ipipe−shell−command(2)

NAME

ipipe−shell−command − Incremental pipe (non−suspending system call)
ipipe−kill − Kill a incremental pipe
ipipe−write − Write a string to an incremental pipe

SYNOPSIS

n ipipe−shell−command "command" ["buffer−name"] (esc backslash)
n ipipe−write "string"
n ipipe−kill

PLATFORM

UNIX − irix, hpux, sunos, freebsd, linux.

Windows NT − win32.

DESCRIPTION

ipipe−shell−command executes the given system command command, opening up a *icommand*
buffer into which the results of the command execution are displayed. Unlike the
pipe−shell−command(2), the user may continue editing during command execution. The command
may be terminated by deleting the buffer or issuing a ipipe−kill command.

The argument n can be used to change the default behavior of pipe−shell−command described above,
n is a bit based flag where:−

0x01

Enables the use of the default buffer name *icommand* (default). If this bit is clear the user must
supply a buffer name. This enables another command to be started without effecting any other
command buffer.

0x02

Hides the output buffer, default action pops up a window and displays the output buffer in the new
window.

0x04

Disable the use of the command−line processor to launch the program (win32 versions only).

MicroEmacs '02

ipipe−shell−command(2) 391

By default the "command" is launched by executing the command:

 %COMSPEC% /c command

Where %COMSPEC% is typically command.com. If this bit is set, the "command" is launched
directly.

0x08

Detach the launched process from MicroEmacs (win32 versions only). By default the command is
launched as a child process of MicroEmacs with a new console. With this bit set the process is
completely detached from MicroEmacs instead.

0x10

Disable the command name mangling (win32 versions only). By default any '/' characters found in
the command name (the first argument only) are converted to '\' characters to make it Windows
compliant.

0x20

Displays the new process window, by default this window is hidden.

Many other macro commands (see compile(3), grep(3)etc.) use this command.

ipipe−write writes a string string to an open ipipe, n times.

ipipe−kill terminates an open ipipe, this is automatically called when the ipipe buffer is deleted using
delete−buffer(2) or when MicroEmacs is exited.. The numeric argument n can be used to change the
signal generated, where n can take the following values:

1

Sends a Terminate process signal, literally a SIGKILL signal on unix or a WM_CLOSE on windows
platforms. This is the default signal and is typically bound to C−c C−k.

2

Sends an interrupt signal, writes a Ctrl−C to the <stdin> pipe on unix or sends Ctrl−C key events on windows
platforms. This is typically bound to C−c C−c. NOTES

On UNIX platforms the TERM environment variable of the new process can be set by setting the user
variable %ipipe−term to the required value, e.g.:

 set−variable %ipipe−term "TERM=vt100−nam"

Ipipe shells support a large sub−set of vt100 terminal commands, notable exceptions are color and
font support and the support of auto−margins. Using the terminal type "vt100−nam" disables the

MicroEmacs '02

ipipe−shell−command(2) 392

use of auto−margins, providing better support.

On platforms which do not support ipipe−shell−command, such as MS−DOS, executing
ipipe−shell−command automatically invokes pipe−shell−command, hence macros may safely use
ipipes without explicitly checking the platform type. ipipe−shell−command does not run reliably on
Windows 3.11 and Windows 95; Windows NT does support ipipes.

While the pipe command is running, mode pipe(2m) is enabled. Modes lock(2m) and wrap(2m) effect
the output behavior of an ipipe−shell−command.

EXAMPLE

The following example is the grep(3) command macro which utilizes the ipipe−shell−command,
diverting the output to a buffer called *grep*.

define−macro grep
 !if &seq %grep−com "ERROR"
 set−variable %grep−com "grep "
 !endif
 !force set−variable #l0 @1
 !if ¬ $status
 set−variable #l0 @ml00 %grep−com
 !endif
 !if @?
 1 pipe−shell−command &cat %grep−com #l0 "*grep*" @mna
 !else
 1 ipipe−shell−command &cat %grep−com #l0 "*grep*" @mna
 !endif
!emacro

Note that if an argument is passed to grep then it uses pipe−shell−command instead. This is useful if
another command is using grep which must finish before the calling command can continue, see
replace−all−string(3) for an example.

BUGS

On MicroSoft Windows platforms, ipipe−shell−command spawns the shell (e.g. command.com)
with the appropriate command line to make it execute the given command. If the command to be run
detaches from the shell and creates its own window, for example me.exe, ipipe−kill will only kill
the shell, it will not kill the actual process, i.e. the me.exe.

On MicroSoft Windows platforms ipipe−shell−command does not work on Novell's Intranet Client
v2.2 networked drives, version 2.5 does appear to work.

SEE ALSO

$buffer−ipipe(5), compile(3), grep(3), pipe−shell−command(2), replace−all−string(3),
shell−command(2), pipe(2m), lock(2m), wrap(2m).

MicroEmacs '02

ipipe−shell−command(2) 393

isearch−forward(2)

NAME

isearch−forward − Search forward incrementally (interactive)
isearch−backward − Search backwards incrementally (interactive)

SYNOPSIS

isearch−forward (C−s)
isearch−backward (C−r)

DESCRIPTION

isearch−forward provides an interactive search in the forward direction. This command is similar to
search−forward(2), but it processes the search as each character of the input string is typed in. This
allows the user to only use as many key−strokes as are needed to uniquely specify the string being
searched.

The follow keys can be used at the start of an incremental search only:

C−s − Search for last string.
C−m − Perform a search−forward instead.
esc p,
esc n − Scroll through history list etc (See ml−bind−key(2)).

Several control characters are active while isearching:

C−s or C−x

Skip to the next occurrence of the current string

C−r

Skip to the last occurrence of the current string

C−h

Back up to the last match (possibly deleting the last character on the search string)

C−w

Insert the next word into the search string.

C−g

MicroEmacs '02

isearch−forward(2) 394

Abort the search, return to start.

esc or C−m

End the search, stay here

isearch−backward is the same as isearch−forward, but it searches in the reverse direction.

For both commands when the end of the buffer is reached, an alarm is raised (bell etc.) a further
search request (C−s) causes the search to commence from the start of the buffer.

NOTES

The ml−bind−key(2) bindings are used.

The incremental search supports buffer modes exact(2m) and magic(2m).

BUGS

Due to the dynamic nature of active ipipe−shell−command(2) buffers the search history cannot be
stored in the same way (list of fixed locations). As a result the search history is stored as a list of
searches which are not guaranteed to be consistent.

SEE ALSO

exact(2m), hunt−forward(2), magic(2m), ml−bind−key(2), search−forward(2).
Regular Expressions

MicroEmacs '02

isearch−forward(2) 395

ishell(3)

NAME

ishell − Open a interactive shell window
$ME_ISHELL − Windows ishell command comspec

PLATFORM

Windows '95/'98/NT − win32
Unix − All variants.

SYNOPSIS

ishell

[Windows Only]
$ME_ISHELL = <comspec>

DESCRIPTION

ishell creates an interactive shell window within the a MicroEmacs buffer window, providing access
to the native operating systems command shell. Within the window commands may be entered and
executed, the results are shown in the window.

On running ishell a new buffer is created called *shell* which contains the shell. Executing the
command again creates a new shell window called *shell1*, and so on. If a *shell* window is
killed off then the available window is used next time the command is run.

Additional controls are available within the shell window to control the editors interaction with the
window. The operating mode is shown as a digit on the buffer mode line, this should typically show
"3", which corresponds to F3. The operating modes are mapped to keys as follows:−

F2

Locks the window and allows local editing to be performed. All commands entered into the window
are interpreted by the editors. F2 mode is typically entered to cut and paste from the window, search
for text strings etc. In mode 2, a 2 is shown on the mode line.

F3

The normal operating mode, text typed into the window is presented to the shell window. Translation
of MicroEmacs commands (i.e. beginning−of−word) are translated and passed to the shell. For
interactive use this is the default mode. In mode 3, a 3 is shown on the mode line.

MicroEmacs '02

ishell(3) 396

F4

All input is passed to the shell, no MicroEmacs commands are interpreted and keys are passed straight
to the shell window. This mode is used where none of the keys to be entered are to be interpreted by
MicroEmacs. Note that you have to un−toggle the F4 mode before you can swap buffers as this
effectively locks the editor into the window.

F5

Clears the buffer contents. This simply erases all of the historical information in the buffer. The
operation of the shell is unaffected.

To exit the shell then end the shell session using the normal exit command i.e. "exit" or "C−d" as
normal and then close the buffer. A short cut "C−c C−k" is available to kill off the pipe. However, it
is not recommended that this method is used as it effectively performs a hard kill of the buffer and
attached process

UNIX

The UNIX environment uses the native pty support of the operating system. The shell that is opened
is determined by the conventional $SHELL environment variable.

The shell window assumes that the user is running some sort of Emacs emulation on the command
line (i.e. VISUAL=emacs for ksh(1), zsh(1), bash(1), tsch(1)) and passes Emacs controls for
command line editing.

The shell window understands re−size operations and provides a limited decoding of the termio
characters for a VT100 screen. From within the shell window it is possible to run the likes of top(1)
correctly. It is even possible to run another MicroEmacs terminal session !!

WINDOWS

The Windows environment provides a very poor command shell facility, this is more of a
fundamental problem with the operating system than anything else. Unfortunately NT is no better
than Windows '95/'98, stemming from the fact that the Windows is not actually an O/S but a huge
window manager, hindered by legacy issues of MS−DOS.

For those familiar with the UNIX command shell then it is strongly recommended that the cygnus(3)
BASH shell is used as an alternative. This is a far more responsive shell window and provides the
familiar Emacs editing of the command line.

The command shell under Windows is slow and very unresponsive, this would appear to be a problem
with the command.com as the same problems are not apparent with the cygwin environment.
However, the shell window is good for kicking off command line utilities (such as make), or any
command line processes that generate output on stdout as all of the output is captured in the buffer
window which can be scrolled backwards for post analysis. For this very reason it is more preferable
to the standard MS−DOS box.

MicroEmacs '02

ishell(3) 397

It is not possible to run any utilities that use embedded screen control characters as these are not
interpreted by the editor.

Changing the Shell

The default shell that is executed is defined by the environment variable $COMSPEC. Where the
user is using a different command shell (i.e. 4−DOS), then problems may arise if this is an old 16−bit
executable. The shell that MicroEmacs executes may be overridden by setting the environment
variable $ME_ISHELL. This is typically set in the me32.ini(8) file i.e.

[username]
ME_ISHELL=c:\windows\command.com

Bugs

WinOldAp

Winoldap is created by the Microsoft environment whenever a shell is created. On occasions where
processes have terminated badly the user may be prompted to kill these off; this is the normal
behaviour of Windows. It is strongly advised that the shell is always exited correctly (i.e. exit)
before leaving the editor. The Windows operating system for '95/'98 is not particularly resilient to
erroneous processes can bring the whole system down. I believe that NT does not suffer from these
problems (much).

Locked Input

There are occasions after killing a process the editor appears to lock up. This is typically a case that the old
application has not shut down correctly. Kill off the erroneous task (Alt−Ctrl−Del − End Task) then bring
the editor under control using a few C−g abort−command(2) sequences. NOTES

The ishell command uses the ipipe−shell−command(2) to manage the pipe between the editor and the
shell. The window is controlled by the macro file hkipipe.emf which controls the interaction with
the shell.

SEE ALSO

ipipe−shell−command(2), cygnus(3), me32.ini(8).

MicroEmacs '02

ishell(3) 398

kbd−macro−query(2)

NAME

kbd−macro−query − Query termination of keyboard macro

SYNOPSIS

[Definition]
kbd−macro−query (C−x q)

[Execution]
kbd−macro−query "y"|"n"|"C−g"

DESCRIPTION

kbd−macro−query queries the termination state of keyboard macro recording. If the command is
executed during a keyboard macro definition, at that point during its execution the user is prompted as
to whether to continue the macro execution. A reply of "y" continues the execution as normal, "n"
stops execution at that point once, if executing the macro n times the macro will still executed a
further n−1 times. If the "C−g" abort command is entered then all keyboard macro execution is
aborted, regardless of the number of repetitions.

SEE ALSO

start−kbd−macro(2), execute−kbd−macro(2).

MicroEmacs '02

kbd−macro−query(2) 399

kill−line(2)

NAME

kill−line − Delete all characters to the end of the line

SYNOPSIS

n kill−line (C−k)

DESCRIPTION

kill−line, when used with no argument n, deletes all text from the cursor to the end of a line, the end
of line character is also deleted if the cursor is in the first column and the line(2m) mode is disabled.
The deleted text is placed in the kill buffer, see yank(2) for more information on the kill buffer. When
used on a blank line, it always deletes it.

If a +ve argument n is supplied the specified number of lines is deleted, the setting of the line mode is
ignore. If n is 0 the command has no effect. If a −ve argument is given, +n lines are deleted but the
text is NOT added to the kill buffer.

NOTES

If a line is accidentally removed then yank the text back immediately or use undo(2).

The −ve argument is typically used in macro scripts where the yank buffer is more precisely
controlled by the script.

SEE ALSO

kill−region(2), line(2m), undo(2), yank(2), forward−kill−word(2).

MicroEmacs '02

kill−line(2) 400

kill−paragraph(2)

NAME

kill−paragraph − Delete a paragraph

SYNOPSIS

n kill−paragraph

DESCRIPTION

kill−paragraph deletes the next n paragraphs, if n is +ve then the paragraph the cursor is currently in
and the next n−1 paragraphs are killed. If n is −ve then the current paragraph and the previous n−1
paragraphs are killed. If n is zero the command simply returns. The default value for n is 1.

DIAGNOSTICS

The following errors can be generated, in each case the command returns a FALSE status:

[end of buffer]

The given argument n was greater that the number of remaining paragraphs, all the remaining
paragraphs are still removed.

[top of buffer]

A negative argument n was given requesting more paragraphs to be killed then are present before the cursor.
All the paragraphs before the cursor are still removed. NOTES

A paragraph is terminated by a blank line. All text residing between two blank lines is considered to
be a paragraph − regardless of the text layout.

The distinction between killed text and deleted text is that text which is killed is placed into the yank
buffer so that it can be pasted into any buffer using yank(2).

SEE ALSO

backward−paragraph(2), forward−paragraph(2), kill−region(2).

MicroEmacs '02

kill−paragraph(2) 401

kill−rectangle(2)

NAME

kill−rectangle − Delete a column of text
yank−rectangle − Insert a column of text

SYNOPSIS

kill−rectangle (esc C−w)
n yank−rectangle (esc C−y)

DESCRIPTION

kill−rectangle deletes a rectangle (or column) of text defined be the cursor and the set−mark position.
The text between the mark column and the cursor column is removed from every line between the
mark line and the cursor line inclusive and copied to the kill buffer. The delete text may then be
extracted from the kill buffer using yank(2) or yank−rectangle.

The mark position may be ahead or behind the current cursor position. If the rectangle column
boundary divides a tab character which spans multiple columns, the tab character is replaces with the
equivalent number of spaces. Similarly if the boundary divides an unprintable character which is
displayed using multiple characters (e.g. '^A' for character 0x01) then spaces are inserted before the
character to move it to the right of the boundary.

yank−rectangle inserts the current kill buffer (which may or may not have been generated using
kill−rectangle) into the current buffer in a column fashion. That is to say that the first line of text in
the kill buffer is inserted into the current line of text in the current buffer from the current cursor
column, the cursor is then moved the the next line and placed at the same column. The process is then
repeated for the second line of text in the kill buffer etc.

NOTES

The command copy−rectangle is not provided by default as this command is rarely required. If this
command is required, the following macro definition can be used:

define−macro copy−rectangle
 set−alpha−mark "T"
 set−variable #l0 &bmod "view"
 set−variable #l1 &bmod "edit"
 set−variable #l2 &bmod "undo"
 −1 buffer−mode view
 1 buffer−mode undo
 kill−rectangle
 ; undo the kill and restore the buffer state
 undo

MicroEmacs '02

kill−rectangle(2) 402

 &cond #l2 1 −1 buffer−mode "undo"
 &cond #l1 1 −1 buffer−mode "edit"
 &cond #l0 1 −1 buffer−mode "view"
 goto−alpha−mark "T"
 ; flag the command to be a copy−region type command
 set−variable @cl copy−region
!emacro

SEE ALSO

set−mark(2), kill−region(2), yank(2), copy−region(2), reyank(2), undo(2).

MicroEmacs '02

kill−rectangle(2) 403

kill−region(2)

NAME

kill−region − Delete all characters in the marked region

SYNOPSIS

n kill−region (C−w)

DESCRIPTION

kill−region deletes all characters from the cursor to the mark set with the set−mark(2) command. The
characters removed are copied into the kill buffer and may be extracted using yank(2). If a numeric
argument of 0 is given the command has no effect. If a −ve argument is given the characters are not
placed in the kill buffer, therefore the text is effectively lost (this does not effect the undo(2)
operation).

The mark position may be ahead or behind the current cursor position.

USAGE

To move text from one place to another:

Move to the beginning of the text you want to move.♦
Set the mark there with the set−mark (esc space) command.♦
Move the point (cursor) to the end of the text.♦
Use the kill−region command to delete the region you just defined. The text will be saved in
the kill buffer.

♦

Move the point to the place you want the text to appear.♦
Use the yank (C−y) command to copy the text from the kill buffer to the current point.♦

Repeat the last two steps to insert further copies of the same text.

NOTES

If a region is accidentally removed then yank the text back immediately or use undo(2).

Windowing systems such as X−Windows and Microsoft Windows utilize a global windowing kill
buffer allowing data to be moved between windowing applications (cut buffer and clipboard,
respectively). Within these environments MicroEmacs '02 automatically interacts with the windowing
systems kill buffer, the last MicroEmacs '02 kill−region entry is immediately available for a paste
operation into another windowing application.

MicroEmacs '02

kill−region(2) 404

SEE ALSO

copy−region(2), kill−rectangle(2), reyank(2), set−mark(2), undo(2), yank(2).

MicroEmacs '02

kill−region(2) 405

line−scheme−search(3)

NAME

line−scheme−search − Search and annotate the current buffer

SYNOPSIS

line−scheme−search

DESCRIPTION

line−scheme−search provides a method of searching for text patterns within the current buffer and
annotating any matches through colored line hilighting. A selection of line colors are provided to
allow different search patterns to be assigned their own color.

line−scheme−search is generally used for annotating log files and alike, where indevidual lines are of
interest in addition to the context about that line. The hilighting draws attention to the line, by
providing a visual cue, allowing the contents of the file to be breifly scanned.

On invocation of line−scheme−search a osd(2) dialog is presented to the user, search patterns and
their associated hilighting assignment are selected through this interface. The dialog entries are
defined as follows:−

Search for

The text dialog entry box allows the search pattern to be entered. This may be a regular expression or
plain text.

Color

The Color allows the line hilighting color scheme to be selected from a pop−up menu. The color
Remove is special and allows previously applied line hilighting to be removed.

Case Sensitive

A check box that allows the search to be case sensitive or insensitive. This modifies the exact(2m)
mode.

Magic Mode

A check box that enables/disables regular expression pattern matching. This modifies the magic(2m)
mode.

Below

MicroEmacs '02

line−scheme−search(3) 406

Searches and hilights lines matching the search pattern from the current cursor position to the end of
the buffer.

Above

Searches and hilights lines matching the search pattern from the current cursor position to the top of
the buffer.

All

Searches and hilights lines matching the search pattern for the whole buffer.

Clear All

Removes all line hilighting from the current buffer.

First

Moves to the top of the buffer and hilights the first line that matches the search pattern.

Next

Hilights the next line that matches the search pattern.

Reverse

Hilights the previous line that matches the search pattern.

Exit

Exits the hilighting search dialog. NOTES

line−scheme−search is a macro implemented in hiline.emf.

SEE ALSO

osd(2), $line−scheme(5).

MicroEmacs '02

line−scheme−search(3) 407

list−buffers(2)

NAME

list−buffers − List all buffers and show their status

SYNOPSIS

list−buffers (C−x C−b)

DESCRIPTION

list−buffers splits the current window and in one half brings up a list of all the buffers currently
existing in the editor. The active modes, change flag, and active flag for each buffer is displayed. (The
change flag is a * character if the buffer has been changed and not written out. The active flag is not
an @ if the file had been specified on the command line, but has not been read in yet since nothing
has switched to that buffer.)

The buffer list has some special command keys associated with it which allow the state of the buffers
to be edited from the buffer list, the editing allows buffers to be killed and saved to disk. The key
codes are defined as follows:−

1 − Switch to buffer

Switch to that buffer and make it the only buffer.

2 − Move to buffer

Switch the buffer list window to that buffer.

D − delete buffer

Flag buffer for deletion. A buffer scheduled for deletion is marked with a 'D' in first column. The
delete status is enacted by the 'X' command, or may be removed with the 'U' command.

S − save buffer

Flag buffer for saving. A buffer scheduled from saving is marked with a 'S' in the second column.
Note that a buffer may be marked for saving and deletion, the save operation is performed before the
delete.

U − unmark buffer

Unmark the 'D' and 'S' flags on current line.

MicroEmacs '02

list−buffers(2) 408

X − execute

Execute all the 'D' and 'S' flags currently set. The Save is enacted first.

For all but 'X', the buffer selected is the buffer noted on the current cursor line. These keys are not
remappable.

SEE ALSO

list−variables(2), list−commands(2), split−window−horizontally(2).

MicroEmacs '02

list−buffers(2) 409

list−commands(2)

NAME

list−commands − List available commands

SYNOPSIS

list−commands (C−h c)

DESCRIPTION

list−commands constructs a list of all known built in commands and macros that are currently
defined by MicroEmacs '02 and presents a list of those commands in the buffer "*commands*". Each
entry is formatted as:−

command keyCode

Where multiple keys are bound to the same command, then each of the keyCode's is shown.

list−commands is similar to describe−bindings(2) except that the commands are presented in
alphabetical order (as opposed to key binding order).

EXAMPLE

The following is an example of the output of list−commands:−

backward−char "C−b"
 "left"
backward−delete−char "backspace"
 "S−backspace"
backward−delete−tab "S−tab"
backward−kill−word "esc backspace"
backward−line "C−p"
 "up"
 "C−up"
backward−paragraph "esc ["
 "esc p"
backward−word "esc b"
 "C−left"
beginning−of−buffer "esc <"
 "home"
beginning−of−line "C−a"
buffer−bind−key
buffer−info "C−x ="
buffer−mode "esc ~"
 "C−x m"
 "insert"

MicroEmacs '02

list−commands(2) 410

buffer−unbind−key
:
:

SEE ALSO

describe−bindings(2), list−variables(2).

MicroEmacs '02

list−commands(2) 411

list−registry(2)

NAME

list−registry − Display the registry in a buffer

SYNOPSIS

list−registry

DESCRIPTION

list−registry lists the contents of the registry in the a buffer in a hierarchical format. The key name
and any associated string is shown as a hierarchical tree.

The registry listing is generated in the buffer "*registry*".

SEE ALSO

read−registry(2), erf(8).

MicroEmacs '02

list−registry(2) 412

list−variables(2)

NAME

list−variables − List defined variables

SYNOPSIS

list−variables (C−h v)

DESCRIPTION

list−variables pops up a window with a list of all register, buffer, user and global variables with their
current setting. The variables are shown for the current buffer from which the command was invoked

list−variables provides a good alternative to describe−variable(2) where the value of multiple
variables is to be interrogated.

The output is displayed in four sections:−

Register variables

The current settings of the global register variables ('#' prefix).

Buffer Variables

The current setting of the buffer variables (':' prefix). This variables relate to the current buffer from
which the command was invoked.

System Variables

The current settings of the system variables ('$' prefix).

Global Variables

The current setting of the global variables ('%' prefix). EXAMPLE

An example output from list−variables is shown below:−

Register variables:

 #g0 "29"
 #g1 ""
 #g2 "ERROR"
 :
 :

MicroEmacs '02

list−variables(2) 413

 #g8 "ERROR"
 #g9 "ERROR"

Buffer [m2cmd086.2] variables:

System variables:

 $auto−time "300"
 $buffer−bhook "bhook−nroff"
 $buffer−bname "m2cmd086.2"
 $buffer−ehook "ehook−nroff"
 $buffer−fhook "fhook−nroff"
 $buffer−fmod "040"
 $buffer−fname "d:/emacs/doc/m2cmd086.2"
 $buffer−hilight "3"
 :
 :
 $window−width "80"
 $window−x−scroll "0"
 $window−xcl−scroll "0"
 $window−y−scroll "52"

Global variables:

 %black "0"
 %blue "4"
 %compile−com "nmake "
 %cyan "6"
 %green "2"
 %grep−com "grep −n "
 :
 :
 %usr1mode "off"
 %white "7"
 %yellow "3"

SEE ALSO

describe−variable(2), list−commands(2).

MicroEmacs '02

list−variables(2) 414

Mahjongg(3)

NAME

Mahjongg − MicroEmacs '02 version of the solitaire Mah Jongg game

SYNOPSIS

Mahjongg

DESCRIPTION

Mah Jongg is an ancient Chinese game usually played by four players with tiles similar to dominos.
This is a MicroEmacs '02 version which was inspired by the X−Windows version of the same game.
The X−Windows version for the solitaire game originally seen on the PC and later ported to
SunView.

Theory Of Play

The object of the game is to remove all the tiles from the board. Tiles are removed by matching two
identical tiles which have either an open left edge or open right edge. The only exception to this rule
is that any open "flower" tile (bamboo [BAMB], orchid [ORCH], plum [PLUM], or chrysanthemum
[CHRY]) matches any other open "flower" tile and any open "season" tile (spring, summer, autumn,
or winter) matches any other open "season" tile.

Tiles are stacked on the board, the height of the tile is indicated by the color coding as follows:−

Level 5 − White
Level 4 − Red
Level 3 − Yellow
Level 2 − Green
Level 1 − Cyan

To remove a pair of tiles, click the left mouse button on a tile (which will show in the selection color)
and then click the left mouse button on the matching tile. At this point, both tiles will disappear from
the board. If after selecting the first tile, you decide that you don't wish to play that tile, simply reclick
the left button on the selected tile, alternatively click the right button to deselect any selected tile.

To the right of the board are a number of control buttons. To select an option, click the left mouse
button on it.

NEW

Start a new game (keyboard n).

MicroEmacs '02

Mahjongg(3) 415

SAME

Start the same game again (keyboard s).

QUIT

Exit the game (keyboard q).

HELP

This help page (keyboard esc h).

The counter shows the number of remaining tiles on the board, at the start of the game there are 144
tiles.

NOTES

Mahjongg is a macro defined in mahjongg.emf.

Mah Jongg may only be played with a mouse, there is no keyboard support, with the exception of the
re−start keys.

ACKNOWLEDGEMENT

Thanks to Jeff S. Young who (I think) wrote the original X−Windows version, and whose manual
page formed the basis of this page.

The tile patterns were inspired from the X−Windows tile patterns. The X−Windows tile patterns
themselves are copyright 1988 by Mark A. Holm <tektronix!tessi!exc!markh>.

SEE ALSO

Games, Match−It(3), Patience(3).

MicroEmacs '02

Mahjongg(3) 416

MainMenu(3)

NAME

Main Menu − The top main menu

SYNOPSIS

n osd

DESCRIPTION

The main menu is provided to give an easier access to parts of MicroEmacs functionality, the menu is
not burnt into MicroEmacs but defined on start−up in me.emf and osd.emf. The user−setup(3)
command can be used to set whether the menu is always visible and if the Alt−Hotkeys are enabled
(i.e. 'A−f' to open the File menu).

The main menu is osd(2) dialog number 0 so key bindings can be made which will open the main
menu, an argument of 0 will simply open the main menu, an argument of 0x0n0000 will not only
open the main menu but also the nth sub menu, e.g. to open the edit menu use:

 0x020000 osd

Following is a brief description of the main menu items:

File Menu

New

Changes the current buffer to a new buffer.

Open

Opens a dialog enabling the user to select files for opening into MicroEmacs. By default the dialog
opens the selected file using command find−file(2), but if the view option is selected the view−file(2)
command is used. The binary or encrypt options configure whether the files are to be loaded with
binary(2m) or crypt(2m) modes enabled.

Quick Open

Opens a sub−menu list all user file types (defined in user−setup(3)). Selecting one will open another
sub−dialog list all files of that type in the current directory, selecting a file will open it using
command find−file(2).

Favorites

MicroEmacs '02

MainMenu(3) 417

Opens a sub−menu enabling the user to add new favorite files, edit the existing list of favorite files, or
select an existing favorite file in which case the file is opened using command find−file(2). The
favorite file using to store the list is "$MENAME.eff" and is saved in the first path given in the
$search−path(5). Each favorite file takes 2 lines in the file, the first is the text displayed in the dialog
(note that characters '\' and '&' must be protected with a '\' and the '&' can be used to set the Hot key)
and the second line is the file name. A line with a single '−' character creates a separater line in the
dialog.

Find Tag

Only visible when a tags file is found in the current directory, the command jumps to the current tag
or if not on a tag or the tag is not found, opens a dialog enabling the user to select a tag. See command
find−tag(2) for more information.

Find File

Executes command file−browser(3).

FTP

Executes command ftp(3).

Close

Executes a dialog form of the command delete−buffer(2).

Attributes

Opens a dialog enabling the user to set the current buffers file attributes. See command file−attrib(3)
for more information.

Save

Executes a dialog form of the command save−buffer(2).

Save As

Executes a dialog form of the command write−buffer(2).

Save All

Executes a dialog form of the command save−all(3).

Printer Setup

Opens a dialog which enables the user to configure the printer driver, output location and page layout
(executes command print−setup(3)).

Print

MicroEmacs '02

MainMenu(3) 418

Executes command print−buffer(2).

Buffer

Opens a sub−menu listing all created buffers, selecting one will change the current buffer to the
selected one.

Exit

Executes command save−buffers−exit−emacs(2). Edit Menu

Undo

Undoes the last edit in the current buffer (executes command undo(2)).

Redo

Redo the last undo, only available immediately after an undo. This is also done via the undo(2)
command.

Undo All

Undo all edits in the current buffer until the last save or no more undo history is available. Executes
the command undo(2) with a 0 numerical argument.

Set Mark

Executes command set−mark(2).

Cut

Executes command kill−region(2).

Copy

Executes command copy−region(2).

Paste

Executes command yank(2).

Narrow Out

Executes command narrow−buffer(2) with a numeric argument of 4.

Narrow To

Executes command narrow−buffer(2) with a numeric argument of 3.

MicroEmacs '02

MainMenu(3) 419

Remove Single Narrow

Executes command narrow−buffer(2) with a numeric argument of 2.

Remove All Narrows

Executes command narrow−buffer(2) with a numeric argument of 1. Search Menu

Search

Executes a dialog form of the command isearch−forward(2).

Replace

Executes a dialog form of the command query−replace−string(2).

Hilight Search

Opens another dialog which can be used to add and remove hilighting of individual lines in the
current buffer. Note that setting a line hilight is a temporary change, it will not effect any files etc and
will be lost when the buffer is deleted.

Goto Line

Executes a dialog form of the command goto−line(2).

Goto Fence

Executes command goto−matching−fence(2).

Set Bookmark

Executes command set−alpha−mark(2).

Goto Bookmark

Executes command goto−alpha−mark(2). Insert Menu

Symbol

Executes command symbol(3).

Date & Time

Opens a dialog with the current date and time in a selection of common formats; selecting one of
these will insert the string into the current buffer at the current position. Note that the format text
strings depend on the current language (Default and American languages use the order MM−DD−YY

MicroEmacs '02

MainMenu(3) 420

etc whereas the rest use DD−MM−YY). The names used for the day and month names can be defined
using the Setup page of Organizer(3).

File

Executes command insert−file(2).

File Name

Executes command insert−file−name(2).

Macro...

Executes command insert−macro(2). Format Menu

Restyle Buffer

Executes command restyle−buffer(3).

Restyle Region

Executes command restyle−region(3).

Clean Buffer

Executes command clean(3).

Change Buffer Char Set

Executes command charset−change(3).

IQ Fill Paragraph

Executes command ifill−paragraph(3).

Fill Paragraph

Executes command fill−paragraph(2).

Fill All Paragraphs

Executes command fill−paragraph(2) with a very large positive numerical argument. Note that this
only effects paragraphs from the current position onwards.

Paragraph to Line

Executes command paragraph−to−line(3).

MicroEmacs '02

MainMenu(3) 421

All Paragraphs to Line

Executes command paragraph−to−line(3) with a very large positive numerical argument. Note that
this only effects paragraphs from the current position onwards.

Sort Lines

Executes command sort−lines(2).

Ignore Case Sort Lines

Executes command sort−lines−ignore−case(3).

Capitalize Word

Executes command capitalize−word(2).

Lower Case Word

Executes command lower−case−word(2).

Lower Case Region

Executes command lower−case−region(2).

Upper Case Word

Executes command upper−case−word(2).

Upper Case Region

Executes command upper−case−region(2). Execute Menu

Execute Command

Executes command execute−named−command(2).

Execute Buffer

Executes command execute−buffer(2).

Execute File

Executes command execute−file(2).

Start Kbd Macro

Executes command start−kbd−macro(2).

MicroEmacs '02

MainMenu(3) 422

Query Kbd Macro

Executes command kbd−macro−query(2).

End Kbd Macro

Executes command end−kbd−macro(2).

Execute Kbd Macro

Executes command execute−kbd−macro(2).

Name Kbd Macro

Executes command name−kbd−macro(2).

Ipipe command

Executes command ipipe−shell−command(2).

Shell

Executes command shell(2). Tools Menu

Current Buffer Tools

For some file formats MicroEmacs provides a file format specific set of tools, see the file type help
page for more specific information.

Count Words

Executes command count−words(2).

Spell Word

Executes command spell−word(3).

Spell Buffer

Executes command spell−buffer(3).

Word Complete

Takes the incomplete word to the left of the cursor and attempts to complete the word by using the
users current language dictionary. Executes command expand−word(3).

Compare Windows

MicroEmacs '02

MainMenu(3) 423

Executes command compare−windows(2).

Compile

Executes command compile(3).

Grep

Executes command grep(3).

Graphical Diff

Executes command gdiff(3).

Diff

Executes command diff(3).

Diff Changes

Executes command diff−changes(3).

Organizer

Executes command organizer(3).

Mail

Executes command mail(3).

View Mail

Executes command vm(3).

More...

Opens a sub−menu with a collection of other useful miscellaneous tools. Window Menu

Split Window V

Executes command split−window−vertically(2).

Grow Window V

Executes command change−window−depth(2) with an argument of 1.

Shrink Window V

MicroEmacs '02

MainMenu(3) 424

Executes command change−window−depth(2) with an argument of −1.

Split Window H

Executes command split−window−horizontally(2).

Grow Window H

Executes command change−window−width(2) with an argument of 1.

Shrink Window H

Executes command change−window−width(2) with an argument of −1.

One Window

Executes command delete−other−windows(2).

Delete Window

Executes command delete−window(2).

Previous Window

Executes command previous−window(2).

Next Window

Executes command next−window(2).

Create New Frame

Create an new external frame, only available on version which support multiple−window frames.
Executes command create−frame(2).

Create New Frame

Closes the current frame, only available on version which support multiple−window frames. The command
will fail if this is the only frame, use File −> Exit to exit MicroEmacs, executes command delete−frame(2).
Help Menu

Curr Buffer Help

For some file formats MicroEmacs provides a file format specific help page giving details of
key−bindings and tools specific to the current buffers file type.

General Help

MicroEmacs '02

MainMenu(3) 425

Executes command osd−help(3).

Help on Command

Executes command help−command(2).

Help on Variable

Executes command help−variable(2).

Describe Bindings

Executes command describe−bindings(2).

Describe key

Executes command describe−key(2).

Describe Variable

Executes command describe−variable(2).

Describe Word

Executes command describe−word(3).

List Buffers

Executes command list−buffers(2).

List Commands

Executes command list−commands(2).

List Registry

Executes command list−registry(2).

List Variables

Executes command list−variables(2).

Command Apropos

Executes command command−apropos(2).

Buffer Setup

Executes command buffer−setup(3).

MicroEmacs '02

MainMenu(3) 426

User Setup

Executes command user−setup(3).

Scheme Editor

Executes command scheme−editor(3).

Games

Opens a sub−menu listing all available games, see Games for more information.

Product Support

Opens on−line Contact information.

About MicroEmacs

Executes command about(2). NOTES

The main menu is defined using osd(2) in macro files me.emf and osd.emf.

General user extensions to the main menu can be added to the user file myosd.emf which is
executed once when the main menu is first opened. The macro file can add new items to any of the
main sub menus and can delete most existing items (some are dynamically added when appropriate,
these should not be deleted). See osd.emf for examples of how to add items to the menu.

New sub−menus should be added in the company or user setup files as this must be done at start−up.
The content on the menu is not required until the main menu is used so populating the new sub−menu
can be done in myosd.emf.

SEE ALSO

user−setup(3).

MicroEmacs '02

MainMenu(3) 427

Match−It(3)

NAME

Match−It − MicroEmacs '02 version of the Match−It game

SYNOPSIS

Match−It

DESCRIPTION

The object of the game is to score the largest number of points, to do this the player must complete as
many sheets as possible. A sheet is completed when all the tiles are removed from the board within
the given time limit − ALL sheet are possible. If the player fails to remove all the tiles before the time
runs out a life is lost, if all lives have been lost then the game is over.

Tiles are removed from the board by matching two identical tiles which have an 'extraction' path
between them. The only exception to this rule is that any open "flower" tile (bamboo [BAMB], orchid
[ORCH], plum [PLUM], or chrysanthemum [CHRY]) matches any other open "flower" tile and any
open "season" tile (spring, summer, autumn, or winter) matches any other open "season" tile.

An 'extraction' path is a straight line which uses 2 or less right angles, the following are legal
extraction paths, '*'s denote the right angles:

 A−−−* *−−−−−* A−−−−*
 A−−−−A A AXXXXXA XXXXX|
 A−−−−*

The following are illegal paths:

 −−−− *−−−*
 AXXXX| |XXXA
 XXXXA* A−−−*XXXX

2 points are added to the score whenever a pair is successfully removed, a point is deducted whenever
a pair is selected which can not be removed because there is no valid extraction path. There are 2 aids,
pressing the right button on a tile when no other tile is selected will hilight all tiles of matching type,
this costs 4 points. The other help is activated by a button at the top right of the screen and it removes
a random removable pair (or informs the user that there are no removable pairs), there are a limited
number of these helps.

At the end of a successful sheet the score is increased be the time left, the number of lives and helps
remaining and by the Pedigree and Internal bonuses if they were achieved.

The Pedigree bonus is obtained when only identical tiles are paired, i.e. no differing flowers or

MicroEmacs '02

Match−It(3) 428

seasons were paired, 50 points are awarded when achieved. Its status is indicated by a 'P' to the left of
the 'Help' button and the top of the window.

The internal bonus is obtained when the outer 4 margins are not used. If the left or right margins are
not used then 10 points are awarded for each, if the top or bottom are not used then 20 points are
awarded for each and if none are used then 400 points are awarded! The status on the Internal bonus
is indicated by an 'I' surrounded by '*'s, one for each margin. This can be found next to the Pedigree
bonus 'P'.

GAME CONTROLS

To the right of the high score table on the main menu there are a number of control buttons. To select
an option, click the left mouse button on it.

NEW

Start a new game.

QUIT

Exit Match−It.

HELP

This help page (keyboard esc h).

During a sheet, to remove a pair of tiles, click the left mouse button on a tile (which will show in the
selection color) and then click the left mouse button on the matching tile. At this point, if the tiles can
be removed, the extraction path is drawn and both tiles will disappear from the board. If after
selecting the first tile, you decide that you don't wish to play that tile, simply reclick the left button on
the selected tile, alternatively click the right button to deselect any selected tile.

To the top right of the sheet there are a number of control buttons:−

HELP

Removes a tile pair.

QUIT

Exit the game.

BOSS

Hides Match−It, also acts as a pause. Execute Match−It again to return to the game.

The top left shows the number of remaining lives, the current sheet level, the current score, time
remaining for the current sheet and the status of the Internal and Pedigree bonuses.

MicroEmacs '02

Match−It(3) 429

NOTES

Match−It is a macro defined in matchit.emf.

Match−It may only be played with a mouse, there is no keyboard support, with the exception of the
re−start keys.

The sheet database file matchit.edf must be accessible for Match−It to work.

SEE ALSO

Games, Mahjongg(3), Metris(3).

MicroEmacs '02

Match−It(3) 430

Metris(3)

NAME

Metris − MicroEmacs '02 version of the falling blocks game

SYNOPSIS

Metris

DESCRIPTION

Traditional falling blocks game, make solid horizontal lines out of the falling blocks. The blocks can
be rotated and moved left or right by the user as they fall. Once a horizontal line is completely solid it
will disappear and everything above it will drop down. A bonus is given if 3 solid rows are made at
the same time, i.e. using one block.

Every line you make the game speeds up until it gets too fast!! The game ends when there is no more
room to put a block.

The keys used to control Metris are:

left or j

Move the block left one character.

right or l

Move the block right one character.

down or k

Rotate the block counter−clockwise 90 degrees.

space

Drop the current block.

p

Pause the current game.

q

Quit the current game.

MicroEmacs '02

Metris(3) 431

C−l

Redraw the display.

return

Start a new game.

esc h

View this help page. NOTES

Metris is a macro defined in metris.emf.

SEE ALSO

Games, Match−It(3), Patience(3).

MicroEmacs '02

Metris(3) 432

vm(3)

NAME

vm − Email viewer
mail−check − Check for new email
stop−mail−check − Disable the check for new email
mail − Compose and send an email

SYNOPSIS

vm
mail−check
stop−mail−check
mail

DESCRIPTION

vm is a simple email manager, it is configured to send and receive emails using the user−setup(3)
Mail dialog.

mail−check tests the size of this incoming mail box, a non−zero length indicates that new mail has
arrived and mail−check informs the user by inserting a 'M' in the mode−line (2nd character for the
left) and ringing the system bell. mail−check uses create−callback(2) to check for new mail every 10
minutes, this can be disabled by executing stop−mail−check.

When vm is executed it checks for new mail, if found it first copies the new mail to a file called
"new_mail" in the users mail directory. The incoming box is then emptied by truncating the file to
zero length. The users main mail box is then loaded and the new mail (if any) is appended. The mail
box is then processed after which 2 windows are created the bottom window listing all messages in
the box and the top displaying the current message.

vm is capable of:

Scrolling through the mail box displaying each message (up, p, down, n, return, space).♦
Check and get new mail messages (g).♦
Extract and cut embedded data files (x, C, c).♦
Reply to and forward mail messages (R, r, z).♦
Delete mail messages (d, u).♦
Archive messages to other mail boxes (A, a).♦
Save changes to the current mail box (S, s).♦
Delete the current mail box (D).♦
Visit another mail box (v).♦
Send a mail message (m).♦
Hide vm windows (delete).♦

MicroEmacs '02

vm(3) 433

Use the vm help page (bound to "esc h") for further information.

vm supports two types of embedded data, uuencode and mime encoding and uses
ipipe−shell−command(2) to extract the data, the commanding to use must be supplied by the user
using the setup dialog, which can contain the following special tokens:

%i

Temporary file name, if used, the embedded data is written to the this file first.

%o

User supplied output file name, if %i is not used, the embedded data is written to this file first.

%b

The output base name, i.e. %o without the path.

If no command line is supplied then the embedded data is written to the user supplied file name as a
text file in the form found in the mail message.

mail can be used to compose and send an email, it can insert embedded data in a similar way to vm's
data extraction, the following special tokens can be used:

%i

The user supplied data file to be embedded.

%b

The input base name, i.e. %i without the path.

%o

Temporary file name used to output the processed data file, this file is inserted into the mail message
using insert−file(2).

mail also uses ipipe−shell−command to send the mail message, the following special tokens can be
used:

%f

The from user name.

%s

The email subject.

%t

MicroEmacs '02

vm(3) 434

A comma separated list of 'To' recipients.

%c

A comma separated list of 'Cc' recipients.

%o

A file name of the mail message.

Any field not used in the command−line is left at the head of the mail message.

EXAMPLE − UNIX

The following command−line can be used on most UNIX systems to extract uuencoded data:

rm −f %o ; uudecode %i ; rm −f %i

The following command−line can be used on most UNIX systems to extract mime encoded data:

rm −f /tmp/%b ; metamail −B −d −q −w −x −z %i ; mv −f /tmp/%b %o

The following command−line can be used on most UNIX systems to uuencode a data file ready for it
to be embedded, the original file is not changed:

uuencode %b < %i > %o

The following command−line can be used on most UNIX systems to send an email:

/usr/lib/sendmail −oi −oem −odi −t < %o

EXAMPLE − WIN32

Typically the cygnus(1) utilities can be used for data insertion and extraction. These have the
advantage of being very similar to the unix ones so only minor changes are required, i.e. try the
following for data insertion and mime & uuencode extraction respectively:

del %o ^ uudecode %i ^ del %i
del c:\tmp\%b ^ metamail −B −d −q −w −x −z %i ^ move c:\tmp\%b %o
uuencode %b < %i > %o

This assumes that the shell you are using supports the '^' multiple commands on a single line feature,
this is supported by 4dos(1) and 4nt(1). If your shell does not support this feature a simple batch file
command could be used instead.

postie(1) is a freely available pop3/smpt e−mail support program, available on the net, which can be
used to provide a fully working vm on windows systems. As it is typically used in a dial−up connect
environment, the user−setup 'Queue Outgoing Mail' option will be enabled while the 'Check Mail'

MicroEmacs '02

vm(3) 435

and 'VM Gets Mail' will be disabled. This ensures that a connection is only made when the vm 'g'
command is used which sets all queued outgoing mail and gets any incoming mail.

The following command−line can be used to get mail from your pop server using postie:

postie −host:pop−mail−addr −user:user−addr −pass:password −file:inbox
 "−sep:From root Mon Jan 11 20:02:02 1999" −raw −rm

Where the inbox is the 'Incoming Mail Box' file specified in user−setup. The −sep option is used to
partition each mail message from the previous message, this string is used as it is in a unix standard
form so the resulting mail box could be understood by unix mail systems such as netscape etc.

NOTE: The −rm option is used to remove the incoming mail messages from the server. It is strongly
recommended that the system is thoroughly tested without this option first.

The following command−line can be used to send mail to your smtp server using postie:

postie −host:smtp−mail−addr "−from:user@mail−addr" −use_mime:0
 "−to:%t" "−s:%s" "−cc:%c" "−file:%o"

blat(1) is another freely available windows program which can be used to send mail with the
following command−line:

blat %o −f %f −s \"%s\" −t \"%t\" −c \"%c\"

NOTES

vm is a macro defined in vm.emf, mail−check, stop−mail−check and mail are macros defined in
mail.emf.

vm has only been tested in a couple of environments, the author will not except any responsibility for
any loss of data, i.e. use at your own peril. You have been warned! Back−up all data files and test vm
THOROUGHLY before using it.

SEE ALSO

user−setup(3), ipipe−shell−command(2), create−callback(2), sendmail(1).

MicroEmacs '02

vm(3) 436

man(3)

NAME

man − UNIX manual page viewer. man−clean − Clean UNIX manual page.

SYNOPSIS

man
man−clean

DESCRIPTION

man provides a mechanism to display a UNIX manual page within the MicroEmacs window. On
invoking man the user is prompted for the name of the manual page to display:−

Man on ?

The name of the manual page (and any options) are entered on the command line. The macro invokes
the UNIX utility man(1) to generate the page and displays the results in a window.

Another manual page can be selected by either moving the cursor to the link and pressing return or
double clicking on it with the left mouse button. MicroEmacs will then attempt to load and display the
selected manual page.

man−clean removes any man−page formatting codes from the current buffer reducing a manual page
to plain text. The formatting codes are used to create the bold and underline fonts. This allows the
page to be treated as a normal buffer, i.e. string searches and other similar command will work as
expected.

NOTES

man and man−clean are macros defined in hkman.emf.

man is only made available within UNIX environments, the UNIX start up file unixterm.emf
links in the macro. If the man utility is required on other platforms then the following definition is
required in a start−up file.

define−macro−file hkman man

SEE ALSO

man(9), user−setup(3), spell−buffer(3).

MicroEmacs '02

man(3) 437

mark−registry(2)

NAME

mark−registry − Modify the operating mode of a registry node

SYNOPSIS

n mark−registry "root" "mode"

DESCRIPTION

mark−registry modifies the mode of a registry node root. If an argument n is supplied then the nth
register node down from root (as viewed from list−registry(2) output) is modified instead. The mode
is string specifying the modes, each mode is represented by a character. Lower case characters add a
mode, upper case characters delete a mode. The modes are defined as:−

? − Query Name

Returns the full name, including path, of the given registry node in the variable $result(5). This does
not alter the registry.

! − Hide Value

Hides the value of the given registry node, i.e. its value will not be displayed in the output of
list−registry(2). Once set, this mode cannot be removed.

a − Autosave

Automatically saves the registry when it is deleted or unloaded from the registry. The user is not
prompted for a save.

b − Backup

Automatically performs a backup of the registry file whenever a save operation is performed.

c − Create

If the registry file cannot be loaded then the root node is created and the invocation succeeds. If this
mode is omitted then the call fails if the file cannot be found.

d − Discard

Marks the registry as discardable. This is typically used for registries that are not saved.

MicroEmacs '02

mark−registry(2) 438

f − File

The registry node is marked as a file root, the value must be set to the registry file name.

g − Get Modes

Returns the list of modes currently set on the given registry node in the variable $result(5). This does
not alter the registry.

h − Hidden

The registry node is marked as Hidden, i.e. its children will not be shown in list−registry(2) output.

u − Updated

Marks the registry as modified. The modified bit is removed when the registry file is saved. If the
modified bit is applied to a registry node the user will be prompted to save the registry when it is
deleted (or it will be automatically saved when the Autosave mode is used).

Multiple modes may be applied.

EXAMPLE

A history registry can be hidden with the following invocation:−

mark−registry "/history" "h"

It could then be made visible again using:−

mark−registry "/history" "H"

BUGS

At exit only registry nodes attached to the root are saved.

DIAGNOSTICS

mark−registry fails if root does not exist.

SEE ALSO

get−registry(2), list−registry(2), read−registry(2), set−registry(2), erf(8).

MicroEmacs '02

mark−registry(2) 439

ml−bind−key(2)

NAME

ml−bind−key − Create key binding for message line
ml−unbind−key − Remove key binding from message line

SYNOPSIS

n ml−bind−key "command" "key"
n ml−unbind−key "key"

DESCRIPTION

ml−bind−key creates a key binding local to the message line input buffer. There are several
commands that can be used in message line input, each command is associated with a main buffer
editing command and inherits all that commands global bindings, i.e. moving forward 1 character is
associated with the command forward−char(2) and thus inherits the binding C−f (as well as any other
like the right cursor key). The following is a list of available commands, what they do and their
associated commands

Cursor Movement

move backwards 1 character, command: backward−char (C−b)♦
move forwards 1 character, command: forward−char (C−f)♦
move backwards 1 word, command: backward−word♦
move forwards 1 word, command: forward−word♦
move to the beginning of buffer, command: beginning−of−line (C−a)♦
move to the end of buffer, command: end−of−line (C−e)♦

Input

Quote a character, command: quote−char (C−q)♦
Yank kill buffer into message line, command: yank (C−y)♦
insert current buffers current line into the buffer, command: insert−newline (C−o)♦
insert current buffers file name into the buffer, command: insert−file−name (C−x C−y).♦
insert current buffers buffer name into the buffer, command: reyank (esc y)♦

Deletion

delete backward 1 character, command: backward−delete−char (C−h)♦
delete forward 1 character, command: forward−delete−char♦

MicroEmacs '02

ml−bind−key(2) 440

kill text from current position to end of line, command: kill−line (C−k).♦
erase whole line, command kill−region (C−w). Note that in incremental searches this is used
to add the current word to the search string.

♦

History

MicroEmacs '02 stores the last 20 entries of each kind (command, buffer, file, search and general
which is also saved in the history file so the state of the history is retained when next loaded. The
following commands can be used to manipulate the history.

next history list entry (loop through history), command: forward−paragraph (esc n)♦
previous history list entry, command: forward−paragraph (esc p)♦

Completion

When entering a command, file, buffer or a mode name MicroEmacs '02 creates a list of possible
completions the following operations can be performed on this list.

expand. This completes the given input until the first ambiguous character, command: a space
(' ') or tab (C−i).

♦

expand to the previous completion (loops through the completion list, command:
backward−line (C−p)

♦

expand to the next completion (loops through the completion list, command: forward−line
(C−n)

♦

create a listing of all completions, command: a double expansion, i.e. 2 spaces or tabs. The
first expands and the second creates the list.

♦

page up the completion list buffer, scroll−up (C−z)♦
page down the completion list buffer, scroll−down (C−v)♦

Miscellaneous

abort input, returning failure to the input, abort−command (C−g)♦
re−fresh the message line, command: recenter (C−l)♦
finish input, command newline (C−m, return)♦
transpose previous character with current character, command: transpose−chars (C−t)♦
capitalize the next word, command: capitalize−word (esc c)♦
Turn the whole of the next word to lower case letters, command: upper−case−word (esc u)♦
Turn the whole of the next word to upper case letters, command: lower−case−word (esc l)♦

ml−unbind−key unbinds a user created message line key binding, this command effects only the
message line key bindings. If a −ve argument is given to ml−unbind−key then all message line
bindings are removed.

EXAMPLE

MicroEmacs '02

ml−bind−key(2) 441

If expansion was required on the esc esc key binding then use the following:−

ml−bind−key tab esc esc

NOTES

The prefix commands cannot be rebound with this command.

Command key response time will linearly increase with each local binding.

SEE ALSO

global−bind−key(2), buffer−bind−key(2), describe−bindings(2), osd−bind−key(2),
global−unbind−key(2).

MicroEmacs '02

ml−bind−key(2) 442

ml−clear(2)

NAME

ml−clear − Clear the message line

SYNOPSIS

ml−clear

DESCRIPTION

ml−clear clears the message line during script execution. This is useful so as not to leave a confusing
message from the last command(s) in a script.

Callback macros which may interrupt the user at any point in time are handled by ml−clear. The
callback macro for instance may interrupt the user while entering a new file name, and any
ml−write(2) erases the message−line which may currently be in use. MicroEmacs '02 stores the line
and when ml−clear(2) is invoked, instead of clearing the message line the current input line is
restored.

SEE ALSO

create−callback(2), ml−write(2).

MicroEmacs '02

ml−clear(2) 443

ml−write(2)

NAME

ml−write − Write message on message line

SYNOPSIS

n ml−write "message"

DESCRIPTION

ml−write writes the given message to the message line. If a positive argument n is given then there
will be an n millisecond uninterruptible delay, giving the user time to see the message.

A call to ml−write from a callback macro can erase a message line which is currently being used (to
enter a buffer name say). A call to ml−clear(2) restores the previous message−line.

EXAMPLE

The following call displays a message on the message−line with a fixed 2 second pause:

2000 ml−write "Hello World!"

SEE ALSO

ml−clear(2), command−wait(2), create−callback(2).

MicroEmacs '02

ml−write(2) 444

name−kbd−macro(2)

NAME

name−kbd−macro − Assign a name to the last keyboard macro

SYNOPSIS

name−kbd−macro "command"

DESCRIPTION

name−kbd−macro labels the last defined keyboard macro with the given command name. The
command name must be either unique or the name of an existing macro. A keyboard macro is deleted
when another keyboard macro is defined, but when named, it is preserved. A named keyboard macro
can also be bound to its own command key sequence, and may be inserted into a buffer enabling it to
be saved and thus re−loaded and re−used at a later date.

SEE ALSO

execute−file(2), execute−kbd−macro(2), global−bind−key(2), insert−macro(2), start−kbd−macro(2).

MicroEmacs '02

name−kbd−macro(2) 445

narrow−buffer(2)

NAME

narrow−buffer − Hide buffer lines

SYNOPSIS

n narrow−buffer

DESCRIPTION

The effect of narrow−buffer depends on the argument given, defined as follows:−

1

Removes all narrows in the current buffer (Default).

2

Removes the current line's narrow.

3

Narrow to region. Hides all but the lines of test in the current buffer from the mark position to the
current cursor position, effectively 'narrowing' the buffer to the remaining text.

4

Narrow out region. Hides the lines of test in the current buffer from the mark position to the current
cursor position, opposite to argument 3.

When a narrow is created the buffer mode narrow(2m) is automatically set, when the last is removed
this mode is deleted.

For example, if the buffer contains the following text:

1 Richmond
2 Lafayette
3 Bloomington
4 Indianapolis
5 Gary
6

If the mark is on line 2 and the current point is on line 4, executing:−

4 narrow−buffer

MicroEmacs '02

narrow−buffer(2) 446

Creates one narrow, narrowing out line 2 and 3. Line 4 becomes the narrow anchor line, when the
narrow is removed lines 2 and 3 will be inserted before line 4. The buffer will become:−

1 Richmond
4 Indianapolis
5 Gary

If instead the following was executed:−

3 narrow−buffer

Two narrows are created, the first narrowing out line 4 and 5 (line 6, the last line, being the anchor
line) the second narrowing out line 1 (line 2 being the anchor line). The buffer will become:−

2 Lafayette
3 Bloomington
6

Executing narrow−buffer with an argument of 2 will only work on the anchor lines, namely 4 in the
first example and 2 and 6 in the second.

NOTES

Alpha mark set by set−alpha−mark(2) in text which is subsequently narrowed out will automatically
remove the narrow if the user returns to the mark using goto−alpha−mark(2).

get−next−line(2) operates on the unnarrowed buffer and will remove any narrows hiding the 'next'
line.

EXAMPLE

c−hash−eval(3) macro defined in cmacros.emf uses narrow−buffer to hide regions of source code
which has been #defined out, improving readability.

vm(3) defined in vm.emf uses narrow−buffer with appropriate arguments to append−buffer(2) and
write−buffer(2) to write out only parts of the current buffer.

SEE ALSO

narrow(2m), set−mark(2), set−alpha−mark(2), get−next−line(2), c−hash−eval(3), vm(3).

MicroEmacs '02

narrow−buffer(2) 447

newline(2)

NAME

newline − Insert a new line

SYNOPSIS

n newline (return)

DESCRIPTION

newline inserts n new lines into the text, move the cursor down to the beginning of the next physical
line, carrying any text that was after it with it. The next line may automatically be indented depending
on the current buffer mode, see cmode(2m), indent(2m), and wrap(2m).

SEE ALSO

cmode(2m), indent(2m), wrap(2m), buffer−mode(2).

MicroEmacs '02

newline(2) 448

next−frame(2)

NAME

next−frame − Change the focus to the next frame

SYNOPSIS

n next−frame

DESCRIPTION

next−frame changes the focus to the next frame. The numerical argument n can be used to select the
type of frame to change to, it is a bit based flag defined as follows:

0x01

Allow the selection of an external frame.

0x02

Allow the selection of an internal frame. The default operation when n is omitted is to allow the selection of
either type of frame (equivalent to an argument of 3). SEE ALSO

create−frame(2), delete−frame(2).

MicroEmacs '02

next−frame(2) 449

next−window(2)

NAME

next−window − Move the cursor to the next window
previous−window − Move the cursor to the previous window

SYNOPSIS

n next−window (C−x o)
n previous−window (C−x p)

DESCRIPTION

next−window makes the next window down the current window, if the current window is the last one
in the frame the first one is selected. The numeric argument n can be used to modify this default
behaviour, it is a bitwise flag where the bits are defined as follows:

0x01

If there is no 'next' window because this is the last then if this bit is set the search for the next window
is allow to continue with the first window of the frame. As the default argument n is 1 this is the
default behaviour.

0x02

When this bit is set windows whose $window−flags(5) are set to be ignored by this command are not
skipped. The setting of bit 0x010 of a windows $window−flags will make the default action of this
command skip it which means the the command may not simply select the next window but the next
window without this flag set. Setting this bit of the numeric argument will force the command to
always select the next window.

0x04

When set the search for the next window starts at the first window instead of the current window, this
can be used to find the first window in the current frame.

previous−window makes the next window up the current window. The numeric argument n has the
same effect on this command as for next−window except bit 0x04 starts the search at the last window
of the frame.

EXAMPLE

The following example visits every window in the current frame printing the buffer it displays with a

MicroEmacs '02

next−window(2) 450

second pause between each one:

; go to the first window
!force 6 next−window
!while $status
 1000 ml−write $buffer−bname
 ; go to the next window − fail if this is the last
 !force 2 next−window
!done

NOTES

Both commands fail if a suitable window cannot be for, see the example on how this can be used.

SEE ALSO

next−window−find−buffer(2), next−window−find−file(2), set−position(2), goto−position(2),
$window−flags(5).

MicroEmacs '02

next−window(2) 451

next−window−find−buffer(2)

NAME

next−window−find−buffer − Split the current window and show new buffer

SYNOPSIS

next−window−find−buffer "buffer" (C−x 3)

DESCRIPTION

next−window−find−buffer splits the current window into two near equal windows, and swaps the
current windows buffer to the given buffer. It is effectively a split−window−vertically(2) command
followed by a find−buffer(2). When there is insufficient space in the current window to perform the
split, then the current window is replaced. The requested buffer is always displayed, if the buffer does
not already exist it is created.

SEE ALSO

find−buffer(2), split−window−vertically(2), next−window−find−file(2).

MicroEmacs '02

next−window−find−buffer(2) 452

next−window−find−file(2)

NAME

next−window−find−file − Split the current window and find file

SYNOPSIS

next−window−find−file "file" (C−x 4)

DESCRIPTION

next−window−find−file splits the current window into two near equal windows, and loads the given
file into the current window. It is effectively a split−window−vertically(2) command followed by a
find−file(2).

When there is insufficient space in the current window to perform the split, then the current window is
replaced. The requested file is always displayed, if the file does not already exist it is effectively
created within MicroEmacs (although it will not exist on the disk until a save operation is performed).

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files. SEE ALSO

MicroEmacs '02

next−window−find−file(2) 453

find−file(2), next−window−find−buffer(2), split−window−vertically(2), binary(2m), crypt(2m),
rbin(2m).

MicroEmacs '02

next−window−find−file(2) 454

normal−tab(3)

NAME

normal−tab − Insert a normal tab

SYNOPSIS

n normal−tab

DESCRIPTION

normal−tab insert a tab into the current buffer by temporarily disabling any auto indentation
schemes. The macro first disables any indentation rules by setting $buffer−indent(5) to 0 and
disabling the cmode(2m), the command tab(2) is then called with the given argument n. This means
that the buffer's tab(2m) mode setting will be respected, i.e. whether a tab character or spaces are
inserted. The initial indentation rules are restored on exit.

NOTES

normal−tab is a macro implemented in format.emf.

SEE ALSO

tab(2), insert−tab(2), tab(2m).

MicroEmacs '02

normal−tab(3) 455

organizer(3)

NAME

organizer − Calendar and address organizer

SYNOPSIS

organizer

DESCRIPTION

organizer is a calendar and address organizer, enabling notes to be stored against the calendar days;
addresses may be archived into an address book.

organizer uses the MicroEmacs '02 in−built registry to store information within a registry file called
<username>.eof. organizer may be entered directly from the command line, or via the menu (via
Tools).

organizer is displayed within a single osd dialog box, tab selections at the top of the window enable
the different forms of information to be displayed. Navigation is typically performed using the mouse,
where the mouse is absent then the TAB key may be used to move between the fields. The information
presented is defined as follows:−

Month

Shows the calendar month, starting with the current month, the current day is hi−lighted and any
notes that have been entered are displayed in the Notes entry box at the bottom of the page.

The default mode of operation is note entries for the current month, however specifying the <year>
as the wild card '*' (star) enables annual events to be entered into the organizer. Annual events are
automatically inserted into the calendar each year, typically used for birthdays etc.

The entry controls to the dialog are defined as follows:−

<−

Advances to the previous month.

−>

Advances to the next month.

<Month>

MicroEmacs '02

organizer(3) 456

A pull down dialog enabling month selection.

<year>

A text entry field specifying the current year as a 4 digit number. A value of * is the wild card year for
specifying annual events.

Notes

A free form text entry box allowing a note to be attached to the currently selected day.

Save

Saves the entry back to file.

Month To Buffer

Dumps a view of the month to the currently active buffer, any notes are also dumped to the buffer.

Exit

Exits the organizer. Week

Shows the calendar week in the current buffer, the days of the week are shown in a column ordering.
Note that selection of the week is typically performed from the Month view, moving to the Week
view (via the tab) selects the week appropriate to the previously selected day within the month view.

The entry controls on the dialog are defined as follows:−

<−

Advances to the previous week.

−>

Advances to the next week.

<year>

A text entry field specifying the current year as a 4 digit number. The value of * for viewing and
setting annual events is not valid in this view.

Notes

A free form text entry box allowing a note to be attached to the currently selected day.

<day>

MicroEmacs '02

organizer(3) 457

Selecting a date in the day column changes the view to the Day view.

Save

Saves the entry back to file.

Week To Buffer

Dumps a view of the week to the currently active buffer, any notes are also dumped to the buffer.

Exit

Exits the organizer.

Note: The start day in the week view may be configured to commence on a day other than Sunday
from the Setup tab.

Day

Shows an extended view of the notes attached to the current day, day selection is typically performed
from the Month or Week views. The entry controls on the dialog are defined as follows:−

<−

Advances to the previous day.

−>

Advances to the next day.

<year>

A text entry field specifying the current year as a 4 digit number. A value of * is the wild card year for
specifying annual events.

<month>

A pull down dialog enabling month selection.

<day>

A text entry enabling the current day to be entered.

Notes

A free form text entry box allowing a note to be attached to the currently selected day.

Save

MicroEmacs '02

organizer(3) 458

Saves the entry back to file.

Day To Buffer

Dumps a view of the day to the currently active buffer, any notes are printed in the buffer.

Exit

Exits the organizer. Lists

The lists pane provides support for multiple list generation and manipulation. Each list consists of
zero or more ordered items each of which has a text field in which the user can enter information.

Entry to the dialog is defined as follows:−

List

Selects a list.

New

Creates a new list.

Lines Per Item

Sets the number of lines to use when displaying a list item.

New

Creates a new list item at the end of the current list.

Up

Moves the currently selected item (left click on the item number) up the list.

Down

Moves the currently selected item down the list.

Insert

Inserts a new list item before the currently selected item.

Delete

Deletes the currently selected item.

Save

MicroEmacs '02

organizer(3) 459

Saves the entry back to file.

List To Buffer

Dumps a view of the list to the currently active buffer.

Exit

Exits the organizer. Address

The address pane provides entry to the address book, enabling personal and business details to be
retained against a single name, tabbed selection of Work or Home selects the information that is
displayed. A search engine is provide to locate names within the database, and provision is made to
save some text against a name. Entries in the database are, by default, organized by record number,
sorting may be explicitly performed from the Sort button.

Entry to the dialog is defined as follows:−

<Record No>

The identity number of the record, a value of * denotes that this is a new record that is being inserted.

<<

Moves to the start of the database.

>>

Moves to the end of the database, showing record *, a new entry may be entered.

<

Moves to the previous record.

>

Moves to the next record.

Name

The name of the individual, entered as fore−name and surname.

Nickname

A pseudo name assigned to an individual.

Partner

MicroEmacs '02

organizer(3) 460

Shown in the Home view only. The forename and surname of any partner.

Chld

Shown in the Home view only in the Extended Address Book Mode. The names of any children (up
to 3).

DOB

Date of Birth, shown in the Home view only in the Extended Address Book Mode. The dates of
birth of the parents, any children in addition to an anniversary date.

Company

Shown in the Work view only. The name of the company.

Address

The address of the individual/company.

Tel/Fax/Mobile

Telecommunication information.

Email/WWW/FTP

Electronic communication information.

Notes

Notes associated with the individual.

Save

Saves the address information to file.

Dup

Duplicates the currently selected address entry, creating a new record card. Typically used to
construct a similar entry for a different individual.

Delete

Deletes the currently selected entry.

Addr to Buffer

Dumps the currently selected address to the current buffer.

MicroEmacs '02

organizer(3) 461

Exit

Exits the organizer.

Find

find provides access to a search engine, enabling addresses to be located in the address book.

Search For

The string to search for.

In Field

Pull−down menu allowing the selection of the field to be searched in.

Match

Selects how strict the search should be; typically Any Part is used as this is the least in−exact
search. The default mode is configured in the Setup tab.

Case/magic

Selects the search criteria. The default mode is configured in the Setup tab.

First

Finds the first record that matches the search criteria

Next

Finds the next record that matches the search criteria, from the currently displayed record.

Reverse

Searches in reverse order.

Exit

Exits the search

Sort

sort provides a mechanism to re−sort the data base into a different order. The sort is
performed on up to 3 different keys enabling conflicting primary sort fields to be resolved by
the secondary sort criteria. The default sort order is <Record No>, <None>, <None>.

Sort Keys

MicroEmacs '02

organizer(3) 462

The Primary, Secondary and Tertiary sort fields are selected by a pull down menu. The fields
to be used for sorting are selected from the list.

Sort

Performs the sort, based on the settings of the Sort Keys.

Exit

Exits the sort dialog. Setup

The setup pane configures a number of general settings of the organizer.

Current Organizer File

The full pathname of the organizer file. By default this is set to <userpath><userName>.eof and can
be altered using user−setup(3).

Change Name

Allows the displayed name of the month and the day to be modified.

First Day of the week

Selects the first day of the week, this sets the first day to be displayed in the Week view and the first
column in the Month view.

Min New Year Days

The number of days that must appear in the first week of the New Year for the week to be considered
week 1. Modifying the value of this field modifies the week number.

The Calendar section allows the wordy representation of the calendar date to be modified. Typically
used to modify the names to the native language.

Change Month Name

Select the existing month representation from the left−hand box and type in a new selection into the
right−hand box.

Change Week Day Name

As Change Month Name, enables the day of the week representation to be modified.

First Day Of The Week

Selects the first day that appears in the Week view.

MicroEmacs '02

organizer(3) 463

Minimum Days of New Year in first week

Specifies the number of days that must appear in the first week of the New Year for the week to be
designated as week 1. This value allows the week number to be aligned with the calender weeks of
standard diaries. The default value is 7 days; but may be reduced to 5 or 6 for typical alignment.

The Address Book section allows the operation of the address book to be modified.

Use Extended Address Book

The extended address book allows additional information to be added to the personal address book.
The extended information is limited to the amount of personal information attributed to an individual,
including Date of Birth and Child information.

Import From File

The Import from file allows the address book to be imported from a file. The import data
format is a single line per entry, comma , separated. The field order is defined as follows, the
* entries indicate the Extended Address Book fields:−

Record No, First Name, Surname, Nick Name, Selected, Notes, Partner First Name,
Partner Surname, Home Address, Home Telephone, Home Fax, Home Mobile, Home
E−Mail, Home WWW Page, Home FTP Site, Work Company, Work Address, Work
Telephone, Work Fax, Work Mobile, Work E−Mail, Work WWW Page, Work FTP
Site, Date−Of−Birth*, Partner DOB*, Date−Of−Marriage*, Child1 Name*, Child1
DOB*, Child2 Name*, Child2 DOB*, Child3 Name*, Child3 DOB*.

Export To File

Exports the address book to a file, the address book is exported in the current sort order, with the
fields defined as above. The exported address book may then be imported into a 3rd party package i.e.
Microsoft Access, etc.

The Default Address Find Settings section defines the default search criteria used in the address
book search function.

Whole/Start/Any Part

Radio buttons determine how the search is performed on the string.

Whole matches the whole string exactly.⋅
Start matches the first part of the string only (i.e. Ab*).⋅
Any Part finds entries that include the search string at any position within
the data base search field.

⋅

Case Insensitive

Checked, matches the strings regardless of case. (default).

MicroEmacs '02

organizer(3) 464

Magic Mode

Allows magic strings to be included in the search string. NOTES

organizer is a macro that is implemented in organiz*.emf files. Organizer uses osd(2) to create
and manage the dialogs.

The maximum size of a text note is 1024 characters.

With an new address is created it is added to the end of the address list regardless of the current sort
criteria.

Organizer replaces the original Calendar utility.

SEE ALSO

user−setup(3), osd(2).

MicroEmacs '02

organizer(3) 465

osd(2)

NAME

osd − Manage the On−Screen Display

SYNOPSIS

osd
−1 osd
−2 osd
n osd
−1 osd n
osd −1 flag
osd n 0 flags ["scheme"] ["x−pos" "y−pos"] ["min−width" "min−depth" "max−wid" "max−dep"]
["default"] [["title−bar−scheme"] ["Text"]] ["resize−command"] ["control−command"]
["init−command"]
osd n i flags ["tab−no"] ["item−scheme"] ["width" "depth"] ["text"] ["argument" "command"]

DESCRIPTION

The osd command manages the On−Screen Display, menu and dialogs. The command takes various
forms as defined by the arguments. Each of the argument configurations is defined as follows:−

Main Menu−Bar Status

osd −1 flag

This invocation determines the state of the top main menu bar. The state is set by the argument flag
defined as:−

 1 − enable.
 0 − disable.
−1 − disable and destroy.

Dialog Creation and Redefinition

osd n 0 flags ["scheme"] ["x−pos" "y−pos"] ["min−width" "min−depth" "max−wid" "max−dep"]
["default"] [["title−bar−scheme"] ["Text"]] ["resize−command"] ["control−command"]
["init−command"]

This invocation creates or resets the base properties of dialog n. The flags argument determines the
arguments and are defined as follows:

MicroEmacs '02

osd(2) 466

A

Defines dialog as an alpha type dialog, items are added according to their string text value.
Alpha dialogs may not have separator or child items.

i

Used with the A flag, sets the alpha ordering to be case insensitive.

G

Create a Grid dialog. Every item in the dialog is given a single character boarder around it. If
one of the dialogs items is also given a 'G' flag, the boarder is drawn as a box around it,
otherwise spaces are used.

N

Create a Note−Book (or tabs) dialog. The dialog can only contain one dialog inclusion item
('I') and Note−Book pages ('P'). Pages added before the Inclusion item (page item number is
lass than the inclusion page item number) will be drawn at the top of the note−book, those
added after will be drawn at the bottom.

b

Draw boarder, draws a boarder around the outside of the dialog. See also flag t (title) as flag
effects the boarder.

a

Defines the absolute start−up position of the dialog in the arguments x−pos and y−pos, which
are the column and row positions respectively of the dialog from the top left−hand corner of
the display. The arguments must be specified. e.g. the main menu is defined with an absolute
position of (0,0). If the dialog can not be fully drawn on the screen at the given position it will
be moved to a position which shows the most.

o

Specifies an offset to the dialog position calculated by MicroEmacs in the arguments x−pos
and y−pos, which are the column and row offsets. This flag is ignored when flag a is also
specified. If the dialog can not be fully drawn on the screen at the new position it will be
moved to a position which shows the most.

s

Sets the size of the dialog. osd automatically resizes a dialog to fit the contents, this flag
should be considered as a size hint for osd, and is not guaranteed to be honored. If the dialog
has a boarder (flag b) the size given should include the boarder size.

MicroEmacs '02

osd(2) 467

The arguments, min−width, min−depth, max−width and max−depth must be
specified, as

+ve

The actual size of the dialog, minimum and maximum sizes.

0

min value should be specified as desired window size, max may be 0 which specifies
the screen size.

−ve

min defines the maximum size. max is unlimited.

The following table shows possible combination of the sing parameters and their
effect:−

min=0, max=0

Default setting, makes dialog as small as possible, with a maximum size of the
screen.

min=0, max=50

Make dialog as small as possible with a max of 50 characters.

min=50, max=0

Make dialog as small as possible, but make it at least 50 characters big and no larger
than the screen.

min=30, max=−1

Make dialog at least 30 characters big with no upper limit, very useful for dialogs
being used as scrolled children.

min=−1, max=50

Make dialog 50 characters big.

min=−1, max=0

Make dialog the same size as the screen.

min=−1, max=−1

MicroEmacs '02

osd(2) 468

Make dialog as big as possible (do not do this unless you have a large amount of memory to
throw away).

S

Sets the main dialog scheme, The default scheme when not specified is $osd−scheme(5) See
macro file fileopen.emf for an example.

d

Sets default item to select to "default". This item is selected when the dialog is first opened, if
this item is an automatically opened sub−menu then the child menu will also be opened.

t

Title bar is present − draws the title bar. The text argument is optional Also see flags H, c and
r.

H

Defines the title bar color scheme if flag t is specified. If t is absent the option is ignored.

c

Centers the title bar text if specified. Option t must be specified, otherwise the option is
ignored.

r

Right justifies the title bar text if specified. Option t must be specified, otherwise the option is
ignored.

R

Defines the dialog as re−sizable. The resize−command argument must be specified and the
command should resize the dialog to the sizes given in $result(5) in the format "wwwwdddd",
where w is width and d the depth. If the resize−command is aborted then that resize operation
is abandoned.

M

Identifies the dialog as the main menu dialog.

C

Binds a command to the dialog, which is automatically executed when the dialog is opened.
When the dialog with a C attribute is opened, it is rendered on the screen and then a
command, defined by control−command is invoked, when the command completes the dialog
is closed.

MicroEmacs '02

osd(2) 469

The command dialog is typically used to create status messages. e.g. a "Busy −
Please Wait" dialog box, such a dialog may be implemented when saving the
current buffer then create the simple dialog and sent the control−command to
save−buffer(2). The dialog would be defined as:−

osd 200 0 "btcHC" %osd−title−scheme "Saving Buffer" save−buffer
osd 200 1 ""
osd 200 2 "" "Busy − Please Wait"
osd 200 3 ""
200 osd

If the dialog has buttons which need to become active then control can be returned to
osd by calling osd with no arguments, e.g. in the above example the dialog can be
made to stay on the screen until the user selects okay by:

define−macro test−osd
 save−buffer
 osd 200 2 "" "Save Complete"
 osd 200 4 "BcfH" %osd−ebtt−scheme " &Okay " f void
 osd
!emacro

osd 200 0 "btcHC" %osd−title−scheme "Saving Buffer" test−osd
osd 200 1 ""
osd 200 2 "" "Busy − Please Wait"
osd 200 3 ""
osd 200 4 "BcfHS" %osd−dbtt−scheme " Okay "

200 osd

The above mechanism is how spell−buffer(3) operates.

k

Disables hot−keys for the dialog. All text strings are copied literally. This is useful for dialogs
like the tags child dialog as many tags have '&'s in them.

B

Makes the mouse right Button have the same behaviour as the left, by default the right mouse
button simply closes the dialog. This is useful for some dialogs which are opened using the
right mouse button.

f

Automatically uses the first letter of an item's test as the hot key. Unlike the normal hot keys,
the letter is not hi−lighted and when typed by the user the item is only selected, not executed.
This flag also disables the normal hot−keys for the dialog, so all text strings are copied
literally.

n

MicroEmacs '02

osd(2) 470

Disables '\n' characters in text fields leading to multi lines. By default a text item of
"Hello\nWorld" will create an item 5 by 2 characters big.

If "init−command" is given then this function is always called just prior to the dialog being
displayed so it can be used to configure the dialog.

Dialog Destruction

−1 osd n

This invocation destructs a dialog n. The dialog is only destroyed if it is not currently being displayed.

Dialog Item Creation and Redefinition

osd n i flags ["tab−no"] ["item−scheme"] ["width" "depth"] ["text"] ["argument" "command"]

This invocation type adds a new item i to a dialog n, the operation of the invocation is controlled by
the flags as follows:−

D

Disable item i, the item is ignored and is not rendered in the dialog.

I

Include dialog "argument" into this dialog. If "command" is specified then it is called prior to
the child being constructed and can be used to define the child. This is similar to the Ms
command. See also flag b.

P

Item is a Note−Book page, the item must have text and have an argument which is the osd
dialog to be show when the page is activated.

M

Item is a sub−menu, The argument "argument" specifies the sub−menus osd dialog
number. A "command" may also be specified which is executed first, this can actually
re−define the item and set the dialog number, e.g.

; To start with the dialog number is unknown
osd 1 1 "M" f submenu−setup

define−macro submenu−setup
 osd 200 0

 ; Now the sub−menu number is known redefine parent item,
 ; note the setup command is not given as we have now set
 ; it up!

MicroEmacs '02

osd(2) 471

 osd 1 1 "M" 200
!emacro

See also options m, n, e, s, w and d.

m

Sub−menu must be manually opened, using hot−key, the return key or the left mouse button.

n, e, s, w

Specify where a sub−menu is to be placed relative to the parent item. The letter indicates the
direction as points on a compass, North, East, South and West, respectively. The default when
omitted is East.

d

Display sub−menu type, i.e. ".." for auto opening and " >" for a manual opening sub−menu.

−

Fill a non−defined chars with '−'s instead of ' 's, used to draw the lines across menus,
typically with no text given, e.g.

osd 200 5 "−"

But could also be specified as:

osd 200 5 "−c" "Lined"

C

Item is a check−box. The setting of the check−box is evaluated when the dialog is
first drawn, re−draw and whenever any item is executed. A "command" must be
specified which must both return the current setting when the given argument (of 1) is
given (!abort if false, !return if true) and change the value if the argument value is
negated. The text string must also be specified, the first 6 characters are used in the
drawing of the check box. The format can be shown as follows:−

String\State Off On
"123456" "12356" "12456"
" (−+)^" " (−)" " (+)"
"^[*] " "[] " "[*] "
"^^NY^^" "N" "Y"
"^^^^^^" "" ""

Note that no character is rendered when a '^' character is used. See also p for
prepending the check−box.

p

MicroEmacs '02

osd(2) 472

Prepend the check−box box. By default a check box is drawn as:

"Check box12?56"

This option changes it to:

"12?56Check box"

x

When the item is executed do not exit the dialog. Often used with Check−boxes.

i

The command given is a command line string which is executed in a similar fashion
to execute−line(2). Note that if an argument is required it is usually specified in the
string, i.e.

osd "i" "text" 5 "1000 ml−write @#"

writes the argument (i.e. 5) for 1 second.

osd "i" "text" 5 "my−command"

in this case my−command will not be given an argument,

osd "i" "text" 5 "10 my−command"

in this case my−command will be given an argument of 10,

osd "i" "text" 5 "@# my−command"

in this case my−command will be given an argument of 5.

h

Horizontally add the next item, e.g.

osd "h" "1st on line "
osd "" "2nd on line"

Will produce "1st on line 2nd on line". If there is not enough room on a
single dialog line to display all the horizontally added items then the line is split and
as many lines as needed are used.

c

Center the text for the item in the middle of the dialog.

r

MicroEmacs '02

osd(2) 473

Right hand justify the text for the item.

t

Set the items tab order in the dialog.

b

Child inclusion is a scroll box type. By default a child inclusion simply draws the whole child
dialog at the position. If this flag is specified then arguments "width" and "depth" must also
be supplied and a window displaying "width" by "depth" of the child is created. The size of
this item will be "width"+1+ss by "depth"+1+ss where ss is the scroll bar size which is 1 or 2
depending on the setting of $scroll−bar(5). It is up to the user to ensure that the child dialog
being displayed is at least "width" by "depth" characters in size, if this is not true then the
effect is undefined, (a crash dump is not out of the question).

f

Fix the item size to the given "size", by default an item is expanded to the width of the dialog.

E

Item is an entry box type. Use a string of #'s to set the position and size of the entry
text box. Similar to Check−boxes, the command given must both return and set the
value depending on value of the argument given. The value must be returned in
$result(5) if the given argument (or 1 for 'f') is given, and the value must be set
(usually using @ml(4) or @mc(4)) if the argument is negated. The absolute value of
the argument is maintained.

set−variable %entry−value "Hello world"

define−macro my−entry−set
 !if &equ @# −1
 set−variable %entry−value @ml "" %entry−value
 !else
 set−variable $result %entry−value
 !endif
!emacro

osd 200 1 "S" " &Enter text" 2
osd 200 2 "ExHf" %osd−entry−scheme "########" 1 my−entry−set

B

Item is a Button type. Add the last 2 characters of $window−chars(5) to the text string
given, one on each side, i.e. if the last two chars are "[]" then:

osd "B" " Okay "

will be drawn as "[Okay]". See also flag T.

MicroEmacs '02

osd(2) 474

T

Item is a repeat type, this is typically used with buttons, altering their execution behavior. By
default an item is only executed when the left mouse button is released while over the item.
However when this flag is specified the item is executed as soon as the left mouse button is
pressed and is repeatedly executed until the button is release or the mouse moves off the item.
The delay between repeated executions is determined by the variables $delay−time(5) and
$repeat−time(5).

S

Item is a separator type. This is not often required as any item without anything to
execute is automatically set to be a separator. Occasionally a mouse−insensitive item
which can be executed is required, typically a text string with a hot key, e.g.

osd 200 1 "S" " &Enter text" 2
osd 200 2 "ExHf" %osd−entry−scheme "########" 1 my−entry−set

will be drawn as "[Okay]"

Item 1 will have a hot−key which executes item 2 (as no command is given), but it
will not hi−light if the mouse is placed over it.

R

Redraw dialog. Forces a redraw of the dialog when the item is executed. This is not
usually required as osd generally works out for itself whether a redraw is needed,
however, sometimes it does not, most notably when the item sets a variable that is
displayed by another item as an entry, e.g.

set−variable %entry−value "Hello world"

define−macro my−entry−set
 !if &equ @# −1
 set−variable %entry−value @ml "" %entry−value
 !else
 set−variable $result %entry−value
 !endif
!emacro

osd 200 1 "S" " &Enter text" 2
osd 200 2 "ExHf" %osd−entry−scheme "########" 1 my−entry−set
osd 200 3 "BxHcfiR" %osd−ebtt−scheme " &Reset " f "set−variable %entry−value\"\""

If item 3 did not have flag R set when executed, osd would not realize that the change
to value %entry−value affects the display and the button would not appear to
operate.

H

Sets the item color scheme. Note that for scrolled child items this only sets the scroll−box

MicroEmacs '02

osd(2) 475

color scheme, the dialog scheme is used for the rest of the boarder.

G

This flag is only applicable in grid dialogs (see flag G in dialog creation). The current item
will be drawn with a box around it using $box−chars(5).

z

Sets the item size, arguments "width" and "depth" must be given.

N

This flag only has an effect on entry item types, it selects 'New−line' style text entry which
allows the user to enter multiple line of text using the return key and to end the input using
the tab key.

Note that for a non−sub−menu item type, if an argument is given with no command then it is
assumed that the number given is the item number to be executed, see flag S for an example.

Dialog Exacution

n osd

This invocation with a single positive numeric argument executes the nth dialog.

Returning Command Control

osd

An invocation of osd with no arguments returns control back to the osd from a control−command.
Refer to the C flag in the create/reset dialog property for information and an example.

Current Dialog Redraw

−1 osd

Calling osd with an argument of −1 forces the complete redrawing of current dialog and any
sub−dialogs. This is very useful when the execution of one item may effect the appearance of another.

Redraw All Active Dialogs

−2 osd

MicroEmacs '02

osd(2) 476

Calling osd with an argument of −2 forces the complete redrawing of all currently active osd dialogs.
This is better than calling screen−update(2) when only the osd dialogs need updating as it suffers less
from flickering.

EXAMPLE

Refer to osd.emf, userstp.emf, search.emf, spell.emf and organize.emf for
examples of the OSD.

SEE ALSO

$osd−scheme(5), $result(5), $scroll−bar(5). $window−chars(5).

MicroEmacs '02

osd(2) 477

osd−bind−key(2)

NAME

osd−bind−key − Create key binding for OSD dialog
osd−unbind−key − Remove key binding from OSD dialog

SYNOPSIS

osd−bind−key n "command" "key"
osd−unbind−key n "key"

DESCRIPTION

osd−bind−key creates a local key binding for a given osd dialog, binding the command command to
the keyboard input key. Only the current root dialog's local bindings are used, local bindings of
included dialogs or other root dialogs currently displayed are ignored.

Osd local bindings take priority over default osd bindings, local bindings created using
ml−bind−key(2) are also used, but any current buffer local bindings created using buffer−bind−key(2)
are ignored.

NOTES

The prefix commands cannot be rebound with this command.

Key response time linearly increases with each osd binding added.

As only the root dialog's bindings are used, creating note−book page specific bindings can be
awkward. Typically all required keys are bound to the same command which, depending on the page
that is currently being displayed, checks if the key pressed is bound on the current page and if so calls
the required command. See organizer(3), defined in organize.emf for an example of this
operation.

SEE ALSO

osd(2), global−bind−key(2), ml−bind−key(2), buffer−bind−key(2), global−unbind−key(2).

MicroEmacs '02

osd−bind−key(2) 478

osd−dialog(3)

NAME

osd−dialog − OSD dialog box
osd−xdialog − OSD Extended dialog box
osd−entry − OSD entry dialog box

SYNOPSIS

n osd−dialog "title" "prompt" ["x−pos" "y−pos"] "but1"
n osd−xdialog "title" "prompt" default ["x−pos" "y−pos"]

"but1" "but2" ...
n osd−entry "title" "prompt" variable ["x−pos" "y−pos"]

[["entry−xsize" | "entry−xsizexentry−ysize"] ["type"]] DESCRIPTION

osd−dialog constructs a OSD dialog prompt with a title string title, a prompt string within the dialog
of prompt. A single button, with text rendering but1, is placed within the dialog. The dialog remains
on the screen until the button is selected or the user aborts.

osd−xdialog creates an extended dialog with multiple buttons similar to osd−dialog, the number of
buttons created (#) is determined from the number of but arguments. The default integer argument
specifies the default button (1..#), a value of 0 specifies that there is no default button.

The commands return the button pressed in the variable $result(5).

osd−entry constructs a simple OSD entry dialog which prompts the user to type in a value. The value
of the supplied variable is used as an initial entry value, the variable is set to the entered value when
the user presses the "Okay" button but remains unchanged if the user Cancel or aborts.

The size of the entry defaults to 30 characters if not specified by the user, when a size parameter is
given it can take one of two forms, either simply "w" specifying the width, the height defaulting to 1,
or "wxh" (i.e. "40x5") specifying both. The last optional argument type sets the type of value being
entered (e.g. file name, buffer name, etc) see flag h on the help page for @ml(4) for a list of entry
types and the numerical value to be supplied.

The argument n can be used to change the default behavior of the commands described above, n is a
bit based flag where:−

0x01

Enables command abort (default), except osd−entry which ignores the setting of this bit. When
enabled, if the user abort by either closing the dialog (top right button) or using the abort−command

MicroEmacs '02

osd−dialog(3) 479

the dialog command will also abort. If bit 0x01 is not set the command will not abort and $result will
be set to −1.

0x02

When set, flags that a dialog position has also been provided, extra arguments x−pos and y−pos must also be
given. By default the dialog is placed under the mouse. EXAMPLE

A simple query dialog is typically constructed using osd−dialog, as follows:−

!if &seq %osd−search−str ""
 osd−dialog "Replace" "Error: Search string is empty!" " &OK "
 !return
!endif

The following example uses multiple buttons within a single dialog, using osd−xdialog, as follows:−

0 define−macro osd−close
 !if &bmod "edit"
 set−variable #l0 &spr "Buffer \"%s\" changed" $buffer−bname
 osd−xdialog "Buffer Close" #l0 1 "&Save First" \
 "&Loose Changes" "&Cancel"
 !if &equ $result 3
 !abort
 !elif &equ $result 2
 −1 buffer−mode "edit"
 !else
 !if &seq $buffer−fname ""
 !nma write−buffer
 !else
 !nma save−buffer
 !endif
 !endif
 !endif
 delete−buffer $buffer−bname @mna
!emacro

The next example macro can be used to change the value of a user variable to a user supplied file
name:

set−variable %source−root "~/"

define−macro set−source−root
 osd−entry "Source Root" "&Path : " %source−root 35 1
!emacro

NOTES

osd−dialog, osd−xdialog and osd−entry are macros defined in osd.emf, using osd(2) to create the
dialog.

MicroEmacs '02

osd−dialog(3) 480

SEE ALSO

$result(5), osd(2).

MicroEmacs '02

osd−dialog(3) 481

osd−help(3)

NAME

osd−help − GUI based on−line help

SYNOPSIS

osd−help

DESCRIPTION

osd−help provides a GUI front end to the on−line help manual, the dialog consists of 3 pages which
are defined as follows:−

Contents

The contents page displays a list on contents similar to the help(2) high level help page. Selecting an
item will display the help page in a buffer, selecting Exit will exit the dialog.

Index

The index page gives a list of help items, the Scope menu can be used to narrow the index list to the
required item type.

Search

The search page provides a way of searching the on−line help for a given topic. Similarly to the Index
page, the Scope menu is provided to narrow the search to the required area.

The search strings is considered to be made up of items separated by spaces, an item can be enclosed
in quotes ('"') so that the item can include a space. If the first letter of an item is a '+' the given item
must be found in a page for it to match, if the character is a '−' the item must NOT be found on a page
for it to match, or other items are considered optional. At least one item must be found on a page for it
to be a match, the numbers to the right of each found page is the number of items found.

NOTES

See Help! for help on the on−line help pages.

osd−help is a macro using osd(2), defined in osdhelp.emf.

MicroEmacs '02

osd−help(3) 482

SEE ALSO

help(2).

MicroEmacs '02

osd−help(3) 483

Patience(3)

NAME

Patience − MicroEmacs '02 version of Patience (or Solitaire)

SYNOPSIS

Patience

DESCRIPTION

Patience (or Solitaire) is a solitaire game using a standard set of playing cards. The object of the game
is to use all of the cards in the deck to build up four suit stacks from Ace to King.

The board is laid out with the dealer pile at the top right hand corner, to the left are four suit stacks
onto which cards of the same suit are placed, in ascending order from the Ace. Below these two areas
of the board are seven row stacks, organized in a triangular shape with zero to six downward facing
cards.

Cards may be moved around the playing area by stacking alternative red and black cards in
descending order on the row stacks. When a row stack has no upturned cards on the stack then the top
card may be turned over and may be played. If a stack becomes empty then only a King may be
moved into the vacant position. Cards may be removed from the dealer, they are over−turned in sets
of three cards, the underlying 2 cards are visible, but are not accessible, only the top card may be
removed and played from the dealer.

Cards are moved around the board using the mouse. Cards may be moved from the dealer or between
the row stacks by placing the mouse over the card to be moved and pressing the left mouse button.
Move the cursor to the new card position and release the left mouse button. If the move is legal then
the card(s) are moved to the new stack. Multiple cards may be moved from the row stacks, the
appropriate card(s) to be moved is automatically determined.

Cards may be moved onto the suit stacks by a single left mouse press and release on the same card,
the card is moved to the appropriate suit stack. The same technique is used to turn cards over in the
suit stacks, and to deal the next set of cards by the dealer. To deal, then click on the down−turned card
stack, if there are no further cards at the dealer then click on the empty position and the dealer will
turn over the dealer stack and deal from the top again.

Note that once a card is played onto the suit stacks then it cannot be removed.

To the right of the board are a number of control buttons. To select an option, click the left mouse
button on it, the buttons are labeled:

DEAL

MicroEmacs '02

Patience(3) 484

Start a new game by dealing new cards.

QUIT

Exit the game

HELP

This help page

Note that the screen may be updated at any time using "C−l".

NOTES

Patience is a macro defined in patience.emf.

The game is best played with a mouse, it is possible to play with the keyboard, as follows:−

"esc h" for help

To move a card between stacks enter the source and destination column number
("1","2",.."7"). To move from the dealer pile then the source is the "space" key.

"tab" deals the next cards.

To overturn a card on the row stacks then enter the card column twice i.e. source and
destination are the same.

To move a card from the row to the suit stacks then either enter the card column twice, or
enter the destination as "h","d","c","s" (i.e. "2 2" or "2 s" to move the card in column 2 to the
spades stack).

"C−c C−c" to deal the cards again.

"C−l" redraw the screen.

"q" to quit the game.

SEE ALSO

Games, Triangle(3), Mahjongg(3).

MicroEmacs '02

Patience(3) 485

paragraph−to−line(3)

NAME

paragraph−to−line − Convert a paragraph to a single line

SYNOPSIS

n paragraph−to−line

DESCRIPTION

paragraph−to−line is a variation of fill−paragraph(2). paragraph−to−line reduces each of the next n
paragraphs of text to single lines. This command is typically used to prepare text for import into a
word processor such as Microsoft Word or Word Perfect. Reduction of text to a single line allows
the word processor to import the raw text file and keep the text within paragraph blocks. If the text is
not prepared then all of the line−feeds have to be manually deleted.

paragraph−to−line allows text based documents to be prepared in MicroEmacs '02 and imported into
the word processor at the final stage for formatting and layout.

NOTES

paragraph−to−line is a macro defined in format.emf.

SEE ALSO

fill−paragraph(2).

MicroEmacs '02

paragraph−to−line(3) 486

pipe−shell−command(2)

NAME

pipe−shell−command − Execute a single operating system command
$ME_PIPE_STDERR − Command line diversion to stderr symbol

SYNOPSIS

n pipe−shell−command "command" ["buffer−name"] (esc @)

[MS−DOS and Win32s Only]
$ME_PIPE_STDERR "string"; Default is undefined.

DESCRIPTION

pipe−shell−command executes one operating system command command and pipes the resulting
output into a buffer with the name of *command*.

The argument n can be used to change the default behavior of pipe−shell−command described above,
n is a bit based flag where:−

0x01

Enables the use of the default buffer name *command* (default). If this bit is clear the user must
supply a buffer name. This enables another command to be started without effecting any other
command buffer.

0x02

Hides the output buffer, default action pops up a window and displays the output buffer in the new
window.

0x04

Disable the use of the command−line processor to launch the program (win32 versions only).
By default the "command" is launched by executing the command:

 %COMSPEC% /c command

Where %COMSPEC% is typically command.com. If this bit is set, the "command" is launched
directly.

0x08

MicroEmacs '02

pipe−shell−command(2) 487

Detach the launched process from MicroEmacs (win32 versions only). By default the command is
launched as a child process of MicroEmacs with a new console. With this bit set the process is
completely detached from MicroEmacs instead.

0x10

Disable the command name mangling (win32 versions only). By default any '/' characters found in the
command name (the first argument only) are converted to '\' characters to make it Windows compliant.
NOTES

On MS−DOS and Win32s the standard shell command.com(1) does not support the piping of stderr
to a file. Other shells, such as 4Dos.com(1), do, using the command−line argument ">&". If the
environment variable "ME_PIPE_STDERR" is defined (the value is not used) then MicroEmacs
assumes that the current shell supports piping of stderr.

SEE ALSO

ipipe−shell−command(2), shell−command(2).

MicroEmacs '02

pipe−shell−command(2) 488

popup−window(2)

NAME

popup−window − Pop−up a window on the screen

SYNOPSIS

n popup−window "name"

DESCRIPTION

popup−window manages the display of a new window on the screen. If only one window exists then
it will be split else the current window will changed to one of the other existing visible windows. If
the given buffer name "name" is not null ("") then the buffer is created, if it does not exist, and
swapped in.

If an argument n of zero is given then the command only succeeds if the given buffer is already being
displayed in an existing window, this window is made current. If an non−zero argument is given to
the command and the given buffer is not visible then a window displaying a system buffer is chosen
in preference. A system buffer is one who's name starts with a '*' character, e.g. "*help*". window
used to display

SEE ALSO

find−buffer(2).

MicroEmacs '02

popup−window(2) 489

prefix(2)

NAME

prefix − Key prefix command
prefix2 − Control(2) prefix
prefix3 − Control(3) prefix
prefix4 − Control(4) prefix

SYNOPSIS

n prefix

Default prefix bindings:

prefix 1 (esc)
prefix 2 (C−x)
prefix 3 (C−h)
prefix 4 (C−c)

DESCRIPTION

prefix sets up to 8 prefix key sequences, allowing two stoke key bindings. The command does not do
anything, it is used to create double barrel key bindings such as such as goto−line(2) (esc g). This
binding may be redefined, redefining ALL meta bindings. If the meta bindings are not required the
command should first be unbound using the global−unbind−key(2).

The prefix key can only be defined using the global−bind−key(2), passing the command the prefix
number required, for example:

1 global−bind−key "prefix" "esc "
2 global−bind−key "prefix" "C−x"

Binds the first prefix to the Escape key and the second prefix to Control−x.

The first prefix key (prefix 1) differs from the other prefixes since it permits entry of the numeric
argument at the message line, e.g. "esc 1 0 C−f" will move forward 10 characters.

NOTES

Invocating this command via execute−named−command(2) or by a macro has no effect. It can be
bound to only one key sequence which must be a single key stroke such as C−x etc. Re−binding the
command to another key will not only unbind the new key but also the current prefix ? key bindings.

MicroEmacs '02

prefix(2) 490

SEE ALSO

global−bind−key(2), global−unbind−key(2).

MicroEmacs '02

prefix(2) 491

print−buffer(2)

NAME

print−buffer − Print buffer, with formatting
print−region − Print region, with formatting

SYNOPSIS

n print−buffer
n print−region

DESCRIPTION

print−buffer and print−region print the current buffer or region, respectively, using high−lighting
where appropriate. The hilighting assigned to a buffer is defined by the variable $buffer−hilight(5) the
print scheme is defined with print−scheme(2), the scheme−editor(3) should be used to create printer
schemes.

The printing is typically configured using print−setup(3), which can be found in the main menu under
File−>Printer Setup.

The numerical argument n is generally used for macro development, it changes the default behaviour
of these commands as follows:

−2

Configures the printer and, on win32 platforms, opens a Windows printing dialog box enabling the
user to configure the printer, font and page layout. The configuration is stored in the "/print"
registry.

−1

Configures the printer, the configuration is stored in the "/print" registry.

0

Configures the printer and, on win32 platforms, using the Windows printer, opens a Windows
printing dialog box enabling the user to configure the printer, font and page layout. The required
printing is then performed.

1

Configures the printer and performs the required printing. Printing Process

MicroEmacs '02

print−buffer(2) 492

When either of these commands are executed the macro file print.emf is executed to configure the
printer (in a same vain as me.emf is executed to configure MicroEmacs for general usage). After the
macro file has been executed the "/print" registry must contain the information required for
printing. Following is a list of registry entries and their use:

flags (integer)

The setup flags, defined as a bit mask as follows:−

0x0f − Destination of the printer output.

0x00 − Buffer only.
0x01 − Internal queue.
0x02 − To file only.
0x03 − To file and command line.
0x10 − Bit set, header enabled.
0x20 − Bit set, footer
0x40 − Bit set, enable line numbers.
0x80 − Bit set, Enable truncated line character (typically \).

paper−x (integer)

Paper page width in character cells.

paper−y (integer)

Paper page depth in character cells.

page−x (integer)

The logical page width in character cells.

page−y (integer)

The logical paper depth in character cells.

specifier−x (integer)

Windows only.

specifier−y (integer)

Windows only.

font−face (string)

The name of the font face (Windows only).

rows (integer)

MicroEmacs '02

print−buffer(2) 493

Number rows per output page.

cols (integer)

Number of columns per output page.

mtop (integer)

The size of the top margin in character cells (i.e. where printing may commence).

mbottom (integer)

The size of the bottom margin in character cells (i.e. where printing stops).

mleft (integer)

The number of characters of space forming the left magin of the physical page.

mright (integer)

The number of characters of space forming the right magin of the physical page.

header (string)

The ASCII text string for the header line.

footer (string)

The ASCII text string for the footer line.

port (string)

Printer port identity.

buffer (string)

The name of the destination buffer.

file (string)

The name of the destination file.

strip (integer)

If integer value strip spaces from eol.

device (string)

The ASCII name of the device (i.e. /dev/lp).

MicroEmacs '02

print−buffer(2) 494

eof (string)

The printer codes for the end of the file, may be the empty string if not reqired.

eol (string)

The printer codes for the end of line character.

eop (string)

The printer codes for the end of a page.

sof (string)

The printer codes for the start of a file, may be the empty string if not required.

sol (string)

The printer codes for the start of a line.

sop (string)

The printer codes for the start of a page.

scont (string)

The printer codes for a start of row continuation.

econt (string)

The printer codes for the end of row continuation.

hsep (string)

The horizonal logical page separator character.

vsep (string)

The vertical logical page separator character.

wsep (string)

The depth in character cells of the vertical logical page separator.

xsep (string)

The width in character cells of the logical horizontal separator.

bg−color (integer)

MicroEmacs '02

print−buffer(2) 495

The background colour number.

command−line (string)

The command line to perform a print operation. Printing Under Microsoft Windows Environments

Printing under Microsoft Windows Environments automatically invokes a dialog box to assign and
configure the printer page characteristics. The dialog box allows the printer to be selected, enables
line numbering, headers and footers.

The dialog allows the user to select the font size, by defining the number of characters that appear on
a logical page, and the number of logical pages that appear on a physical page. Selecting the logical
and physical page characteristics determine the size of the font. For dense pages with a small typeface
then a point size of 6 is appropriate. For clarity, a larger typeface of 10 or 12 points is advised.

NOTES

The last printer configuration selected by the user is held in the registry file "print.erf" which is
loaded into the /print−history registry section. This feature is implemented in the macro file
print.emf.

BUGS

Landscape printing under Microsoft Windows environments is temperamental.

Font selection under Microsoft Windows environments does not always determine the most
appropriate font size.

The printer interface does not support native postscript generation. (In progress).

SEE ALSO

print−setup(3), scheme−editor(3), print−scheme(2), hilight(2), printall(3f), $buffer−hilight(5).

MicroEmacs '02

print−buffer(2) 496

print−color(2)

NAME

print−color − Create a new printer color
print−scheme − Create a new printer color and font scheme

SYNOPSIS

n print−color "col−no" "red" "green" "blue"
n print−scheme "schemeNum" "fore" "back" "font−mask"

DESCRIPTION

print−color and print−scheme are similar to add−color(2) and add−color−scheme(2) except they
configure MicroEmacs's printer scheme.

print−color creates a new printer color and inserts it into the printer color table, where red, green and
blue are the color components and col−no is the printer color index. The printer color table contains
256 entries indexed by col−no in the range 0−255. print−color may also be used to modify an
existing col−no index by re−assignment, the existing color definition is over−written with the new
color definition.

An argument n of 0 to print−color resets the printer color table, removing all currently defined
colors.

print−scheme creates a new printer scheme. A printer scheme maps the hilight(2) buffer's text into a
print scheme. For example key words could be printed in bold or in blue etc. print−scheme
arguments comprise an identifying index number "schemeNum", two color values, "fore" and "back"
(defined by print−color) and a font setting "font−mask". The font−mask is a bit mask where each bit
is defined as follows:

0x01 Enable bold font.
0x02 Enable italic font.
0x04 Enable light font.
0x08 Enable reverse font.
0x10 Enable underlining.

An argument n of 0 to print−scheme resets the printer scheme table, removing all currently defined
printer schemes.

NOTES

Printer schemes may be created and altered using the scheme−editor(3) dialog, the created printer

MicroEmacs '02

print−color(2) 497

scheme may then be used directly in the print−setup(3) dialog. Therefore direct use of these
commands is largely redundant.

SEE ALSO

scheme−editor(3), print−setup(3), print−buffer(2), hilight(2), $buffer−hilight(5).

MicroEmacs '02

print−color(2) 498

print−setup(3)

NAME

print−setup − Configure MicroEmacs's printer interface

SYNOPSIS

print−setup

DESCRIPTION

print−setup provides a dialog interface for configuring MicroEmacs's printing interface. print−setup
may be invoked from the main File menu or directly from the command line using
execute−named−command(2).

The print−setup dialog is broken down into three pages of configuration options, on all pages the
following buttons are available at the bottom of the dialog:−

Print

Prints the current buffer using the current configuration.

Exit

Quits print−setup, changes made to the configuration will be saved.

The following pages appear in the dialog:−

Printer

The Printer page is used to configure the type, style and location of the printer, the items on this page
are defined as follows:−

Driver

Sets the printer type to be used, selecting this item creates a drop down list of available printer
drivers. The drivers inform MicroEmacs which fonts and colors are available and how to
enable/disable them, these are usually special character sequences. The following special
drivers are defined:−

Default Plain Text

This driver does not use any special character sequences so the output it produces is plain

MicroEmacs '02

print−setup(3) 499

text. This should work with most printers, but it does not support any colors or fonts.

HTML

This is a virtual printer driver as no printer uses HTML directly. However the files produced
by this driver can be loaded by a web−browser and rendered with full color and font support
so provides an efficient way of testing printer schemes. In addition may be used to convert the
text rendered in MicroEmacs into HTML content.

Windows

This utilizes MicroEmacs's built−in Windows printer interface (Windows platforms only). When
selected MicroEmacs communicates directly to the MS Printer Manager.

Print Scheme

Sets the color and font scheme to be used, selecting this item creates a drop down list of available
printer schemes − choose one appropriated for your printer. The Default Plain Text scheme does not
use any color or fonts so should work for all drivers. see the next item for scheme creation and
editing.

Edit

Opens the scheme−editor(3) dialog box to edit the currently selected printer scheme, the editor may
also be used to create and install new printer schemes.

Destination

Specifies the resultant print output, when selected a drop down menu appears containing the
following items:

To buffer only

Creates a "*printer*" buffer and prints to the buffer.

To file only

Creates a new temporary file and prints to it.

To file & print

Prints to a temporary file and then executes the command−line (see next item) to print the
resultant file (option not available when using the Windows printer driver).

Direct to printer

Output is sent directly to the printer, option only available when using the Windows driver.

Command−line

MicroEmacs '02

print−setup(3) 500

Sets the command−line required to print a generated print file (option not available when the
Windows driver is selected as printing is done by talking to MS Print Manager directly). The
command−line should be a single shell command using "%f" whenever the name of the file to
be printed is required, e.g. on UNIX systems lp(1) or lpr(1) can usually be used as follows:−

lp −s %f

On MS−DOS machines this can usually be achieved by copying the file to the PRN device, as
follows:

copy %f PRN

Page Size

Displays the currently configured page size in the form:

ColumnsxRows Chars−WidexChars−High

the field cannot be edited directly, the settings Page Setup affect these values.

Page Setup

Paper Size

Sets the size of the printer paper, selecting this item will produce a pop down menu listing all
available paper sizes unless the Windows printer driver is being used in which case this field cannot
be selected and the Edit button must be used.

Character Size

Sets the size of a character within the page, expressed in terms of the number of characters which will
fit on the paper (widthxheight). When selected a drop down menu lists all available sizes for the
current paper size unless the Windows driver is selected in which case this field cannot be selected
and the Edit button must be used.

Edit (Windows only)

Opens a Windows printer dialog box allowing the user to specify the windows printer, paper size and
character size etc.

No. of Columns and Rows

Sets the number of sub−columns and rows to divide the page into, creating pages within a page.

Line Numbers

When enabled, prints the line number at the left hand edge for each line.

MicroEmacs '02

print−setup(3) 501

Split Line ID

When enabled the last right hand text column is reserved for a split identifier. Whenever a line is too
long to fit on a single line it is split over two or more lines, if this option is enabled the right edge will
be set to the split character (usually a '\' char) to clearly indicate that the line is split.

Page Size

As with the Printer Page Size it displays the current page size, the field cannot be edited. Layout

Margins

Configures the top, bottom, left and right margins in characters.

Header

Sets whether a header should be printed and if so what it should be, the following special
strings can be used:

%%

Print a '%' character.

%b

Print the current buffer's name.

%D

Print the current day of the month.

%f

Print the current buffer's file name.

%h

Print the current hour.

%M

Print the current month of the year.

%m

Print the current minute of the hour.

%p

MicroEmacs '02

print−setup(3) 502

Print the current page number.

%s

Print the current seconds.

%Y

Print the current year as a 2 digit number.

%y

Print the current year as a 4 digit number.

Footer

Sets whether a footer should be printed and if so what it should be, the same special strings can be used as for
the header. NOTES

user−setup is a macro using osd(2), defined in printstp.emf.

The list of available printer drivers and print schemes is stored in the macro file printers.emf.
Using the Install option of the scheme−editor(3) automatically adds the new scheme to the print
schemes list. To create a new printer driver a new configuration registry file (erf file − see
print*.erf for examples) must be created and added to the printer driver lists within
printer.emf.

SEE ALSO

print−buffer(2), scheme−editor(3), osd(2).

MicroEmacs '02

print−setup(3) 503

query−replace−all−string(3)

NAME

query−replace−all−string − Query replace string in a list of files

SYNOPSIS

n query−replace−all−string "from" "to" "files" ["grep−from"]

DESCRIPTION

query−replace−all−string, similar to query−replace−string(2), replaces all occurrences of "from" to
"to" in the given list of files prompting the user before replacing each occurrence.

The command finds all occurrences of "from" by calling the command grep(3) to search for string
"from" in files "files". Thus all relevant edited files must be saved or grep may return the wrong line
numbers. This is achieved by a call to save−some−buffers(2) which prompts the user to save any
changed buffers one at a time.

Each occurrence of "from" is jumped to using get−next−line(2) and the string is replaced by the call:

−1 query−replace−string "from" "to"

This query−replaces all occurrences of "from" to "to" on the current line only, hence the line numbers
must be correct. This also means that the "from" search string must be correctly formatted for both
grep and query−replace−string, unless bit 0x02 is set (see below).

The given argument n is a bit based flag which changes the default behavior described above. The bits
have the following effect:−

0x01

Prompt before saving any changed buffer, enabled by default. If this bit is not set then any changed
buffer is automatically saved before the grep is performed.

0x02

If set then a fourth argument "grep−from" must also be given. This string is used in place of the "from" string
for the grep only. NOTES

query−replace−all−string is a macro defined in search.emf.

The grep command must be working before this command can function properly.

MicroEmacs '02

query−replace−all−string(3) 504

It is not recommended to use a "from" or "to" string which uses more that one line as the results may
be unpredictable.

As the change is likely to be over several files a single call to undo(2) at the end of execution will not
undo all the changes made. To undo all the changes made, use get−next−line(2) to loop through all
the occurrences and call undo for each occurrence

SEE ALSO

query−replace−string(2), save−some−buffers(2), grep(3), get−next−line(2), undo(2),
replace−all−string(3), search−forward(2).
Regular Expressions

MicroEmacs '02

query−replace−all−string(3) 505

query−replace−string(2)

NAME

query−replace−string − Search and replace a string − with query

SYNOPSIS

query−replace−string (esc C−r)

DESCRIPTION

query−replace−string operates like the replace−string(2) command. replacing one string with
another. However, it allows you to step through each string and ask you if you wish to make the
replacement. The user is prompted for a replacement response as follows:−

Y

Make the replacement and continue on to the next string.

N

Do not make the replacement, and continue.

!

Replace the rest of the strings without asking.

^G

Stop the command.

.

Go back to place the command started

u

Undo last replacement.

l

Last replacement, do next and stop.

?

MicroEmacs '02

query−replace−string(2) 506

Help − get a list of options. SEE ALSO

Refer to search−forward(2) for a description of the magic mode search characters.

replace−string(2).
Regular Expressions

MicroEmacs '02

query−replace−string(2) 507

quick−exit(2)

NAME

quick−exit − Exit the editor writing changes
save−buffers−exit−emacs − Exit the editor prompt user to write changes

SYNOPSIS

quick−exit (esc z)
save−buffers−exit−emacs (C−x C−c)

DESCRIPTION

quick−exit writes out all changed buffers to the files they were read from, saves all changed
dictionaries, killing any running commands and exits the editor.

save−buffers−exit−emacs operates a quick−exit only prompts the user before saving any files.

NOTES

All buffers with a name starting with a '*' are assumed to be system buffer (i.e. *scratch*) and are not
saved.

SEE ALSO

exit−emacs(2), save−buffer(2).

MicroEmacs '02

quick−exit(2) 508

quote−char(2)

NAME

quote−char − Insert literal character

SYNOPSIS

n quote−char "key" (C−q)

DESCRIPTION

quote−char inserts the next typed character n times, default is 1, ignoring the fact that it may be a
command character. quote−char obeys the current buffer setting of over(2m) mode.

SEE ALSO

insert−string(2), Symbol(3).

MicroEmacs '02

quote−char(2) 509

rcs−file(2)

NAME

rcs−file − Handle Revision Control System (RCS) files

SYNOPSIS

n rcs−file (C−x C−q)

DESCRIPTION

MicroEmacs '02 RCS support command. The action of this command depends on the current buffer
view(2m) mode state, the argument n, and the existence of an RCS file.

view−mode ON; RCS file does not exist

Removes buffer view mode to enable the user to edit the file.

view−mode ON; RCS file exists

MicroEmacs attempts to check out the file using the command line given by the variable
$rcs−cou−com(5) (co unlock). The file is then reloaded and the view mode status re−evaluated.

view−mode OFF; RCS file does not exist

MicroEmacs attempts to check−in the file into RCS for the first time using the command−line given
by the variable $rcs−cif−com(5) (ci first). The file is then reload.

view−mode OFF; RCS file exists

MicroEmacs attempts to check−in the file into RCS using the command−line given by the variable
$rcs−ci−com(5). The file is then reload.

−ve argument given

MicroEmacs attempts to unedit any changes made to the file using the command−line given by the variable
$rcs−ue−com(5). The file is then reload. SEE ALSO

rcs(1). $rcs−file(5), buffer−mode(2), find−file(2), view(2m).

MicroEmacs '02

rcs−file(2) 510

read−file(2)

NAME

read−file − Find and load file replacing current buffer

SYNOPSIS

n read−file "file−name" (C−x C−r)

DESCRIPTION

read−file operates like find−file(2), this command either finds the file in a buffer, or creates a new
buffer and reads the file in. The command destroys the current buffer before the new buffer is created
making this command ideal to use when the wrong file was entered on a find−file(2). This command
is also useful for re−loading files that have changed on disk.

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files. SEE ALSO

reread−file(3), find−file(2), view−file(2), binary(2m), crypt(2m), rbin(2m).

MicroEmacs '02

read−file(2) 511

read−history(2)

NAME

read−history − Read in session history information

SYNOPSIS

n read−history ["hist−file"]

DESCRIPTION

read−history reads in a MicroEmacs '02 history file, setting the current history information. If
argument n is not given then the given "hist−file" is simply read in. If a non−zero argument is
specified then default history is set to the given file−name and the file is read. If an argument of zero
is given then the default history is re−read. Information read in (and saved) from the history file
includes:−

Searching and replacing history.♦
Buffer name history.♦
Command name history.♦
File name history.♦
General (all the rest) history.♦
Buffer and file list with line numbers.♦

MicroEmacs '02's environment may be retained almost intact by the use of the default history and
using the −c (continue) command−line option to re−load all files that were being edited in a previous
session.

NOTES

When running multiple MicroEmacs '02 sessions on the same work−station (or different workstations
sharing the same home directory), the default history is saved when MicroEmacs '02 exits. As a result
the last MicroEmacs '02 sessions that terminates writes the history information used next time.

The history information is saved in a registry format file (see erf(8)). Reference should be made to the
notes included in erf(8) as to how the history file may be edited and effected in the same MicroEmacs
'02 session.

SEE ALSO

erf(8), save−history(2).

MicroEmacs '02

read−history(2) 512

read−registry(2)

NAME

read−registry − Read in a registry definition file

SYNOPSIS

read−registry "root" "file" "mode"

DESCRIPTION

read−registry loads a registry file erf(8) into the internal registry memory, where the information
may be queried via the registry macro commands. The arguments are defined as follows:−

root

The root node in the registry to into which the registry contents are attached. The root name is limited
to 32 characters in length and is specified without a leading forward slash '/'. The node root is created
at the root of the registry.

file

The name of the registry file erf(8) to load. This may be an absolute, relative or $MEPATH specified
file; typically it is located on $MEPATH.

mode

The mode is string specifying the registry node loading and saving modes, each mode is
represented by a character. Lower case characters add a mode, upper case characters delete a
mode. The modes are defined as follows:−

a − Autosave

Automatically saves the registry when it is deleted or unloaded from the registry. The user is
not prompted for a save.

b − Backup

Automatically performs a backup of the registry file whenever a save operation is performed.

c − Create

If the registry file cannot be loaded then the root node is created and the invocation succeeds.
If this mode is omitted then the call fails if the file cannot be found.

MicroEmacs '02

read−registry(2) 513

d − Discard

Marks the registry as discardable. This is typically used for registries that are not saved.

r − Reload

If the registry node already exists then it is deleted and reloaded, see also the merge flag (m).
By default, when both the r and m flags are omitted and the registry node already exists the
read operation is not performed and the existing node is used.

m − Merge

The registry file is merged with the contents of any existing registry node. (i.e. the existing
registry tree nodes are not deleted if they already exist). See also the reload flag (r).

h − Hidden

The registry node is created in the Hidden state. (i.e. children will not be shown in
list−registry(2) output).

u − Updated

Marks the registry as modified. The modified bit is removed when the registry file is saved. If the
modified bit is applied to a registry node the user will be prompted to save the registry when it is
deleted (or it will be automatically saved when the Autosave mode is used).

Multiple modes may be applied.

EXAMPLE

The following example is a typical call made from a macro using a registry file where the user may
edit the registry file. In this case this a reload of the registry is forced to ensure that the most
up−to−date contents are retrieved. Note that the name of the registry file is actually retrieved from the
history registry.

set−variable #l1 ® "/history" "address" $MENAME
!if &seq &set #l0 &find #l1 ".ab" "ERROR"
 set−variable #l0 ® "/" "history" ""
 set−variable #l0 &spr "%s%s.ab" &lef #l0 &rsin "/" #l0 #l1
!endif
read−registry "AddressBook" #l0 "rc"

BUGS

At exit only registry nodes attached to the root are saved.

SEE ALSO

MicroEmacs '02

read−registry(2) 514

save−registry(2), list−registry(2), mark−registry(2), erf(8).

MicroEmacs '02

read−registry(2) 515

recenter(2)

NAME

recenter − Recenter the window (refresh the screen)

SYNOPSIS

n recenter (C−l)

DESCRIPTION

recenter scrolls the current window so that the cursor position is at the center of the window and
redraws the whole screen. If n is given then scrolls the window so that the cursor is n lines from the
top if n is positive or from the bottom if negative.

recenter is typically used to refresh the screen if it is out of date (i.e. needs to be redrawn).

SEE ALSO

screen−update(2).

MicroEmacs '02

recenter(2) 516

regex−forward(3)

NAME

regex−forward − Search for a magic string in the forward direction
regex−backward − Search for a magic string in the backward direction

SYNOPSIS

n regex−forward "string"
n regex−backward "string"

DESCRIPTION

regex−forward searches for a regular expression string from the current cursor position to the end of
the file. A case insensitive regular expression search is performed regardless of the magic(2m) and
exact(2m) mode settings.

The numeric argument n is interpreted as follows:−

n > 0

The nth occurrence of the string is located.

n < 0

The first occurrence of the string is located in the next n lines.

regex−backward searches backwards in the file. In all other ways it is like regex−forward.

DIAGNOSTICS

The command returns a status of FALSE if the string could not be located (or nth string where n
occurrences are requested). If the string is found within the given search criteria the return status is
TRUE.

NOTES

The regex−forward and regex−backward commands are not publically available from the command
line, but may be used within macros to perform regular expression searches regardless of the user
mode settings.

These commands are implemented as macros in utils.emf.

MicroEmacs '02

regex−forward(3) 517

SEE ALSO

buffer−mode(2), exact(2m), isearch−forward(2), magic(2m), replace−string(2), search−backward(2),
search−forward(2).
Regular Expressions

MicroEmacs '02

regex−forward(3) 518

replace−all−pairs(3)

NAME

replace−all−pairs − Replace string pairs in a list of files

SYNOPSIS

n replace−all−pairs "files"

DESCRIPTION

replace−all−pairs uses the current buffer to extract "from" and "to" pairs and then replaces all
occurrences of "from" to "to" in the given list of files without prompting the user. An optional third
argument "grep" can be given which will be used as the grep string, if not given the "from" string is
used. The format of the current buffer must be:

/from1/to1/
Xfrom2Xto2X
?from3?to3?
/from4/to4/grep4/
 .
 .
/fromN/toN/

For each pair the command finds all occurrences of "from" (or "grep" if specified) by calling the
command grep(3) to search for string "from" in files "files". Thus all relevant edited files must be
saved or grep may return the wrong line numbers. This is achieved by a call to save−some−buffers(2)
between each replace pair, it is called with an argument of 0 to ensure that any changed buffers are
automatically saved.

Each occurrence of "from" is jumped to using get−next−line(2) and the string is replaced by the call:

−1 replace−string "from" "to"

This replaces all occurrences of "from" to "to" on the current line only, hence the line numbers must
be correct. This also means that the "from" search string must be correctly formatted for both grep and
replace−string.

The given argument n is a bit based flag which changes the default behavior described above. The bits
have the following effect:−

0x01

Prompt before saving any changed buffers FIRST time ONLY, enabled by default. If set then the user is also
prompted to continue before any changes are made. If this bit is not set then the command executes without
any user input. NOTES

MicroEmacs '02

replace−all−pairs(3) 519

replace−all−pairs is a macro defined in search.emf.

The grep command must be working before this command can function properly.

It is not recommended to use a "from" or "to" string which uses more that one line as the results may
be unpredictable.

As the change is likely to be several pair strings with each changed buffer being saved between pairs
undo(2) cannot be used to undo the changes. Neither can the backups be relied on as a buffer may be
saved more than once in this process, therefore it is strongly recommend that a backup of the files is
made before commencing with this command.

SEE ALSO

replace−all−string(3), replace−string(2), save−some−buffers(2), grep(3), get−next−line(2), undo(2),
query−replace−all−string(3), search−forward(2).
Regular Expressions

MicroEmacs '02

replace−all−pairs(3) 520

replace−all−string(3)

NAME

replace−all−string − Replace string with new string in a list of files

SYNOPSIS

n replace−all−string "from" "to" "files" ["grep−from"]

DESCRIPTION

replace−all−string, similar to replace−string(2), replaces all occurrences of "from" to "to" in the
given list of files without prompting the user.

The command finds all occurrences of "from" by calling the command grep(3) to search for string
"from" in files "files". Thus all relevant edited files must be saved or grep may return the wrong line
numbers. This is achieved by a call to save−some−buffers(2) which prompts the user to save any
changed buffers one at a time.

Each occurrence of "from" is jumped to using get−next−line(2) and the string is replaced by the call:

−1 replace−string "from" "to"

This replaces all occurrences of "from" to "to" on the current line only, hence the line numbers must
be correct. This also means that the "from" search string must be correctly formatted for both grep and
replace−string, unless bit 0x02 is set (see below).

The given argument n is a bit based flag which changes the default behavior described above. The bits
have the following effect:−

0x01

Prompt before saving any changed buffer, enabled by default. If this bit is not set then any changed
buffer is automatically saved before the grep is performed.

0x02

If set then a fourth argument "grep−from" must also be given. This string is used in place of the "from" string
for the grep only. NOTES

replace−all−string is a macro defined in search.emf.

The grep command must be working before this command can function properly.

MicroEmacs '02

replace−all−string(3) 521

It is not recommended to use a "from" or "to" string which uses more that one line as the results may
be unpredictable.

As the change is likely to be over several files a single call to undo(2) at the end of execution will not
undo all the changes made. To undo all the changes made, use get−next−line(2) to loop through all
the occurrences and call undo for each occurrence

SEE ALSO

replace−string(2), save−some−buffers(2), grep(3), get−next−line(2), undo(2),
query−replace−all−string(3), replace−all−pairs(3), search−forward(2).

MicroEmacs '02

replace−all−string(3) 522

replace−string(2)

NAME

replace−string − Replace string with new string

SYNOPSIS

n replace−string (esc r)

DESCRIPTION

replace−string replaces all occurrences of one string with another string. The replacement starts at
the current location of the cursor and goes to the end of the current buffer.

A numeric argument positive n limits the number of strings replaced to n. A negative argument n
limits the number of lines in which the replacement may take place, e.g. a value of −15 restricts the
replacement of the string to the next 15 lines from the current cursor position.

SEE ALSO

See Operating Modes for a description of the magic(2m) and exact(2m) modes which change the
search space.

buffer−mode(2), query−replace−string(2), search−forward(2).
Regular Expressions

MicroEmacs '02

replace−string(2) 523

reread−file(3)

NAME

reread−file − Reload the current buffer's file

SYNOPSIS

reread−file

DESCRIPTION

reread−file reloads from disk the file associated with the current buffer, this command is particularly
useful when the file is continually updated by an external program. If the buffer has been edited and
its name does not start with a '*' then the user is prompted as to whether the changes should be
discarded. Also if the buffer has an active process running in it then confirmation is sort from the user
before the process is killed.

NOTES

reread−file is a macro implemented in tool.emf.

SEE ALSO

find−file(2), read−file(2), view−file(2).

MicroEmacs '02

reread−file(3) 524

resize−all−windows(2)

NAME

resize−all−windows − Automatically resize the windows

SYNOPSIS

n resize−all−windows

DESCRIPTION

resize−all−windows performs an automatic layout of the windows on the screen, reorganizing the
windows such that each window has an equal amount of space. The argument n determines which
axes reorganization is performed in.

A +ve argument reorganizes the windows vertically, leaving the horizontal arrangement as is.♦
A −ve argument rearranges the windows horizontally, leaving the vertical arrangement as is.♦
An argument of zero performs no vertical or horizontal arrangement.♦
No argument re−arranges both the vertical and horizontal window layout.♦

SEE ALSO

resize−window−vertically(2), resize−window−horizontally(2), split−window−vertically(2).

MicroEmacs '02

resize−all−windows(2) 525

restyle−buffer(3)

NAME

restyle−buffer − Automatically reformat a buffer's indentation.
restyle−region − Automatically reformat a regions indentation.

SYNOPSIS

restyle−buffer
restyle−region

DESCRIPTION

restyle−buffer automatically re−formats the indentation of a buffer. The indentation only operates if
the indentation method is defined with cmode(2m) or $buffer−indent(5), otherwise the command has
no effect.

restyle−region modifies the indentation between point and mark.

NOTES

restyle−buffer and restyle−region are macros defined in format.emf.

SEE ALSO

cmode(2m), indent(2), $buffer−indent(5).

MicroEmacs '02

restyle−buffer(3) 526

reyank(2)

NAME

reyank − Restore next yank buffer

SYNOPSIS

n reyank (esc y)

DESCRIPTION

Every region killed goes onto a stack, with the most recent at the top. Immediately after yanking text
out into the current buffer using yank(2), the user may reyank which deletes the region just yanked
and replaces it with n insertions of the next region on the kill stack. Another call to reyank deletes that
region and replaces it with the next in the stack etc.

The last 15 kills are stored.

SEE ALSO

copy−region(2), kill−region(2), set−mark(2), yank(2).

MicroEmacs '02

reyank(2) 527

save−all(3)

NAME

save−all − Save all modified files (with query)

SYNOPSIS

n save−all

DESCRIPTION

save−all cycles through all buffers, dictionaries and registry files writing back any changes made. For
each buffer, dictionary or registry file which has been modified the user is prompted before the
changes are saved, a value of y initiates the save, n skips the save.

The argument n can be used to change the default behavior of save−all described above, n is a bit
based flag where:−

0x01

Enables the user prompt before the file is saved (default). If this flag is not supplied then all modified files
will automatically be written. NOTES

save−all is a macro defined in me.emf, using commands save−some−buffers(2), save−dictionary(2)
and save−registry(2).

SEE ALSO

save−some−buffers(2), save−dictionary(2), save−registry(2).

MicroEmacs '02

save−all(3) 528

save−buffer(2)

NAME

save−buffer − Save contents of changed buffer to file

SYNOPSIS

n save−buffer (C−x C−s)

DESCRIPTION

save−buffer saves the contents of the current buffer if the contents have been changed, writing the
buffer back to the file it was read from.

On saving the file, if time(2m) mode is enabled then the time stamp string is searched for in the file
and modified if located, to reflect the modification date and time.

If backup(2m) mode is enabled then a backup copy of the file existing is created and the contents of
the buffer are written to the file. Any automatic save copies of the file are deleted.

If the buffer contains a narrow(2m) it will automatically be removed before saving so that the whole
buffer is saved and restored when saving is complete

If auto(2m) mode is enabled the the file is written out in the style indicated by modes crlf(2m) and
ctrlz(2m). Otherwise the file is written out in the style on the current platform.

The argument n can be used to change the default behavior of save−buffer described above, n is a bit
based flag where:−

0x01

Enables validity checks (default). These include check that the buffer has been modified, if not an
error occurs. Also the time stamp of the file to be written is checked, if the file systems file exists and
is newer the confirmation of writing is requested from the user. If this flag is not supplied then the
buffer is written whenever possible and without any prompts to the user.

0x02

Disables the expansion of any narrows (see narrow−buffer(2)) before saving the buffer. NOTES

undo(2) information is discarded when the file is saved.♦
Refer to $auto−time(5) for a description of the file extensions used by MicroEmacs '02 for
backup and temporary files.

♦

MicroEmacs '02

save−buffer(2) 529

Buffers may also be saved via the list−buffers(2) command.♦

SEE ALSO

$auto−time(5), $timestamp(5), buffer−mode(2), find−file(2), narrow−buffer(2),
save−some−buffers(2), undo(2), backup(2m), time(2m), undo(2m), narrow(2m), auto(2m), crlf(2m),
ctrlz(2m), write−buffer(2), append−buffer(2).

MicroEmacs '02

save−buffer(2) 530

save−dictionary(2)

NAME

save−dictionary − Save changed spelling dictionaries

SYNOPSIS

n save−dictionary ["dictionary"]

DESCRIPTION

save−dictionary may be used to save one, or all changed, dictionaries back to disk. By default
save−dictionary prompts for a single dictionary, which is then saved. If the dictionary to be saved
has been created within the session (rather than read from disk) the user is always prompted to save
and enter a full dictionary file name (pathname) to save to. If the dictionary was not created then the
user is only prompted to save if,

a non−zero argument is supplied♦
and the users history registry node "/history/spell/autosave" does not exist or its value is zero.♦

Otherwise the dictionary is automatically saved.

The argument n may be used to control the effect of the command, n is a bit based flag defined as
follows:−

0x01

Enables prompting before saving, only used when saving all dictionaries.

0x02

Save all changed dictionaries. NOTES

This command is called to save all dictionary changes whenever MicroEmacs is exited.

The dictionary auto−save registry value can be changed via the user−setup(3) dialog.

SEE ALSO

add−dictionary(2), delete−dictionary(2), spell(2).

MicroEmacs '02

save−dictionary(2) 531

save−history(2)

NAME

save−history − Write history information to history file

SYNOPSIS

n save−history "hist−file"

DESCRIPTION

save−history writes out MicroEmacs '02's current history information into the given history file.

The command read−history(2) can set a default history file in which case the history is automatically
written out to this file if an argument of zero is given; the user is not prompted for a file. MicroEmacs
'02 automatically tries to write the default history whenever it is exited.

NOTES

The history information is saved in a registry format file (see erf(8)). Reference should be made to the
notes included in erf(8) as to how the history file may be edited and effected in the same MicroEmacs
'02 session.

SEE ALSO

erf(8), read−history(2).

MicroEmacs '02

save−history(2) 532

save−registry(2)

NAME

save−registry − Write a registry definition file

SYNOPSIS

n save−registry ["root" "file"]

DESCRIPTION

save−registry saves a registry tree, defined by root, to a registry file file in the erf(8) format. By
default the user is prompted for the registry root to save, which must already exist. If the file given is
the empty string "", the registry node root must be a root node with an associated file name stored,
this file name is used.

The argument n may be used to control the effect of the command, n is a bit based flag defined as
follows:−

0x01

Enables prompting before saving, only used when saving all registries.

0x02

Save all changed registries except the history node which should be saved using the command
save−history(2). NOTES

This command is called to save all registry changes whenever MicroEmacs is exited.

SEE ALSO

read−registry(2), save−history(2), erf(8).

MicroEmacs '02

save−registry(2) 533

save−some−buffers(2)

NAME

save−some−buffers − Save contents of all changed buffers to file (with query)

SYNOPSIS

n save−some−buffers

DESCRIPTION

save−some−buffers cycles through all visible buffers (buffers without mode hide(2m) set) and
attempts to save all modified ones, writing the contents back to the file from where it was read. For
each buffer that has been modified the user is prompted to save the buffer, a value of y initiates a save
for the buffer, n skips the buffer.

The argument n can be used to change the default behavior of save−some−buffers described above, n
is a bit based flag where:−

0x01

Enables the user prompt before the buffer is saved (default). If this flag is not supplied then all modified
visible buffers will be written. SEE ALSO

save−buffer(2), save−buffers−exit−emacs(2), write−buffer(2), hide(2m).

MicroEmacs '02

save−some−buffers(2) 534

scheme−editor(3)

NAME

scheme−editor − Color Scheme Editor

SYNOPSIS

scheme−editor

DESCRIPTION

scheme−editor is a color and font scheme editor that provides a dialog interface to configure the
display schemes used by the editor. The schemes may be created or modified within the scheme editor
and then committed to the configuration files for general use.

The editor can be used to create both screen and printer color/font schemes, they are typically stored
in the macros directory and are executed as macro files at start up or when printing. The standard
screen schemes are called schemeX.emf and printer ones printX.emf.

The scheme−editor is displayed within a single dialog box, tab selections at the top of the dialog box
enable color and scheme creation and/or modification. Navigation is typically performed using the
mouse, where the mouse is absent then the TAB key may be used to move between the fields. The
information presented is defined as follows:−

File Name

The name of the color scheme to be modified. This is the name of the schemeX.emf file, omitting the
file extension. See the FILES section below for a list of standard screen and printer scheme supplied
with MicroEmacs '02.

Type

Defines whether the scheme is a screen or printer type.

Description

An ASCII description of the color scheme, used to identify the color scheme.

Buffer Hilight

Available when scheme is a screen type. Defines whether buffer hilighting should be enabled, when
Completely Disable all buffers are displayed character for character in the standard text scheme, this
will ensure maximum update performance but some file formats such as the on−line help will become
unreadable so this option is really selected. Similarly Reformat Only disables the majority of buffers,

MicroEmacs '02

scheme−editor(3) 535

hilighting is only enabled when the file would be unreadable without it, such as the on−line help or
man page files. The default Fully Enabled setting enables all buffer hilighting.

Print Option

Available when scheme is a printer type. Defines what components of a scheme is to be used when printing.
Colors

The colors tab allows the basic palette colors of the editor to be created and modified. The left−hand
side of the dialog contains a scrolling window containing the existing color entries. The right−hand
side of the dialog provides the controls to add and change the color assignment. The controls operate
on the currently selected palette entry.

Add

Creates and adds a new color entry into the palette. The new palette entry is created with a default
color that may be subsequently modified.

Change

Commits the current selection color to the palette.

Red/Green/Blue

The color entries allow the currently selected palette color entry to be modified. The color values may be
changed by direct numeric entry (0..255) or via the ^/v controls; the color is committed to the palette using the
Add or Change button. Schemes

The schemes tab allows the schemes to be edited. The left−hand side of the dialog contains a
scrolling window of the available color palette (created from the Colors tab). The right−hand side of
the window shows the variants of the scheme.

Selection

The selection item provides a pull−down menu containing gross scheme categories used by the editor.

Scheme

A pull−down menu containing the schemes of the selection, modifying this entry shows the variants
of the scheme in the Normal, Current, Select and Sel−Cur dialogs.

There are 4 variants, or styles, for a single scheme; each style is comprised of a foreground and
background color, and a row of toggle button to enable/disable fonts, defined as follows.

B − Bold.
I − Italic.
L − Light (typically not supported).

MicroEmacs '02

scheme−editor(3) 536

R − Reverse video (fore/back−ground swapped).
U − Underline.
V − Toggle reverse video when inverted.

The last mode V needs a little more explanation; commands such as screen−poke(2) are able to invert
the color scheme, i.e. use the fore color for the background etc. Enabling this mode will toggle the
reverse video mode (R) when this feature is used.

The style displayed by a particular scheme depends upon the selection/current status of the text:

Normal

The normal style, when the text object is not selected or current (i.e. out of focus).

Current

The style used when the text object is current (i.e. in focus)

Select

The style used when the text object is selected (i.e. by the mouse) and is not current.

Sel−Cur

The style used when the text object is selected and is current.

Note that a printer scheme only uses the Normal style.

Setting of the selection and scheme shows the current scheme in the Normal, Current, Select and
Sel−Cur dialogs. New colors are assigned by selecting a color in the palette area and making it
current. The current color is applied by selecting the Fore / Back boxes of the scheme dialog. The
assigned color is displayed in the text box The big brown fox....

Controls

The controls at the bottom of the dialog apply the edits to the configuration files.

Current

Makes the changes to the palette and schemes current, they are applied to the current editing session
but are not committed to file. This allows the palette changes to be used prior to commitment. Note
that all modifications are lost if they are not saved and the editing session is terminated.

Save

Saves the scheme modifications to file, effectively making the changes permanent. Note however that
the scheme macro file will be saved in the first directory in the $search−path(5), regardless of the
location of the original. For network systems this typically means that the changes will only effect the

MicroEmacs '02

scheme−editor(3) 537

current user.

Install

Installs the current color scheme into the configuration files, making the color scheme accessible to
the user−setup(3) dialog.

Exit

Quits the scheme editor without modifying the settings. FILES

scheme.emf − Defines the standard scheme variables, including the available scheme list, and
associated text.
schemed.emf − Default white on black color scheme.
schemej.emf − Black on cream color scheme.
schemevi − Sandy shores.
schemesf − Sherwood Forest.
schemebh − Blue Hue.
schemepd − Plain Black on Cream.
schemepl − Plain White on Black.
schemel − Black on grey.
schememd − Microsoft Developer Studio Colors.
printers.emf − Defines the list of available printer schemes and drivers.
printd − Default plain print−out.
printf − Print using fonts.
printepc − Print using Epson base colors and fonts.

NOTES

scheme−editor is a macro that is implemented in file schemosd.emf. The scheme editor uses
osd(2) to create and manage the dialogs.

Only the Normal scheme style is used by printer schemes.

The setting of Buffer Hilight can effect the way buffer hooks are load so changing from one scheme
to another with differing Buffer Hilight settings may not fully work. This can be rectified by restart
MicroEmacs with the new scheme as default.

The current screen scheme can effect the printing due to the Buffer Hilight setting, e.g. if the screen
scheme is set to completely disable hilighting then any print−out will also have no hilighting.

SEE ALSO

user−setup(3), add−color−scheme(2), print−scheme(2), osd(2).

MicroEmacs '02

scheme−editor(3) 538

screen−poke(2)

NAME

screen−poke − Immediate write string to the screen

SYNOPSIS

n screen−poke row column colorScheme "string"

DESCRIPTION

screen−poke writes a string to the screen at position (row, column) using the given color scheme. The
screen coordinates are defined with (0,0) at the top left of the screen.

screen−poke by−passes the conventional buffer update and writes directly to the screen buffer. The
command has no effect on buffers already showing on the screen and is erased on the next screen
update. The string is clipped to the screen area hence the caller need not continually check on the size
of the client area.

The numeric argument n is a bitwise flag which has the following meaning
0x01 Don't mark the poke area for update.
0x02 Don't flush poke to screen.
0x04 colorScheme is an array of values, one for each letter.
0xf0 colorScheme pair offset to use.

If the 0x01 flag is absent then the parts of the screen over written by screen−poke are marked and
refreshed on the next screen−update operation, thereby erasing the poked information. If the flag is
present the poked information remains on the screen until a forced refresh is performed (i.e.
1 screen−update) or the window information under the poked screen data is modified.

In macros using many consecutive screen−pokes (e.g. Patience(3) to display a pack of cards) most
pokes use the 'No flush' flag to improve performance and look on some platforms.

The use of screen−poke has largely been reduced to games such as Metris(3) since the introduction
of osd(2) to create dialogs.

NOTES

Some platforms do not allow all character values to be poked, illegal characters are replaced with a
'.'.

SEE ALSO

MicroEmacs '02

screen−poke(2) 539

osd(2), screen−update(2), Mahjongg(3), Metris(3).

MicroEmacs '02

screen−poke(2) 540

screen−update(2)

NAME

screen−update − Force screen update

SYNOPSIS

n screen−update (redraw)

DESCRIPTION

screen−update updates the current screen, usually used in macros. The argument n can be used to
change the behaviour of this command as follows:

−ve

Disables the next −n screen updates, i.e. if n is −1 then the next time the screen needs to be redrawn
nothing will happen.

0

Resets the screen update disable count to zero, useful to remember when the the disable feature has
been used incorrectly.

1

Full screen update (default), the screen is completely cleared and redrawn (as if garbled).

2

Partial screen update, only the parts of the screen which require updating are redrawn.

3

No screen redraw, only window variables are up−dated. This feature is provided for macros which manipulate
the screen view and need to know where the cursor is in the window without redrawing the screen (which may
cause unwanted flickering). Note that as the screen is not redrawn not all variables may have the correct value,
for example the frame store variable @fs(4) could be out of date. EXAMPLES

The following macro demonstrates the problems encountered when trying to use screen variables in
macros after the current position has changed. The first value printed is the starting cursor Y position
and the next value should be one less than the first value due to the call to backward−line(2). But it is
the same as the first because the screen (and its variables) have not been updated. The subsequent call

MicroEmacs '02

screen−update(2) 541

to screen−update ensures that the third value is the correct one although by giving it an argument of 3
the screen is not visibly updated thus avoiding any annoying screen flicker:

define−macro test−screen−update
 set−variable #l0 $cursor−y
 backward−line
 set−variable #l1 $cursor−y
 3 screen−update
 set−variable #l2 $cursor−y
 forward−line
 ml−write &spr "%d %d %d" #l0 #l1 #l2
!emacro

NOTES

Every time the screen requires updating, MicroEmacs executes the redraw key, it is similar in
mechanism to the user pressing C−l to refresh the screen. The user can therefore re−bind the redraw
key to another command or macro, thereby allowing the user complete control of what is displayed.
For example if redraw was bound to void(2) the screen would not be up−dated (Note: this is difficult
to get out of and may require MicroEmacs to be killed).

This feature is often exploited by macros which take control of the input and output, such macros
include gdiff(3), Metris(3), and Mahjongg(3).

SEE ALSO

recenter(2), screen−poke(2).

MicroEmacs '02

screen−update(2) 542

scroll−down(2)

NAME

scroll−down − Move the window down (scrolling)
scroll−up − Move the window up (scrolling)

SYNOPSIS

n scroll−down (C−n)
n scroll−up (C−p)

DESCRIPTION

scroll−down moves the window in the current buffer down by n lines, the default when n is omitted is
1 windows worth of lines i.e. a next page operation. A −ve value of n causes the window to move up.

scroll−up moves the window in the current buffer up by n lines, default when n is omitted is 1
windows worth of lines, i.e. a previous page operation. A −ve value of n causes the window to move
down.

SEE ALSO

scroll−left(2), scroll−right(2), $window−y−scroll(5).

MicroEmacs '02

scroll−down(2) 543

scroll−left(2)

NAME

scroll−left − Move the window left (scrolling)
scroll−right − Move the window right (scrolling)

SYNOPSIS

n scroll−left (C−x <)
n scroll−right (C−x >)

DESCRIPTION

scroll−left moves the window in current buffer left by 1 screen width. If an argument n is supplied
then the resolution of movement is specified in characters relative to the current displacement.
Moving the window in the current buffer left by n characters (that is if the current left−hand margin of
the screen is column 0, the left hand margin becomes column n).

scroll−right moves the window in current buffer right by 1 screen width. If an argument n is supplied
then the resolution of movement is specified in characters relative to the current displacement.

The ends of the lines of a scrolled screen are delimited with a dollar ($) character indicating that the
text continues. When no scroll is in effect the left hand margin of the screen does not show the $
symbol. i.e. The line This text is scrolled on this line with a current scroll offset of
2 in a 22 column window would appear as follows:

 22
|<−−−−−−−−−−−−−−−−−−−>|

|$s text is scrolled $|

The amount of scroll (n) is effectively unlimited, it is possible to scroll all of the text in a buffer out of
the window, when only $'s appear in the left margin, in the last highlighting color of the line (blank
lines always remain blank and are not delimited with a $). Text on the current line is handled
according to the value of $scroll(5) as follows:

$scroll 0

The current line ONLY is scrolled (about the current scroll position) to enable the current
buffers cursor position to be viewed. To enable the user to determine where the current line is
in relation to the scrolled lines then the first character of the current line is interpreted as
follows:−

All of user text appears

MicroEmacs '02

scroll−left(2) 544

|$f line of te$|
|At start of l$|
|$f line of te$|

Surrounding lines commence with "$" indicates at the start of the line.

$ in column 0

|$f line of te$|
|$f line of te$|
|$f line of te$|

Text column is the same as the surrounding text i.e. the line and window scroll are the
same.

> Left of scroll position

|$f line of te$|
|>f line of te$|
|$f line of te$|

The current line is to the left of the scrolled position. forward−char (i.e. interpret as
−−> indicating the direction of travel) moves the cursor, and therefore the line,
towards the natural scroll position ($ in column).

< Right of scroll position

|$f line of te$|
|<f line of te$|
|$f line of te$|

The current line is to the right of the scrolled position. backward−char (i.e. interpret
as <−− indicating the direction of travel) moves the cursor, and therefore the line,
towards the natural scroll position ($ in column).

$scroll 1

The position of the cursor on the line determines the scrolled position. In this case all lines in the window are
scrolled to ensure that the cursor is always visible. This mode is only useful when dealing with large blocks of
text whose line lengths do not vary. NOTES

The scrolling is an attribute of the WINDOW and not the BUFFER. If the window is closed, or
contents swapped to a different buffer then the scroll setting is reset for the next buffer. A return to the
previous buffer does not restore the scroll setting. The only case where scrolling is inherited is when a
window is split (see split−window−vertically(2)).

When binding scroll−left to the keyboard then it is important to note that when no argument is
specified the resolution is frame−width's. A key binding would operate on character multiples, hence
the command should be bound with a numeric argument to perform the perform the keyboard action.
e.g.

MicroEmacs '02

scroll−left(2) 545

1 global−bind−key scroll−left "A−left"
1 global−bind−key scroll−right "A−right"

To move 5 columns on a key stroke, for an accelerated scroll, then the binding may be re−written as:−

5 global−bind−key scroll−left "A−left"
5 global−bind−key scroll−right "A−right"

SEE ALSO

$scroll(5), scroll−up(2), scroll−down(2), $window−x−scroll(5).

MicroEmacs '02

scroll−left(2) 546

scroll−next−window−down(2)

NAME

scroll−next−window−down − Scroll next window down
scroll−next−window−up − Scroll next window up

SYNOPSIS

n scroll−next−window−down (esc C−v)
n scroll−next−window−up (esc C−z)

DESCRIPTION

scroll−next−window−down scrolls the next window down n lines, if n is omitted then the next
window is scrolled by window number of lines (i.e. next screen page).

scroll−next−window−up scrolls the next window up n lines, as scroll−next−window−down.

These commands are useful in macros to control other windows.

SEE ALSO

scroll−up(2), scroll−down(2).

MicroEmacs '02

scroll−next−window−down(2) 547

search−forward(2)

NAME

search−forward − Search for a string in the forward direction
search−backward − Search for a string in the backward direction

SYNOPSIS

n search−forward "string" (C−x s)
n search−backward "string" (C−x r)

DESCRIPTION

search−forward searches for a string from the current cursor position to the end of the file. The
string is typed on the bottom line of the screen, and terminated with the <ESC> key. Special
characters can be typed in by preceding them with a ^Q. A single ^Q indicates a null string. On
successive searches, hitting <ESC> alone causes the last search string to be reused.

Searching is affected by magic(2m) mode, which allows regular expression pattern matching, and
exact(2m) mode which makes the search case sensitive.

The numeric argument n is interpreted as follows:−

n > 0

The nth occurrence of the string is located.

n < 0

The first occurrence of the string is located in the next n lines.

search−backward searches backwards in the file. In all other ways it is like search−forward.

DIAGNOSTICS

The command returns a status of FALSE if the string could not be located (or nth string where n
occurrences are requested). If the string is found within the given search criteria the return status is
TRUE.

SEE ALSO

buffer−mode(2), exact(2m), hunt−backward(2), hunt−forward(2), isearch−forward(2), magic(2m),

MicroEmacs '02

search−forward(2) 548

replace−string(2).
Regular Expressions

MicroEmacs '02

search−forward(2) 549

set−alpha−mark(2)

NAME

set−alpha−mark − Place an alphabetic marker in the buffer

SYNOPSIS

set−alpha−mark "?" (C−x C−a)

DESCRIPTION

set−alpha−mark places an alpha mark at the current location in the buffer which can be returned to
from anywhere in the buffer using the command goto−alpha−mark(2). The user is prompted for a
mark name which can be any alphabetic character. the mark is destroyed if the line is deleted.

SEE ALSO

goto−alpha−mark(2).

MicroEmacs '02

set−alpha−mark(2) 550

set−char−mask(2)

NAME

set−char−mask − Set character word mask

SYNOPSIS

n set−char−mask "flags" ["value"]

DESCRIPTION

set−char−mask returns or modifies the setting of MicroEmacs internal character tables. The
argument n defines the action to be taken, as follows:−

−1

Removes characters from the given set.

0

Returns characters in the given set in $result(5).

1

Adds characters to the given set.

The first argument "flags" determines the required character set as follows:−

d

Is Displayable. Characters in this set can be directly displayed to the screen (as a single character)
when occurring in a buffer. When a character not in this set is to be displayed it is performed using
more than one character. Characters in the range 1−31 are displayed as "^?" where ? is the ASCII
character plus 64, (e.g. 0x01 −> 65, i.e. "^A") otherwise the character is displayed in the form "\xhh"
where hh is the hex form of the ASCII value. One notable exception is the tab character (0x09), by
default this character is not displayable, instead it is displayed as a sequence of one or more spaces up
to the next tab stop.

p

Is Pokable. Similar to d, characters in this set can be poked to the screen when using screen−poke(2).
When found in a binary file the character is displayed in the right hand column. Unlike d, any
character outside this set will be displayed as a single period '.', indicating that it cannot be displayed.

MicroEmacs '02

set−char−mask(2) 551

P

Is Printable. Similar to d, characters in this set may be printed as a single character when using
print−buffer(2) or print−region(2). Any character not in this set is printed in a similar fashion to d.

M

Character font Map. Internally MicroEmacs uses ISO−8859−1 (Latin 1) to configure alphabetic
classes and the spell−checker, however the system font being by the native platform may not be the
same, for example a small 'e' acute is character 0xe9 in ISO−8859−1 but character 0x82 in Windows
OEM fonts. To change the characteristics of the 'e' acute character (such as making it an alphabetic
character), the ISO−8859−1 character should always be used, but a correct mapping of ISO−8859−1
to the display font (such as Windows OEM) must also be supplied.

Unlike other sets, this set cannot be incrementally altered, any calls to alter this set leads to
the resetting of all the character tables so the character mapping must be performed first and
in a single call. No other set may be altered in the same call. When setting, the "value" must
supply pairs of characters, an ISO−8859−1 character followed by its system font equivalent.

L

ISO−8859−1 (Latin 1) character map list. This set cannot be altered using this flag, character
mappings must be set up using flag M. The order of the characters in the returned $result string is the
same as the order for flag U.

U

User font character map list. This set cannot be altered using this flag, character mappings must be set
up using flag M. The order of the characters in $result when returned is the same as the order for flag
L.

a

Is Alphabetic letter. Characters in this set are alphabetical characters, used by many MicroEmacs
commands such as forward−word(2). When setting, the "value" must specify pairs of ISO−8859−1
(Latin 1) characters, an Upper−case character followed by its lower−case equivalent. This enables
commands such as lower−case−word(2) to operate correctly regardless of the font and language being
used. Some fonts may not have all the characters available for rendering, for instance PC Code page
437 does not have an upper−case 'e' grave. In this case an ordinary 'E' should be used as a sensible
replacement, i.e. "E`e" (where `e is an 'e' grave). However, this will lead to all upper−case 'E's to map
to a lower−case 'e' grave in a case changing operation, this may be corrected by adding a further
mapping of 'E' to 'e' to over−ride the 'e' grave mapping, i.e. "E`eEe". This technique does fail when
changing the case more than once, when all lower case 'e' graves will be lost.

Note that the returned character list will pair all lower−case characters with their upper−case
equivalent letters first.

l

MicroEmacs '02

set−char−mask(2) 552

Is Lower case letter. This set cannot be altered using this flag, alterations to the alphabetic set must be
performed using flag a. Characters in this set are all the lower−case letters, typically the characters 'a'
to 'z'. The order may not be the same as returned by flag u.

u

Is Upper case letter. This set cannot be altered using this flag, alterations to the alphabetic set must be
performed using flag a. Characters in this set are all the upper−case letters, typically the characters 'A'
to 'Z'. The order may not be the same as returned by

h

Is Hex−decimal Digit. The set is rarely used as it is invariably the digits '0' to '9' and the letters 'a' to
'f' in upper and lower case. It is often used in the setting of $buffer−mask(5).

A

Is Alpha−numeric. This set cannot be altered using this flag, alterations to the alphabetic set must be
performed using flag a. Characters in this set are either alphabetic characters or the digits 0−9.

s

Is Spell extended word character. The characters in this set are recognized by the spell checker as
characters which may be considered part of a word, for example the period '.'s in e.g. or the hyphen
'−' in hyphenated−words. Typically this set contains the characters ''', '−' and '.'.

1, 2, 3 & 4

Is in Word. These user definable sets are used to add characters to a buffer's word character set,
affecting the operation of commands like forward−word(2). Many different file types operate better
with a different word character set, e.g. it is preferable to include the '_' character when editing C
files. See variable $buffer−mask(5).

Unless stated otherwise, multiple flags may be specified at the same time returning a combined
character set or setting multiple properties for the given "value" characters.

EXAMPLE

For many UNIX XTerm fonts the best characters to use for $box−chars(5) (used in drawing osd(2)
dialogs) lie in the range 0x0B to 0x19. For example the vertical bar is '\x19', the top left hand corner
is '\x0D' etc. These characters are by default set to be not displayable or pokable which renders them
useless. They can be made displayable and pokable as follows:−

set−char−mask "dp" "\x19\x0D\x0C\x0E\x0B\x18\x15\x0F\x16\x17\x12"

MicroEmacs variables have either '$', '#', '%', ':' or a '.' character prepended to their name, they may
also contain a '−' character in the body of their name. It is preferable for these characters to be part of
the variable 'word' so commands like forward−kill−word(2) can work correctly. This may be achieved

MicroEmacs '02

set−char−mask(2) 553

by adding these characters to user set 2 and setting the buffer−mask variable to include set 2, as
follows:

set−char−mask "2" "$#%:.−"

define−macro fhook−emf
 set−variable $buffer−mask "luh2"
 .
 .
!emacro

For the examples below only the following subset of characters will be used:−

Character ISO−8859−1 Windows OEM PC Page 437

Capital A (A) A A A
Capital A grave (`A) \xC0 \xB7 No equivalent
Capital A acute ('A) \xC1 \x90 No equivalent
Small a (a) a a a
Small A grave (`a) \xE0 \x85 \x85
Small A acute ('a) \xE1 \xA0 \xA0

As the spell checker only operates in ISO−8859−1 (Latin 1), the character font mapping (flag M)
must be correctly setup for spell checking to operate correctly. For ISO−8859−1 (ISO) this is an
empty string as the default mapping is correct, but for both Windows OEM (OEM) and PC Code Page
437 (PC−437) the mappings should be set as follows:−

; OEM font mapping setup
set−char−mask "M" "\xC0\xB7\xC1\x90\xE0\x85\xE1\xA0"
; PC−437 font mapping setup
set−char−mask "M" "\xC0A\xC1AAA\xE0\x85\xE1\xA0"

As all the characters in ISO have equivalents in OEM, the mapping for OEM is a simple ISO to OEM
character list. However the missing capital A's in PC−437 cause problems, for the command
charset−iso−to−user(3) it is preferable for a mapping of `A to be given, otherwise the document being
converted may remain unreadable. Therefore a mapping of `A to A is given to alleviate this problem,
similarly 'A is also mapped to A.

This leads to a similar problem with the conversion of PC−437 back to ISO (the operation of
command charset−user−to−iso(3)). If only the mapping of "\xC0A\xC1A" was given, the last
mapping ('A to A) would also be the back conversion for A, i.e. ALL A's would be converted back to
'A's. To solve this problem, a further seemingly pointless mapping of A to A is given to correct the
back conversion.

For languages which use these characters, the alphabetic character set must be extended to include
these characters for letter based commands like forward−word(2) and upper−case−word(2) to operate
correctly. The addition of extra letters must achieve two goals, firstly to define whether a character is
a letter, enabling commands like forward−word to work correctly. The second is to provide an upper
case to lower case character mapping, enabling commands like upper−case−word to work correctly.
This is achieved with a single call to set−char−mask using the a flag as follows:−

set−char−mask "a" "\xC0\xE0\xC1\xE1"

MicroEmacs '02

set−char−mask(2) 554

Note that this flag always expects a ISO−8859−1 character, this allows the same map character list to
be used regardless of the font set being used, i.e. the above line can be used for ISO, OEM and
PC−437 fonts. But it does mean that the ISO to user font character mapping (flag M) must already
have been performed.

Similar problems are encountered with the M flag with font PC−437. This problem is not
immediately obvious because the mapping is given in ISO, but when this is converted to PC−437, the
mapping string becomes "A\x85A\xA0". As can be seen, A is mapped last to 'a so an upper to lower
character operation will convert a A to 'a. A similar solution is used, a further mapping of A to a is
given to correct the default case mapping for both A and a, i.e. the following line should always be
used instead:−

set−char−mask "a" "\xC0\xE0\xC1\xE1Aa"

SEE ALSO

forward−word(2), $buffer−mask(5), screen−poke(2), spell(2), $tabwidth(5).

MicroEmacs '02

set−char−mask(2) 555

set−cursor−to−mouse(2)

NAME

set−cursor−to−mouse − Move the cursor to the current mouse position

SYNOPSIS

n set−cursor−to−mouse

DESCRIPTION

set−cursor−to−mouse sets the current window and cursor position to the location of the mouse on it's
last event (button press or release). This command may change the current window. If the line on
which the mouse was located was the message line then the no action is taken, if the line was a
window mode line the that window is made the current window but the cursor location within the
window remains the same. This is usually used in user defined macros that control the functionality of
the mouse.

An argument n determines if the command is permitted to change windows, when omitted a window
change is permitted on set−cursor−to−mouse. When specified, the mouse is not permitted to change
windows and returns an error condition in $mouse−pos(5) indicating that the mouse is not within the
current window.

Invocation of this command sets the variable $mouse−pos(5) which determines where the mouse is
within the window. Interrogation of the variable following the command may be used to determine if
the mouse is located on one of the more specialized window or screen regions.

When writing macros to cut and paste using the mouse, care should be taken to ensure that the
window at the button release is the same is at the button press. If this is not undertaken, undesired
effects could result. The use of set−position(2) and goto−position(2) are most usefully used with this
command to restore existing window context.

SEE ALSO

$mouse−pos(5), $mouse−x(5), $mouse−y(5), $window−mode−line(5), $window−scroll−bar(5),
set−scroll−with−mouse(2), set−position(2), goto−position(2).

MicroEmacs '02

set−cursor−to−mouse(2) 556

set−encryption−key(2)

NAME

set−encryption−key − Define the encryption key

SYNOPSIS

set−encryption−key (esc e)

DESCRIPTION

set−encryption−key sets the encryption key for files loaded or saved with crypt(2m) mode enabled.
This must be performed for each file, key is not entered into the history. The key can be set for each
file on the command line using the −k flag. When saving a buffer in encryption mode the key will be
prompted for if not already set.

SEE ALSO

buffer−mode(2), crypt(2m), find−file(2), find−cfile(3).

MicroEmacs '02

set−encryption−key(2) 557

set−mark(2)

NAME

set−mark − Set starting point of region

SYNOPSIS

set−mark (esc space)

DESCRIPTION

set−mark is used to delimit the beginning of a marked region. Many commands are effective for a
region of text. A region is defined as the text between the mark and the current cursor position. To
delete a section of text, for example, one moves the cursor to the beginning of the text to be deleted,
issues the set−mark command by typing esc space, moves the cursor to the end of the text to be
deleted, and then deletes it by using the kill−region(2) (C−w) command. Only one mark can be set in
one window or one buffer at a time, and MicroEmacs '02 will try to remember a mark set in an off
screen buffer when it is called back on screen.

A region is a block of text to be acted upon by some MicroEmacs '02 commands. It is demarcated by
the POINT on one end and the MARK at the other. The point is the primary location identifier where
most of the action takes place and is always between two characters. The point is indicated by the
cursor position in that it is just behind the cursor. The point is also significant in that it defines one
end of the region. The mark, on the other hand, is invisible, and is used to demarcate the other end of
the region and is set through set−mark.

SEE ALSO

copy−region(2), exchange−point−and−mark(2), kill−region(2). reyank(2), yank(2),

MicroEmacs '02

set−mark(2) 558

set−scroll−with−mouse(2)

NAME

set−scroll−with−mouse − Scroll the window with the mouse

SYNOPSIS

n set−scroll−with−mouse

DESCRIPTION

The set−scroll−with−mouse command controls the scrolling of a window by the mouse. This is a two
stage process, the first stage locks the cursor to the mouse, the second stage scrolls the screen.

The first stage (locking) is performed when the mouse is located on the scroll−box (typically when
the left button is depressed i.e. pick−mouse−1). set−scroll−with−mouse is invoked with an argument
n, this causes the mouse position to be recorded ready for a scroll. Depending on the scroll method,
the blank lines present at the end of the buffer are scrolled off the screen.

Subsequent calls to the set−scroll−with−mouse are made with no argument, the window is scrolled
by the relative displacement of the mouse from it's locked position, motion is limited at the end of the
scrolling region. Scrolling is proportional to the buffer length. The command is typically bound to
move−mouse−1 which results in an update whenever the mouse is moved by the user.

When the button is released drop−mouse−1 then the scrolling is stopped by unbinding
move−mouse−1, thereby breaking the binding between the mouse moving and the scroll command.

The scrolling utilizes fractional mouse positional information (i.e. units smaller than a character cell),
if available, resulting in a smoother scrolling motion.

EXAMPLE

The following example shows how the command is used.

0 define−macro mouse−scroll−pick
 1 set−scroll−with−mouse ; Lock mouse position to scroller
 global−bind−key set−scroll−with−mouse "mouse−move−1"
!emacro

0 define−macro mouse−scroll−drop
 global−unbind−key "mouse−move−1"
!emacro

global−bind−key mouse−scroll−pick "mouse−pick−1"
global−bind−key mouse−scroll−drop "mouse−drop−1"

MicroEmacs '02

set−scroll−with−mouse(2) 559

When the left button is 'picked', mouse−scroll−pick lock the cursor to the mouse and binds mouse
movement to set−scroll−with−mouse so that whenever the mouse is moved the cursor will be
repositioned appropriately. When the button is 'dropped', the mouse movement is unbound so that the
cursor will no longer be locked to the mouse.

SEE ALSO

$mouse−pos(5), $scroll−bar(5), set−cursor−to−mouse(2).

MicroEmacs '02

set−scroll−with−mouse(2) 560

set−variable(2)

NAME

set−variable − Assign a new value to a variable
unset−variable − Delete a variable

SYNOPSIS

set−variable "variable" "value" (C−x v)
unset−variable "variable"

DESCRIPTION

set−variable sets the given register (# name), system ($ name), global (% name), buffer (: name) or
command (. name) variable to the given value, erasing its current value. The returned value of an
undefined variable is the string "ERROR", this maybe used to determine whether a variable has been
set.

unset−variable unsets the given variable so that it no longer exists. The variable must be a global
(%), buffer (:) or command (.) variable, system ($) variables cannot be unset.

The value may be quoted or unquoted, if there are any white space characters, or characters open to
other interpretation (e.g. @wc) in value then quotes should be used.

value may contain control characters which are delimited by a back slash (\) which include:−

\n newline
\t tab
\\ backslash

Confusion sometimes arises in macros with the back slash, as the back slashes are dereferenced when
set. Commands such as replace−string(2) where the command itself utilizes back slashes. In this case
the number of back slashes should be doubled as the variable contents under go two stages of
dereferencing.

SEE ALSO

describe−variable(2), list−variables(2), &set(4).

Variables
Introduction to Variable Functions
Register Variables

MicroEmacs '02

set−variable(2) 561

shell(2)

NAME

shell − Create a new command processor or shell

SYNOPSIS

shell (C−x c)

DESCRIPTION

shell−command creates a new command processor or shell. Upon exiting the shell, MicroEmacs '02
redraws its screen and continues editing. The exceptions to this are as follows:

X−Windows

A new xterm is spawned off and editing control is returned to MicroEmacs '02 once the xterm has
initialized.

Microsoft Windows

A new MS−DOS shell is created and control is returned to MicroEmacs '02 once the DOS console window
has initialized. The shell created is determined by the MS−DOS environment variable COMSPEC, this may be
a replacement shell e.g. 4DOS. SEE ALSO

ipipe−shell−command(2), pipe−shell−command(2), suspend−emacs(2).

MicroEmacs '02

shell(2) 562

shell−command(2)

NAME

shell−command − Perform an operating system command

SYNOPSIS

shell−command "string"

DESCRIPTION

shell−command performs an operating system call with the given string as its argument. The
command only fails if the shell−command call returns −1. The $result(5) variable is set the return
value and can be used to test the result.

SEE ALSO

$result(5), ipipe−shell−command(2), pipe−shell−command(2), suspend−emacs(2).

MicroEmacs '02

shell−command(2) 563

show−cursor(2)

NAME

show−cursor − Change the visibility of the cursor

SYNOPSIS

n show−cursor

DESCRIPTION

show−cursor hides the cursor if a negative argument is given and restores it if a positive or no
argument is given. Note that this is not supported on all platforms.

show−cursor internally performs a counting operation, if the cursor is hidden m times then it must
also be shown m times before the cursor becomes visible again, giving no argument will restore the
count ensuring it is visible.

MicroEmacs '02

show−cursor(2) 564

show−region(2)

NAME

show−region − Show the current copy region

SYNOPSIS

n show−region

DESCRIPTION

show−region manipulates the currently defined region, it can be used to inquire the state of the
current region, if any. It can also be used to define a region, enable and disable the region hilighting,
as well as move the cursor to the start or end of the region.

Region hilighting occurs between the mark (see set−mark(2)) and point (current cursor) positions
within the current buffer. A region is defined when text is copied to the kill buffer, by using any of the
kill commands such as kill−region(2), or copy−region(2). However, the kill region is only visible after
a copy−region(2) or a yank(2) operation. A hilight region is also created on a successful search using
commands like search−forward(2), the region encloses the search matching string. Spell(2) also
creates a hilight region around the current spell word. The user can also define their own region using
the numeric argument to show−region.

The argument n supplied to the command indicates the require functionality and can take the
following values:−

−3 − Set the start position of the region.
−2 − Move the cursor the Mark position.
−1 − Disable the hilighting of the current region.
 0 − Return the current status of the region in
$result(5).
 1 − Enable the hilighting of the current region.
 2 − Move the cursor the Dot position.
 3 − Set the end position of the region.
 4 − Reactivate the current region.

Where an argument of 0 is used to return the current state the value of $result is a bit based flag
where:−

0x01

Indicates a region is currently active (visible).

0x02

MicroEmacs '02

show−region(2) 565

Indicates a region has been fixed (may not visible).

0x04

Indicates the region is in the current buffer.

0x08

Indicates the cursor is in the current region.

The color of the selection hilight is defined by add−color−scheme(2) and is determined by
$buffer−scheme(5), $global−scheme(5) or $buffer−hilight(5).

DIAGNOSTICS

The following errors can be generated, in each case the command returns a FALSE status:

[No current region]

There is no current defined region on which to operate.

[Current region not in this buffer]

An argument of 2 or −2 was used and the defined region isn't in the current window so the cursor can not be
moved to it. NOTES

If no argument is given to the command it hilights the current region, similar to an argument of 1. But
the properties of the hilight, namely how long it will be hilighted for, are inherited from the setting of
$show−region(5), whereas if an argument of 1 is passed in then the hilighting is set to be kept until
the region becomes invalid (i.e. as if $show−region(5) is set to 3).

SEE ALSO

$show−region(5), $buffer−hilight(5), $buffer−scheme(5), $global−scheme(5), add−color−scheme(2),
copy−region(2), yank(2), search−forward(2), spell(2), set−mark(2).

MicroEmacs '02

show−region(2) 566

start−up(3)

NAME

start−up − Editor startup callback command
shut−down − Editor exit callback command

SYNOPSIS

start−up
shut−down

DESCRIPTION

By default start−up is not defined, if the command is defined (via a user macro) then it is executed
immediately after MicroEmacs '02 has completed its initialization.

This command may initially seem redundant as the user may execute any command at start−up by
editing the "me.emf" file or using the '@' command−line argument. At the point of "me.emf" file
execution none of the files specified on the command−line will be loaded, thus any actions required
on the given command−line files will not work (the only buffer present will be the "*scratch*"
buffer).

The start−up command is executed AFTER the execution of "me.emf" and initialization of buffers,
but before MicroEmacs '02 waits for user input.

The shut−down command is also not defined by default, but if it is defined during the running of
MicroEmacs the command will be called when MicroEmacs exits. The command is not called if
MicroEmacs has to perform an emergency exit (due to the system being shut down or process being
killed etc).

SEE ALSO

me(1).

MicroEmacs '02

start−up(3) 567

sort−lines(2)

NAME

sort−lines − Alphabetically sort lines

SYNOPSIS

n sort−lines

DESCRIPTION

sort−lines alphabetically sorts lines of text in the current buffer from the mark position to the current
cursor position. If the buffer mode exact(2m) is enabled then the sort is case sensitive, otherwise the
sort is case insensitive. By default the text is compared from left to right from column 0 (the left hand
edge), if a positive argument n is given then the text is compared left to right from the nth column,
any lines shorter than n characters are moved to the top and sorted from column 0.

If a negative argument n is given then the text is sorted in reverse order. The comparison starts at
column −1−n, i.e. an argument of −1 sorts in reverse order from column 0.

EXAMPLE

The following table gives the results of sort−lines for different exact modes and values of n.

 Original Sorted Lines

 exact − n n y y n n
 n − − 1 − 1 −1 −2

 B a2 B Aa B CA Aa
 CA Aa c B c c CA
 b1 B b1 CA b1 b1 a2
 Aa b1 a2 a2 a2 B b1
 c c CA b1 CA Aa c
 a2 CA Aa c Aa a2 B

NOTES

Typically MicroEmacs is executed with exact(2m) mode enabled, the macro command
sort−lines−ignore−case provides a command to sort lines case insensitively while exact mode is

MicroEmacs '02

sort−lines(2) 568

enabled. The macro is defined as follows:−

define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 !if @?
 @# sort−lines
 !else
 sort−lines
 !endif
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

sort−lines−ignore−case(3) is a macro defined in format.emf.

SEE ALSO

buffer−mode(2), exact(2m), sort−lines−ignore−case(3), transpose−lines(2), uniq(3).

MicroEmacs '02

sort−lines(2) 569

sort−lines−ignore−case(3)

NAME

sort−lines−ignore−case − Alphabetically sort lines ignoring case"

SYNOPSIS

n sort−lines−ignore−case

DESCRIPTION

sort−lines−ignore−case forces the current buffers exact(2m) mode to off and then calls sort−lines(2)
which will perform a case insensitive alphabetical line sort from the mark position to the current
cursor position. The state of the current buffers exact mode is restored on completion.

NOTES

sort−lines−ignore−case is a macro defined in format.emf, see help on command sort−lines(2) for
a complete definition.

SEE ALSO

sort−lines(2), buffer−mode(2), exact(2m), transpose−lines(2).

MicroEmacs '02

sort−lines−ignore−case(3) 570

spell(2)

NAME

spell − Spell checker service provider

SYNOPSIS

n spell ["word"] ["rules"] ["correction"] ["rule"]

DESCRIPTION

spell is a low level command which provides spell checking capabilities for MicroEmacs '02, it is not
designed to be used directly. The action of spell depends on the argument given, which is a bitwise
flag defined as follows:−

0x001

If set then gets the input word from the user, i.e. "word" must be supplied. Otherwise the word input
is taken from the current buffer.

0x002

If set then keeps getting words from the current buffer until either the end of the buffer is reached or
an error is found. If the end of the buffer is reached then the command succeeds setting $result(5) to
the value "F". This bit is ignored if bit 0x001 is set. spell sets the current show−region to enclose the
problematical word and the command show−region(2) can be used to move around the word.

0x004

Adds the given word to a dictionary determined by the state of bit 0x008. If the word is flagged as
erroneous (see bit 0x010) then a "correction" word must be supplied, otherwise a list of "rules" which
can be applied to the word must be given, this list can be empty. Note that if the word is not flagged
as erroneous and it already exists in the dictionary, the word is not removed, instead a combined rule
list is created.

0x008

When set flags that word additions (bit 0x004) and deletions (bit 0x200) should be made to the ignore
dictionary. Otherwise word additions are made the last added dictionary and deletions are made to all
main dictionaries.

0x010

When set flags that the given word is erroneous, used solely by word additions to create

MicroEmacs '02

spell(2) 571

auto−corrections.

0x020

Returns a '|' separated guest guess list for the given word in $result.

0x040

If bit 0x100 is also set a complete list of valid words derivable from the given word are
inserted into the current buffer. Otherwise spell returns $result(5) set to the derivative word
created when the given "rule" is applied to "word". The rule applied is the first found of the
given rule letter with a matching base ending (see add−spell−rule(2)). The word need not
exist as not tests for the legality of the resultant word is used, for example in American,
executing

65 spell "spelling" "V"

returns "spellingive" in $result. Returns the empty string if no rule could be applied.

0x080

Used with bit 0x002 to enable double word checking.

0x100

Return information in $result about the given word, or the word which is used to derive the given
word. The information consists of the spell status, the word as stored in the dictionary, and either the
list of valid rules, or the correction word. See also bit 0x040.

0x200

Delete the given word from a dictionary determined by bit 0x008

If none of the main functions are used (bits 0x004, 0x020, 0x040 & 0x200) then the status flag is
returned in the first column of $result. These are defined as follows:−

A

Auto−replace. The word was found and flagged as erroneous. The correction word is given in $result,
either next to the flag, or if bit 0x100 is set then after the '>' character.

D

Double word. Indicates that the first problem found is a double occurrence of the same word one after
the other.

E

Erroneous. The word was not found, so is Erroneous

MicroEmacs '02

spell(2) 572

N

Not a word. The current word found contains no alphabetic characters so is not deemed to be a word,
e.g. 3.141593.

O

Okay. The word was found and is not an erroneous word. SEE ALSO

add−dictionary(2), add−spell−rule(2), delete−dictionary(2), save−dictionary(2), show−region(2),
spell−buffer(3), spell−word(3), Locale Support.

MicroEmacs '02

spell(2) 573

spell−add−word(3)

NAME

spell−add−word − Add a word to the main dictionary

SYNOPSIS

n spell−add−word ["word"]

DESCRIPTION

spell−add−word adds words to the last dictionary added using the command add−dictionary(2). If no
argument is supplied the user is prompted for the word and rule flags, only a 'Good' word can be
added (see below). If an argument n is given then the next n words from the current buffer are added.
The words must take one of the following three forms:

xxxx − Good word xxxx with no spell rules allowed
xxxx/abc − Good word xxxx with spell rules abc allowed
xxxx>yyyy − Erroneous word with an auto−replace to yyyy

NOTES

spell−add−word is a macro defined in file spellutl.emf. It is not defined by default so
spellutl.emf must be executed first using execute−file(2).

SEE ALSO

add−dictionary(2), edit−dictionary(3), save−dictionary(2), delete−dictionary(2).

MicroEmacs '02

spell−add−word(3) 574

split−window−horizontally(2)

NAME

split−window−horizontally − Split current window into two (horizontally)

SYNOPSIS

n split−window−horizontally (C−x 5)

DESCRIPTION

split−window−horizontally splits the current window horizontally into two near equal windows,
each displaying the buffer displayed by the original window.

A numeric argument n of 1 forces the left window to be the new current window, and an argument of
2 forces the right window to be the new current window. The default when omitted is the left window.

SEE ALSO

$scroll−bar(5), $scroll−bar−scheme(5), $window−chars(5), grow−window−horizontally(2),
split−window−vertically(2).

MicroEmacs '02

split−window−horizontally(2) 575

split−window−vertically(2)

NAME

split−window−vertically − Split the current window into two

SYNOPSIS

n split−window−vertically (C−x 2)

DESCRIPTION

split−window−vertically splits the current window vertically into two near equal windows, each
displaying the buffer displayed by the original window. A numeric argument n of 1 forces the upper
window to be the new current window (default), and an argument of 2 forces the lower window to be
the new current window.

SEE ALSO

grow−window−vertically(2), next−window−find−buffer(2), next−window−find−file(2),
resize−window−vertically(2), split−window−horizontally(2).

MicroEmacs '02

split−window−vertically(2) 576

suspend−emacs(2)

NAME

suspend−emacs − Suspend editor and place in background

SYNOPSIS

n suspend−emacs

PLATFORM

Supported on UNIX platforms − irix, hpux, sunos, freebsd or linux.

DESCRIPTION

suspend−emacs suspends the editing processor and puts it into the background. The "fg" command
restarts MicroEmacs. The prompt to suspend is disabled if a 0 numeric argument n is given to the
command.

SEE ALSO

shell(2).

MicroEmacs '02

suspend−emacs(2) 577

symbol(3)

NAME

symbol − Insert an ASCII character

SYNOPSIS

symbol

DESCRIPTION

symbol draws the ASCII character table to the screen, displaying decimal, hexadecimal and character
notations in a tabular form. A character is selected using the mouse or cursor characters inserting the
selected character into the current buffer at the current position.

NOTES

symbol is a macro defined in misc.emf.

The dialog is created using osd(2).

SEE ALSO

insert−string(2), &atoi(4), osd(2).

MicroEmacs '02

symbol(3) 578

Triangle(3)

NAME

Triangle − MicroEmacs '02 version of Triangle patience game

SYNOPSIS

Triangle

DESCRIPTION

Triangle is a solitaire game using a standard set of playing cards. The object of the game is to use all
of the cards in the deck to build up four suit stacks from Ace to King.

The board is laid out so that every card is used to create a triangle shape. In the first column there is
one up−turned card, in the second column there is one down−turned card and 2 up−turned, third has 2
down 3 up etc. The only break form this pattern is in the last 3 columns where there is an extra
up−turned card so that all the deck is used.

Cards may be moved around the playing area by stacking the same suit cards in descending order on
the row stacks. When a row stack has no up−turned cards on the stack then the top card may be turned
over and may be played. If a stack becomes empty then only a King may be moved into the vacant
position.

If the last card in a stack is an Ace then it can be moved to its suit stack, then the 2 of that suit etc.
until finally the King is removed.

Cards are moved around the board using the mouse. Cards may be moved from one row stack to
another row stack by placing the mouse over the 'from' stack and pressing the left mouse button.
Move the cursor to the 'to' stack and release the left mouse button. If the move is legal then the card(s)
are moved to the new stack. Multiple cards may be moved from the row stacks, the appropriate
card(s) to be moved is automatically determined.

Cards may be moved onto the suit stacks by a single left mouse press and release on the same card,
the card is moved to the appropriate suit stack. The same technique is used to turn cards over in the
suit stacks.

Note that once a card is played onto the suit stacks then it cannot be removed.

To the right of the board are a number of control buttons. To select an option, click the left mouse
button on it, the buttons are labeled:

DEAL

MicroEmacs '02

Triangle(3) 579

Start a new game by dealing new cards.

QUIT

Exit the game

HELP

This help page

Note that the screen may be updated at any time using "C−l".

NOTES

Triangle is a macro defined in triangle.emf.

The game is best played with a mouse, it is possible to play with the keyboard, as follows:−

"esc h" for help

To move a card between stacks enter the source and destination column number
("1","2",.."7").

To overturn a card on the row stacks then enter the card column twice i.e. source and
destination are the same.

To move a card from the row to the suit stacks then either enter the card column twice, or
enter the destination as "h","d","c","s" (i.e. "2 2" or "2 s" to move the card in column 2 to the
spades stack).

"C−c C−c" to deal the cards again.

"C−l" redraw the screen.

"q" to quit the game.

SEE ALSO

Games, Patience(3), Mahjongg(3).

MicroEmacs '02

Triangle(3) 580

tab(2)

NAME

tab − Handle the tab key

SYNOPSIS

n tab (tab)

DESCRIPTION

tab manages the tab key, typically inserts n tabs. The effect of the command is determined by:

$buffer−indent

If $buffer−indent(5), is non−zero then the effect of tab is defined by the setting of bit 0x1000 of
variable $system(5), typically it resets the current line indentation or inserts a tab.

cmode

If cmode is enabled then the effect of tab is defined by the setting of bit 0x1000 of variable
$system(5), typically it resets the current line indentation or inserts a tab.

tab

If a tab is to be inserted and this mode is enabled then multiple spaces are used instead of tab characters, see
tab(2m) mode. SEE ALSO

cmode(2m), $buffer−indent(5), tab(2m), backward−delete−tab(2), insert−tab(2), normal−tab(3),
$tabsize(5), $tabwidth(5).

MicroEmacs '02

tab(2) 581

tabs−to−spaces(3)

NAME

tabs−to−spaces − Converts all tabs to spaces

SYNOPSIS

tabs−to−spaces

DESCRIPTION

tabs−to−spaces converts all tab characters found in the current buffer with spaces. The number of
spaces a tab is replaced with depends on the column of the tab character and the setting of
$tabwidth(5).

The cursor is restored to the start of the current line after completion.

NOTES

tabs−to−spaces is a macro defined in format.emf.

SEE ALSO

$tabwidth(5), tab(2), tab(2m), clean(3).

MicroEmacs '02

tabs−to−spaces(3) 582

time(3)

NAME

time − Command time evaluator

SYNOPSIS

time "string"

DESCRIPTION

time evaluates the time take to execute line "string". time uses command execute−line(2) to execute
the given string.

EXAMPLE

The following example simply times the time take to save the current buffer:−

time "save−buffer"

NOTES

time is a macro defined in misc.emf.

On multi−task systems like UNIX time cannot take into account the number of other processes
running at the same time, it can only return the actual time elapse. This leads to inaccuracies and
variation in results.

SEE ALSO

execute−line(2).

MicroEmacs '02

time(3) 583

translate−key(2)

NAME

translate−key − Translate key

SYNOPSIS

n translate−key ["from" ["to"]]

DESCRIPTION

translate−key may be used to convert any given input key sequence to another single key.
translate−key operates at a very low level, before MicroEmacs attempts to evaluate keyboard
bindings, so it may be used to solve a variety of keyboard problems such as special language
characters and UNIX termcap key sequence bindings (see below).

If a +ve numeric argument n is given it is used to set the time in milliseconds MicroEmacs waits for
another key to be pressed before continuing, the default time use when no argument is supplied is
250ms.

If a numeric argument n of −1 is specified then the "to" argument is not required and the "from"
character sequence is removed from the translate key table.

If a numeric argument n of 0 is specified then no arguments are required; the current translation table
is dumped to buffer "*tcap−keys*". Following is a sample output:−

 "C−h" "backspace"
 "C−[" "esc"
 "C−[[1 ~" "delete"
 "C−[[1 1 ~" "f1"
 "C−[[1 2 ~" "f2"
 "C−[[1 3 ~" "f3"
 "C−[[1 4 ~" "f4"
 "C−[[B" "down"
 "C−[[4 ~" "end"
 "C−[[2 ~" "insert"
 "C−[[3 ~" "home"
 "C−[[D" "left"
 "C−[[6 ~" "page−down"
 "C−[[5 ~" "page−up"
 "C−[[C" "right"
 "C−[[A" "up"
 "C−[[V" "page−up"
 "C−[[U" "page−down"
 "C−m" "return"
 "C−i" "tab"
 "\x7F" "backspace"

MicroEmacs '02

translate−key(2) 584

FOREIGN KEYBOARDS

Foreign keyboards (non−US/UK) use a variety of key sequences, not recognized by MicroEmacs, to
expand the keyboard character range to cope with accented characters. For example, on a German
keyboard 'AltGr−m' (recognized as 'A−C−m') is used to insert a Greek mu (or micro sign). On a
Belgian keyboard 'AltGr−9' inserts a '{' character.

Many foreign keyboards are already directly supported by MicroEmacs and the keyboard specifics of
a country have been understood and resolved. In these cases the Keyboard configuration in
user−setup(3) may be used for the country location.

If MicroEmacs does not support your keyboard, translate−key may be used to fix any key input
problems. For the aforementioned examples the following translate−key commands would be
required:

; translate AltGr−m to a Greek mu (char 0xb5)
translate−key "A−C−m" "\xB5"
; translate AltGr−9 to a '{'
translate−key "A−C−9" "{"

The problem is complicated further on Microsoft Window's platforms by the simultaneous generation
of 2 keys for some Alt−Gr key combinations (this is a side effect of endeavoring to capture all key
combinations in this environment). For the Belgian keyboard example, on Win32 platforms an
'AltGr−9' generates an 'A−C−9' key first followed immediately by an 'A−C−{'. As both keys are
generated in quick succession this is unexpected and confusing.

When the key is first pressed on a poorly configured system the error "[Key not bound "A−C−{"]" is
given even when using the command describe−key(2) as the key described will be 'A−C−9' and then
the 'A−C−{' key is generated and interpreted creating the error message.

The variable $recent−keys(5) can be used to diagnose this problem and to obtain the 2 keys
generated; alternatively use the macro below:

define−macro report−2−keys
 ml−write "Press key 1"
 set−variable #l0 @cgk
 ml−write "Press key 2"
 set−variable #l1 @cgk
 ml−write &spr "[The following keys where pressed: \"%s\" \"%s\"]" #l0 #l1
!emacro

When executed the user is prompted for the first key; press the required key sequence (in this case
'AltGr−9'), if you are not prompted for the second key and the result is immediately returned then
the key you pressed has generated 2 keys, both of which will be given in the print out, i.e.:

"[The following keys where pressed: "A−C−9" "A−C−{"]"

The translate−key required to fix this type of problem would be:

translate−key "A−C−9 A−C−{" "{"

MicroEmacs '02

translate−key(2) 585

If your keyboard is not directly supported by MicroEmacs, please submit the keyboard name and
platform with a working translate−key configuration to JASSPA as a BUG.

UNIX TERMCAP

translate−key may also be used to interpret non−standard key sequences for UNIX termcap
platforms to standard MicroEmacs keys. Non−standard keys, such as the cursor keys, have system
dependent key sequences. The output from these keys usually take the form:

^[[X or ^[[DX or ^[[DDX or ^[[DDD

where ^[is the escape key (27), D is a digit and X is any character. These keys may be bound to the
standard keys, for example the typical output of the cursor keys may be translated as follows:−

^[[A = up, ^[[B = down, ^[[C = right and ^[[D = left

The "from" string is specified as this key sequence and the "to" string is simply the key it is to be
bound to, see global−bind−key(2) for a guide to the string format. For the above example the
following set of translations are required:−

translate−key "esc [A" "up"
translate−key "esc [B" "down"
translate−key "esc [C" "right"
translate−key "esc [D" "left"

Note that MicroEmacs interprets \e as an escape key. More obscure keys tend to be very platform
specific, following are some examples:

translate−key "esc [2 ~" "insert"
translate−key "esc [5 ~" "page−up"
translate−key "esc [5 ^" "C−page−up"

EXAMPLE

Using the +ve numeric argument it is possible to reduce the delay and there by increase usability is
some features. For instance, in the Mouse configuration of user−setup there is an option to 'Simulate
3 Buttons' which translates a rapid left and right button press into a middle button press. This is
implemented using translate−key as follows:

10 translate−key "mouse−pick−1 mouse−pick−3" "mouse−pick−2"
10 translate−key "mouse−pick−3 mouse−pick−1" "mouse−pick−2"
10 translate−key "mouse−drop−1 mouse−drop−3" "mouse−drop−2"
10 translate−key "mouse−drop−3 mouse−drop−1" "mouse−drop−2"

When a mouse−pick−1 key is generated MicroEmacs must wait to see if a mouse−pick−3 key is
next and therefore translate both to a single mouse−pick−2 key. This wait time is usually a quarter
of a second but this makes the left button unusable for dragging regions etc as the delay is too long.
By giving a argument of 10ms the delay is long enough for a simultaneous left and right button press
but short enough for the left button to still be usable on its own.

MicroEmacs '02

translate−key(2) 586

The +ve numeric argument can be very useful for delaying MicroEmacs as well, for example, the
character string "'e" can be converted to e−accute using expand−iso−accents(3). This could be
performed automatically using translate−key as follows:

1000 translate−key "' e" "\xE9"

The larger 1 second delay give the user enough time to type the 'e' after the ''' character.

NOTES

The concept of standardized key−bindings is very important for cross platform use and maintenance.

Refer to global−bind−key(2) for a list of standard bindings.

One of the easiest ways of obtaining a key sequence is to run sh(1) which does not attempt to interpret
these keys so when a key is pressed (followed by <RETURN>) the following type of error message is
usually generated:−

sh: ^[[2~: not found.

where ^[[2~ is the required key sequence. Another method of obtaining these key sequences is to
start MicroEmacs '02, use start−kbd−macro(2) to start a macro definition, press the required keys and
then use end−kbd−macro(2) followed by name−kbd−macro(2) and insert−macro(2) to display the
keys pressed.

The key sequences generated for these keys are dependent on the machine displaying MicroEmacs '02
as opposed to the machine running it. Often they are the same machine, but when they are not there is
no easy method of determining the displaying machine and therefore correctly configuring
MicroEmacs '02.

A better way of obtaining this cross platform consistency is to create an XTerm app−defaults setup
file with the correct VT100 key translations, e.g. the setup file could contain the following

*vt100.translations: #override \
 Shift<Key>Tab: string("\033[Z") \n\
 <Key>BackSpace: string("\177") \n\
 <Key>Delete: string("\033[1~") \n\
 <Key>Insert: string("\033[2~") \n\
 <Key>Home: string("\033[3~") \n\
 <Key>End: string("\033[4~") \n\
 <Key>Prior: string("\033[5~") \n\
 <Key>Next: string("\033[6~") \n\
 Ctrl<Key>Up: string("\033Oa") \n\
 Ctrl<Key>Down: string("\033Ob") \n\
 Ctrl<Key>Right: string("\033Oc") \n\
 Ctrl<Key>Left: string("\033Od") \n\
 Shift<Key>Up: string("\033[a") \n\
 Shift<Key>Down: string("\033[b") \n\
 Shift<Key>Right: string("\033[c") \n\
 Shift<Key>Left: string("\033[d") \n

MicroEmacs '02

translate−key(2) 587

By using the environment variable XUSERFILESEARCHPATH to ensure that this configuration file is
found instead of the system one (found in /usr/lib/X11/app−defaults), the key sequences
will then be the same across all platforms. See manual page on xterm(1) for more information.

SEE ALSO

expand−iso−accents(3), user−setup(3), describe−key(2), global−bind−key(2), start−kbd−macro(2),
xterm(1), sh(1).

MicroEmacs '02

translate−key(2) 588

transpose−chars(2)

NAME

transpose−chars − Exchange (swap) adjacent characters transpose−lines − Exchange (swap) adjacent
lines

SYNOPSIS

transpose−chars (C−t)
n transpose−lines (C−x C−t)

DESCRIPTION

transpose−chars exchanges (swaps) the current character under the cursor with the previous
character. transpose−characters does not operate in column 0 (since there is no previous character).
If the cursor is at the end of a line when the command is initiated then the cursor is moved to the
previous character and the operation performed from the new position.

transpose−lines swaps the next line for the current line and moves to the next line, effectively
retaining the same text position. Repeating this n times moves the current line n lines down.

EXAMPLE

transpose−character performs the following operations (cursor at ^):−

abcde => acbde [Middle of line]
 ^ ^

abcde => abced [End of line]
 ^ ^

SEE ALSO

sort−lines(2).

MicroEmacs '02

transpose−chars(2) 589

undo(2)

NAME

undo − Undo the last edit

SYNOPSIS

n undo (C−x u)

DESCRIPTION

undo removes the last n edits made to the current buffer. The undo(2m) buffer mode must be enabled
for this command to operate.

The undo information is retained up until the next save operation, at which point the undo information
is discarded. When editing large files with gross changes then it is advisable to either disable undo
mode, or save frequently to flush the undo buffer, thereby keeping MicroEmacs '02 memory
requirements reasonable (most UNIX users have restrictions on the amount of memory that may be
consumed by a single process. Windows is restricted by the amount of virtual memory (or swap
space)).

SEE ALSO

buffer−mode(2), save−buffer(2), undo(2m).

MicroEmacs '02

undo(2) 590

uniq(3)

NAME

uniq − Make lines in a sorted list unique

SYNOPSIS

uniq

DESCRIPTION

uniq reduces a sorted lines of text in the current buffer to a unique list such that no entries are
repeated. The list is made unique from the mark position to the current cursor position (point). The
operation is case sensitive.

NOTES

uniq is a macro implemented in tools.emf.

For uniq to operate correctly then the list must have been previously sorted, see sort−lines(2).

SEE ALSO

sort−lines(2), sort−lines−ignore−case(3), transpose−lines(2),

MicroEmacs '02

uniq(3) 591

universal−argument(2)

NAME

universal−argument − Set the command argument count

SYNOPSIS

universal−argument (C−u)

DESCRIPTION

universal−argument sets the argument number passed to a command to 4^n (4 to the power of n)
where n is the number of calls to universal−argument, e.g. the key sequence "C−uC−n" moves
down 4 lines, "C−uC−uC−uC−n" moves down 4*4*4 = 64 lines.

After invoking the universal−command a '−' character can be pressed to negate the argument value,
and an alternative numeric argument can be entered using the '0' to '9' keys.

Invoking this command via execute−named−command(2) or by a macro has no effect. The command
should be treated as a command key prefix (like prefix(2)) in that it may be bound to only one key
sequence which must be a single key stroke. Re−binding this command to another key unbinds the
new key and also the current universal−argument key.

The prefix 1 key (by default bound to esc) may also be used to enter a numeric argument at the
message line, e.g. "esc 1 0 C−f" will move forward 10 characters.

SEE ALSO

prefix(2).

MicroEmacs '02

universal−argument(2) 592

user−setup(3)

NAME

user−setup − Configure MicroEmacs for a specific user

SYNOPSIS

user−setup

DESCRIPTION

user−setup provides a dialog interface to enable the user to configure the editor. user−setup may be
invoked from the main Help menu or directly from the command line using
execute−named−command(2). user−setup configures the user's setup registry file,
"<logname>.erf" which is used by MicroEmacs to initialize the environment to a user's preference.

Note, if your screen is too small to display the whole dialog, it may be moved using any key bound to
the scroll commands such as scroll−up, e.g. A−up, C−z, A−down, C−v, A−left etc. For systems
without mouse support, the tab key may be used to move between fields.

On all pages the following buttons are available at the bottom of the dialog and have the following
effect:

Save

Saves the changes made to the users registry file, i.e. "<Log−Name>.erf" but does not re−initialize
MicroEmacs. Some changes, such as color scheme changes, only take effect when the Current button
is used or when MicroEmacs is restarted.

Current

Makes the current user and the changes made Current to this MicroEmacs session, dismissing the
user−setup dialog and reinitializing MicroEmacs. This also saves the registry file out!

Exit

Quits user−setup, if changes where not Saved or made Current they will be lost.

The following pages, which appear in the dialog, are defined as follows:−

Start−up

Log Name

MicroEmacs '02

user−setup(3) 593

Sets the name of the current user to setup, this can be set to any valid file base name (no extension)
which need not be the current user. The rest of the user−setup entries are then initialized to the
settings defined for the given user (or standard defaults if not defined).

Default User

Creates a small macro file, "default.emf", setting $MENAME(5) to the current setting of Log
Name. This may be executed at start−up to determine the current user. See $MENAME(5) for more
information.

Setup Path

Sets the location of the user files, the files are searched for and created in this directory.
$MEPATH(5) should be defined to include this path.

Setup File

Sets the personal user setup macro file name which is executed at start−up. A user macro file should
contain all personal settings such as preferred key bindings etc. See Setting Up A User Profile for
more information. The Edit check box can be used to enable/disable the automatic loading of the
setup file ready for editing when the Current button is used.

Company File

Sets the company setup macro file name which is executed at start−up. A company macro file should
contain all company wide standard settings such as %company−name, No .emf extension is
supplied. See Setting Up a Company Profile for more information.

Emulate

Sets an emulation mode which changes the behaviour on MicroEmacs to emulate another
editor/program; this is done by executing a macro file at start−up. An emulation macro file should
contain the macro code required to simulate the environment of the other editor. MicroEmacs '02 is
released with two emulation modes, MicroEmacs v3.8 which executes macro file meme3_8.emf
(See Compatibility for more information) and NEdit v5 which is at best a demonstration of what can
be achieved, this executes macro file menedit.emf.

MS Friendly Keys

When enabled the following key bindings are created to ease frustration for MS users:

home

Bound to beginning−of−line instead of beginning−of−buffer.

end

Bound to end−of−line instead of end−of−buffer.

MicroEmacs '02

user−setup(3) 594

C−home

Bound to beginning−of−buffer.

C−end

Bound to end−of−buffer.

C−v

Bound to yank (paste).

esc−v

Bound to reyank.

Note that the "C−x" and "C−c" keys are just to intrinsic to MicroEmacs to rebind (sorry).

MS Shift Region

Enables/disables cursor key manipulation with the shift key similar to the conventional Microsoft region
selection. When enabled, pressing the shift key in conjunction with the cursor movement keys selects a region
which is hilighted. Once the region is selected then the <DELETE> or <BACKSPACE> key erases the selected
region. This also enables a similar behaviour with the Mouse Drag region driver, see below. Locale Setup

Keyboard

Configures MicroEmacs to the user's keyboard. Accent character generation keys present on foreign
keyboards cannot be automatically supported on Windows platforms. MicroEmacs must be informed
of the keyboard being used to correctly interpret the keys. If a required keyboard is not supported
please see FAQ38 on how to setup the keyboard, also see Locale Support.

Language

Sets the user language, this sets the word (or letter) characters and if available sets up spell(2) with
appropriate spelling rules and dictionaries. For more information on adding support for a language see
Locale Support.

NOTES

Earlier versions MicroEmacs had "(Ext)" languages which use extended language dictionaries,
vastly increasing the word list. New versions automatically test for and use these dictionaries if
available.

In earlier versions a personal dictionary name could be set in the next field, this option was
removed on Oct 2001. Instead a personal dictionary for each language is automatically
created for you, any words or auto−corrected words will be added to the current languages
personal dictionary. The name of dictionary is "lsdp<lang−id>.edf" where "<lang−id>"

MicroEmacs '02

user−setup(3) 595

is the 4 letter MicroEmacs language name (e.g. "enus" for American), simply rename any
existing personal dictionary to this new name.

Auto Spell

Enables Auto Spell Checking in file types which support this feature (usually text based files such as
txt(9) or nroff(9) files etc). Auto spell detects word breaks as you type and checks the spelling of
every completed word hilighting any erroneous words in the error color scheme (usually red). The
feature can be manually enabled and disabled by invoking the auto−spell(3) command (usually bound
to "f5").

Auto Save Dics

Enables auto−saving of any changed dictionaries on exit. If this is disabled the user is prompted to save for
each changed dictionary. General

Full Name

This should be set to the user's name and is used in a variety of places, e.g. by etfinsrt(3) to set the
"Created By" field in a template.

Organizer

Sets the organizer file base name, defaults to the Log Name. When notes and addresses are stored
using organizer(3) the file "<Organizer>.eof" is used.

Auto−Save Time

Sets the length of time in seconds between buffer auto−saves, a setting of 0 or an empty string
disables auto−saving. The default setting is 300 seconds or 5 minutes. This indirectly sets the
auto−time(5) variable and the autosv(2m) global mode.

Global Modes

Sets the initial state of the global quiet(2m) mode. This indirectly executes global−mode(2) to set the
required modes.

Buffer Modes

Sets the initial state of the global modes auto(2m), backup(2m), tab(2m) and undo(2m), any buffers
created will inherit the state of these modes. However, as changing these modes directly effects only
the global modes, any existing buffers (including ones re−created using the −c command−line option,
see me(1)) will not be effect by the setting of these modes. For them to take effect, the buffers should
be reloaded. These modes can be changed on a per file type basis using the command buffer−setup(3),
also some file hooks override these global settings, such as the makefile(9) hook which overrides the
tab mode. This indirectly executes global−mode(2) to set the required modes.

Search Modes

MicroEmacs '02

user−setup(3) 596

Sets the initial state of the global search modes exact(2m) and magic(2m). This indirectly executes
global−mode(2) to set the required modes.

Keep Undo History

If this is enabled the undo history is kept after a save allowing the undo(2) command to back−up
changes beyond the last save. When clear the undo history is discarded after the buffer is saved. This
indirectly sets bit 0x8000 of the $system(5) variable.

Hide Backups

Enables hiding MicroEmacs generated backup files. On Windows and Dos platforms the Hidden file
attribute is used to hide the file, whereas on UNIX the backup file name is prepended with a '.'. This
indirectly sets bit 0x100000 of the $system(5) variable.

Main Menu

Enables the top main menu bar.

Alt −> Main Menu

If enabled the main menu Alt hot−key bindings are enabled. These are dynamic bindings
automatically generated from the main menu. Typically the first item in the main menu is "File"
with a hot key of 'F', with this enabled 'A−f' will open this menu item. Note that global and local key
bindings override these. This indirectly sets bit 0x2000 of the $system(5) variable.

Alt −> Esc Prefx

If enabled the Alt key acts as a prefix 1 modifier key. By default 'A−n' is not bound, with this bit set
the key is inferred to 'esc n' which is bound to forward−paragraph. Note that global, local and
menu hot−key bindings override these. This indirectly sets bit 0x4000 of the $system(5) variable.

Abbrev Expansion

Configures which expansion methods are enabled by default when the expand−abbrev−handle(3) is
executed. Accent enables expand−iso−accents(3), Lookbk enables expand−look−back(3) and Dict'n
enables expand−word(3).

Tab To Indent

Sets the tab(2) behavior in a buffer which has cmode(2m) enabled or an indentation method. This
indirectly sets bits 0x1000 and 0x200000 of the $system(5) variable.

Show Modes

Selects which modes are to be displayed on the mode−line whenever a "%e" token is used in the
$mode−line(5) variable. This indirectly sets the $show−modes(5) variable. Platform − UNIX Setup

MicroEmacs '02

user−setup(3) 597

Only present on UNIX platforms using the X interface, see below for the Console setup.

Font

Sets the X font name to be used. This indirectly executes change−font(2) with the given font name.
e.g.

"−misc−fixed−bold−r−normal−−13−*−*−*−c−70−iso8859−1"

Display Char Set

Selects the display character set being used by the system to render the MicroEmacs window,
dependent on the Font being used. The setting of this option effects the configuration of
MicroEmacs's internal character maps (using command set−char−mask(2)) enabling the character sets
of foreign languages to be correctly supported. It also changes the definition of variables
$box−chars(5) and $window−chars(5) to their best values for the given font.

Extend Char Set

When enabled MicroEmacs replaces the display of characters 0x00 to 0x1f with forms which are
useful for variables $box−chars(5) and $window−chars(5) greatly improving the look of osd(2)
dialogs, the scroll bars etc.

Use Fonts

When enabled the bold, italic, light and underline characteristics of the font will be used depending on
their availability and the Color Scheme being used. This indirectly sets bit 0x10 of the $system(5)
variable.

Draw White Spaces

Enables the drawing of visible white spaces, i.e. space, tab and new−line characters. This indirectly
sets bit 0x80000 of the $system(5) variable.

Enable Toolbar

Enables the Toolbar − configurable, managed windows giving easy access to many features and tools.

Client Server

The client/server enables the file based external macro command driver to be enabled − see
Client−Server. This by default is disabled, when enabled it is used by command−line options −m and
−o.

DOS File Names

DOS has a restricted 8.3 file naming system (i.e. "BBBBBBBB.XXX"), if this option is enabled the
MicroEmacs '02 will adhere to this system for auto−save and backup file names whenever possible.
See $auto−time(5) for more information on the naming convention used. This indirectly sets bit

MicroEmacs '02

user−setup(3) 598

0x400 of the $system(5) variable.

Backups

This option only has an effect when DOS File Names is disabled. Setting this to a number greater
than zero enables multiple backup files to be created, the number determined by this value. If set to
zero (or less) then only a single backup file is created. This indirectly sets the $kept−versions(5)
variable.

Ignore Files

Sets a list extensions of files to be ignored in file completion, e.g. MicroEmacs backup files (~). This
indirectly sets the $file−ignore(5) variable.

Cursor Blink Rate

Sets the cursor blink period in millisecond. The first entry box sets the cursor visible time, a setting of
zero disables blinking. The second box sets the hidden time. A visible time of 600 and hidden time of
200 gives a reasonable blink cycle. This indirectly sets the $cursor−blink(5) variable.

Fence Display

Sets the preferred method of displaying a matching fence, a fence is one of the following
brackets:

{...} (...) [...]

Jumping to the opening fence only occurs when the closing brace is typed, whereas the drawing of
matching fences occurs whenever the cursor is on an open fence or one character past the close fence.
When this option is set to "Never Display" the buffer−setup(3) setting is ignored.

Scroll Bars

Selects the scroll bar support required. When Splitter is enabled, the first character of the scroll bar
and mode−line is a split character used for splitting the window into two using the mouse. This
indirectly sets the $scroll−bar(5) variable.

Horizontal Scroll

Selects the horizontal scrolling method used with the scroll−left(2) and scroll−right(2) commands.
This indirectly sets the $scroll(5) variable.

Vertical Scroll

Selects the vertical scrolling method used with the forward−line(2) and backward−line(2) commands.
This indirectly sets the $scroll(5) variable.

Color Scheme

MicroEmacs '02

user−setup(3) 599

Sets the color scheme setup macro file name which is executed at start−up. MicroEmacs by default comes
with 4 color schemes. Color schemes can be created and altered using the scheme−editor(3) dialog. Platform
− UNIX Console Setup

Only present on UNIX platforms when using the termcap interface, all the Console platform settings
are kept independent of the X interface settings.

Termcap Color

This option determines whether Termcap based colors should be used. These are typically the
standard eight colors and may not be supported on all terminals. If this option is disabled Termcap
fonts (such as bold) are used instead to create a primitive hi−lighting. This indirectly sets bit 0x004 of
the $system(5) variable.

Use Fonts

See Platform UNIX Setup above.

Display Char Set

See Platform UNIX Setup above.

Draw White Spaces

See Platform UNIX Setup above.

Client Server

See Platform UNIX Setup above.

DOS File Names

See Platform UNIX Setup above.

Backups

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

MicroEmacs '02

user−setup(3) 600

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

Color Scheme

See Platform UNIX Setup above. Platform − Win32 Setup

Only present on Microsoft Windows based machines.

Font Name

Sets the windows font name and size. This indirectly executes change−font(2) with the given font
name. MicroEmacs may only use a Fixed Mono Font, either an OEM font as used by the MS−DOS
command line, or the more conventional ANSI fonts. The fonts are selected using the Change Font
button which invokes a dialog to allow the available fonts to be selected. True−Type mono fonts such
as Courier New or Lucida Console are typically used.

Weight & Size

Allows the size and weight of the font to be selected, specified as weight, width and height. The
weight is typically 4, this corresponds to a regular weighting, 7 is bold. width is the width of the font
in pixels, this may be 0 when the height is specified as −ve. height is the height of the font, typically a
−ve value (where the width is 0), which produces a proportionally sized font, values of in the range
−11 .. −14 generally produce reasonably sized fonts. The hight and width may be specified as +ve
values and allow explicit font dimensions to be specified, generally used to achieve a precise font size
requirement.

Use Fonts

See Platform UNIX Setup above.

Display Char Set

See Platform UNIX Setup above.

Extend Char Set

See Platform UNIX Setup above.

Choose Font

MicroEmacs '02

user−setup(3) 601

Opens a windows dialog allowing the user to select a font, the selection is used to configure the above
font fields.

Draw White Spaces

See Platform UNIX Setup above.

Capture Alt Space

Used to enable/disable the capture and interpretation of the 'A−space' key sequence. If this key
sequence is not captured by MicroEmacs it is passed back to Windows which opens the top left
window menu, allow keyboard access to Window commands like Maximize.

Client Server

See Platform UNIX Setup above. Note that on windows based systems the client/server is also used
by memsdev(1) to drive the editor from the Microsoft Developer environment.

DOS File Names

See Platform UNIX Setup above. Note that some early version of Windows '95 have problems with
~ extensions. Service release 2 fixed these problems − if you experience problems then return to 8.3
filename mode − note that MicroEmacs will still store longer file names, only the backup naming
convention changes.

Backups

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

MicroEmacs '02

user−setup(3) 602

Color Scheme

See Platform UNIX Setup above. Platform − Win32 Console Setup

Only present on Windows NT and Win95+ platforms when using the console interface, all the
Console platform settings are kept independent of the Window interface settings.

Display Char Set

See Platform UNIX Setup above.

Draw White Spaces

See Platform UNIX Setup above.

Client Server

See Platform Win32 Setup above.

DOS File Names

See Platform Win32 Setup above.

Backups

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

Color Scheme

MicroEmacs '02

user−setup(3) 603

See Platform UNIX Setup above. Platform − DOS Setup

Only present on DOS machines.

Graphic Mode # and Double Lines

Sets the DOS graphics mode number and whether the number of text lines can be doubled. This
indirectly executes change−font(2) with the given font name.

Display Char Set

See Platform UNIX Setup above.

Draw White Spaces

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

Color Scheme

See Platform UNIX Setup above. Mouse

The mouse device creates keys in a similar way to regular keyboard keys and, like keyboard keysm
they must be bound before they are used. MicroEmacs '02 does not have the mouse functionality hard
coded into the editor, it provides a macro interface to the mouse for ultimate flexibility and a set of
default functionality which can be bound to the mouse in a variety of ways.

MicroEmacs '02

user−setup(3) 604

All the mouse controlling macros are stored in mouse.emf and mouseosd.emf although some
buffers have local functionality over−rides, such as file−browser(3). The user can expand the range of
mouse functionality but how this is achieved is beyond the scope of this documentation.

The user−setup dialog allows the user to configure the mouse to use the default functionality, as
follows:−

Enable Mouse

Enables or disables the mouse, when disabled the mouse can not be used and will not generate any
key events. This does not apply to UNIX Termcap systems as the mouse cut and paste operation is
performed by the Xterm. This indirectly sets bit 0x010 of the $mouse(5) variable.

Number Buttons

Sets the number of buttons on the mouse, may be 1, 2 or 3. MicroEmacs usually obtains the correct
number for the system, but sometimes this can be wrong. This entry can be used to correct this
problem. For one button mice, the button is considered to be the left mouse button, two button mice
have an left and right button. This indirectly sets the $mouse(5) variable.

Swap Buttons

If enabled then the left and right buttons are swapped, i.e. when the left button is pressed it
executes the right button bindings. This indirectly sets bit 0x020 of the $mouse(5) variable.

Simulate 3 Buttons

If enabled then pressing the left and right buttons together with generate a middle button press
event, this feature is for people with a 2 button mouse who want more. The two buttons must be
pressed or release within 10 millisecond of each other.

The following four fields determine which mouse button binding the user wishes to view and
change:−

Button

The mouse button, Left, Right or Middle for the normal buttons and Whell Up or Whell
Down for the pilot wheel events.

Shift Pressed

The action of the mouse can be different for every modifier key setting, if this is enabled then the
binding being modified is for the Button being pressed with the Shift key held down.

Control Pressed

If enabled then modifying the action when the Button is pressed with the Control key held down.

Alt Pressed

MicroEmacs '02

user−setup(3) 605

If enabled then modifying the action when the Button is pressed with the Alt key held down.

The following two fields determine the functionality of the button defined by the previous four
fields:−

Handle Scroll

When enabled, if the button is pressed with the mouse on the main menu, a scroll bar or mode−line
the standard action is performed, such as opening the main menu or scrolling up or down the window
etc. The bound To command is only called if the mouse is in a main window. If disabled, the Bound
To command is always called.

Bound To

The function to be performed. The functions available depend on the type of button being
bound, the following is a list of functions available for normal buttons:−

Not bound

The Button is not bound.

Drag region

set−mark(2) is called at the pick location, until the button is dropped, the area of text between
this point and the current mouse position is hi−lighted. When the mouse button is dropped, if
the drop position is the same as the pick then the double click is tested for, if a double click is
entered then the Select Word function is executed, otherwise the cursor is simply moved to
the drop position. If the pick and drop position are different then the enclosed text is copied to
the kill buffer using copy−region(2). Note this behaviour is altered by the setting of MS Shift
Region on the Start−Up page.

Select Word

Also executed from a double click bound to Drag Region, Select Word copies the word
under the mouse into the kill buffer using copy−region(2), unless a double click is entered in
which case the whole line is copied.

Default Pan

While the mouse button is pressed the current buffer pans with any mouse movement.

MS Pan

MicroSoft style Pan; while the mouse button is pressed the current buffer pans vertically
according to the mouse position relative to the point where the button was pressed.

Find Tag

Executes find−tag(2) with the word currently under the mouse.

MicroEmacs '02

user−setup(3) 606

Find ME Help

Executes help−item(2) with the word currently under the mouse.

Undo

Simply executes undo(2) without moving the cursor to the position of the mouse. Subsequent
calls to this binding will undo multiple edits.

No move yank

Simply executes yank(2) without moving the cursor to the position of the mouse.

Replace yank

Simplar to "No move yank" except when the is a current region (typically defined by
"Drag region" above), in which case the region is first deleted.

Move to yank

Moves the cursor to the current position of the mouse and executes yank(2).

Reyank

Executes reyank(2) without moving the cursor. Note, to enable this functionality some sanity
checks have had to be removed, as a result it should not be misused as seeming bizarre things
can occur.

Fold current

Toggles the fold status of the current block, only applicable in buffers supporting
fold−current(3), such as c and emf files.

Fold all

Toggles the fold status of the whole buffer, opening or closing all found blocks. Only
applicable in buffers supporting fold−all(3), such as c and emf files.

Main menu

Simply opens the main menu from any where on the screen.

Multi−Menu

Opens a context sensitive menu dependent on the position of the mouse, i.e. opens the main
menu if over it, opens a different menu when executed on the mode−line etc.

The following is a list of functions available for pilot wheel events:−

MicroEmacs '02

user−setup(3) 607

Not bound

The Button is not bound.

Scroll Up 1 Line

Scrolls the current buffer by the specified amount.

Defaults

Rests the mouse configuration to the default settings. File Types

The file type list is used in two places, the main menu's File => Quick Open sub−menu list and
the File => Open => File Type list. In each case the file type "All Files" is
automatically added. The user can add, remove and change the list of file types by using this dialog.
An entry can be selected for editing or deletion by simply selecting it with the left mouse button. A
new entry may be added by simply filling in the 3 entry boxes and selecting Add. Items in the Dialog
are as follows.

No.

The file type entry number. A new entry is always added to the end of the list, ignoring this value.
The position of an existing entry can be changed by altering this field to the desired position and
selecting the Change button to move it to its new position.

Name

The file type name, the string printed in the sub−menus.

File Mask List

A comma (',') separated list of file masks which match the file type, e.g. for C and C++ source files
use "*.c,*.cc,*.cpp".

Add

Adds a new entry to the list, only the Name and FileMask List fields are used, the No. field is
ignored as the new entry is always added to the end of the list. The position can be altered by using
the Change button.

Change

Alters an existing file type entry, all 3 fields must be set.

Delete

Deletes the current entry number, only the No. entry is used. Tools

MicroEmacs '02

user−setup(3) 608

The Tools dialog allows the user to configure up to 10 system commands, or tools, which can be
executed via MicroEmacs Main Tools Menu. The dialog configures the user's registry for the
command execute−tool(3) to be used. The execution of a tool can also be bound to a key, see
execute−tool for more information.

The top half of the dialog consists of the 10 Tools (0−9) configuration buttons. Selecting one of these
selects the current tool to be configured, the current tool is shown by the title in the middle of the
dialog.

The lower half of the dialog configures the currently selected tool, as follows:−

Tool Name

Sets the displayed name of the tool. The tool name is used in the buttons in the top half of this dialog
and in the MicroEmacs Main Tools Menu.

Tool Command Line

Sets the system command−line to be launched whenever the tool is executed, the following
special tokens may be used in the command−line which are substituted at execution:−

%ff

The current buffer's full file name, including the path.

%fp

The current buffer's file path.

%fn

The current buffer's file name without the path.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the file name does
not have an extension.

Note that "%ff" is always the same as "%fp%fn" and "%fp%fb%fe". If any of these tokens
are used, the tool will fail to execute if the current buffer does not have a file name.

Save Current Buffer and Prompt

If the current buffer has been edited, enabling Save Current Buffer will automatically save the
current buffer before executing the tool. This is particularly useful when the tool operates on the

MicroEmacs '02

user−setup(3) 609

current buffer's file (e.g. compiles the file). If Prompt is also enabled the user will be prompted
before the file is saved.

Save All Buffers and Prompt

If Save All Buffers is enabled, all edited buffers will be automatically saved before executing
the tool. This is particularly useful when the tool may operate on multiple files (e.g. compilation of a
project). If Prompt is also enabled the user will be prompted before each file is saved.

Capture Output

If enabled any output produced from the execution of the tool will be captured and inserted into a new
buffer. When enabled the following two items, Buffer and Hide, may be specified. When disabled
the command used to execute the tool is shell−command(2), otherwise the command used is either
pipe−shell−command(2) or ipipe−shell−command(2) depending on the setting of Run
Concurrently.

Buffer

Specifies the buffer name the captured output should be dumped to, this option is only visible
when Capture Output is enabled. The following special tokens may be used in the buffer
name which are substituted at execution:−

%fn

The current buffer's file name without the path, set to the buffer name if the current buffer
does not have a file name.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension. Set to
the buffer name if the current buffer does not have a file name.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the current buffer
does not have a file name or it does not have an extension.Note that "%fn" is always the same as
"%fb%fe". Default buffer name when this field is left empty is "*command*", or "*icommand*" if
Run Concurrently is enabled.

Hide

When enabled the tool output capture buffer is hidden, this option is only visible when Capture
Output is enabled.

Run Concurrently

If enabled, when the tool is executed the command is launched and run concurrently, allowing the user to
continue working in MicroEmacs during the tools execution. This option is not available for all versions on

MicroEmacs '02

user−setup(3) 610

MicroEmacs and forces the output to be captured. Enabling this option will force the use of command
ipipe−shell−command(2) to launch the tool. E−Mail

MicroEmacs '02 provides a simple E−Mail manager, see vm(3) for more information and example
entries. It must be stressed that vm has only been tested in one environment, caution should be used as
system differences may cause problems, such as loss of data, which the author does not except any
responsibility for.

The E−Mail Setup dialog configures a user to use part or all of the vm E−Mail manager, as follows:−

Platform ALL Mail Setup

The following field is used for both sending and receiving mail:

User Mail Dir

Sets the user mail−box directory where all files are to be found and stored (except usually the
Incoming Mail box). The value of this field is platform independent and must be setup for each one.

The following fields are used for sending mail:

Send Mail Signature

Sets the signature file name which is inserted at the bottom of every out−going email message, if
empty the no signature is inserted. The value of this field is platform independent, is value use by all.
The file must be located in the User Mail Dir and no path entered for it to work across platforms.

Carbon−Copy File

Sets the sent−mail carbon−copy file, creating the "Fcc:" line of the mail buffer. All out−going
emails are appended to the end of this file if the "Fcc:" line is not altered. If this field is left empty
then no "Fcc:" line is created. The value of this field is platform independent, the file must be
located in the User Mail Dir.

Insert Data (^C^I)

Sets the first embedded data command line, bound to "C−c C−I". The value of this field is platform
dependent.

Insert Data (^C^Z)

Sets the second embedded data command line, bound to "C−c C−z". The value of this field is
platform dependent.

Send Mail Command

MicroEmacs '02

user−setup(3) 611

Sets the command−line used for sending email messages. The value of this field is platform
dependent.

The following fields are used for receiving mail:

Check for mail

Sets the time interval between the automatic checking for incoming mail in seconds, when set to 0 the
automatic checking is disabled. When enabled, the check is performed by mail−check(3) which also
sends any queued mail and gets any new mail if the Get Mail Command is used. The value of this
field is platform dependent.

Get Mail Command

The command used to get new mail from the server, if empty it is assumed the Incoming Mail Box is
automatically updated by the system. If used the command must append new mail to the end of the
Incoming Mail Box specified below. The value of this field is platform dependent.

Incoming Mail Box

Sets the incoming mail box file which new incoming mail is appended to, either automatically by the
system or by the Get Mail Command. The value of this field is platform dependent.

VM Main In Box

Sets the main current mail box, or inbox. The value of this field is platform independent, the file must
be located in the User Mail Dir.

VM Gets Mail

When enabled, executing the command vm will not only create the mail box windows, it will also get
and process any new mail. When disabled only the vm 'g' command can be used to get and process
new mail.

Mime Data Extract

Sets the command−line used for extracting Mime encoded embedded data. The value of this field is
platform dependent.

Uuencode Extract

Sets the command−line used for extracting Uuencoded embedded data. The value of this field is
platform dependent.

Auto−Archive Setup

Sets up the auto−archive of messages in the current inbox to other mail boxes. NOTES

MicroEmacs '02

user−setup(3) 612

user−setup is a macro using osd(2), defined in userstp.emf.

SEE ALSO

User Profiles, Company Profiles, Installation, buffer−setup(3), scheme−editor(3).

MicroEmacs '02

user−setup(3) 613

view−file(2)

NAME

view−file − Load a file read only

SYNOPSIS

n view−file "file−name" (C−x C−v)

DESCRIPTION

view−file is like find−file(2), and either finds the file in a buffer, or creates a new buffer and reads the
file in. A new file is left in view(2m) mode if the file was found (i.e. cannot be edited).

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files. SEE ALSO

buffer−mode(2), find−file(2), read−file(2), view(2m), binary(2m), crypt(2m), rbin(2m).

MicroEmacs '02

view−file(2) 614

void(2)

NAME

void − Null command

SYNOPSIS

n void

DESCRIPTION

void does nothing except return FALSE if the given argument n is zero, TRUE otherwise. Used to
bind any frequently miss hit keys to something harmless.

SEE ALSO

global−bind−key(2).

MicroEmacs '02

void(2) 615

which(3)

NAME

which − Program finder
.which.result − Program path

SYNOPSIS

which "progname"
.which.result "string"

DESCRIPTION

which searches for the given program "progname" on the system path (set by the environment
variable $PATH). If found the location is printed on the message line, otherwise an error message is
printed and the command fails.

The variable .which.result is set to the last found program or the string "ERROR" if the program was
not found.

NOTES

which is a macro defined in tools.emf, it used the &which macro directive.

SEE ALSO

&which(4).

MicroEmacs '02

which(3) 616

wrap−word(2)

NAME

wrap−word − Wrap word onto next line

SYNOPSIS

wrap−word

DESCRIPTION

wrap−word wraps the current word onto the next line, justifying the current line if the justify(2m)
mode is enabled. The justification method is defined by $fill−mode(5).

SEE ALSO

buffer−mode(2), fill−paragraph(2), $fill−mode(5), justify(2m).

MicroEmacs '02

wrap−word(2) 617

write−buffer(2)

NAME

write−buffer − Write contents of buffer to named (new) file

SYNOPSIS

n write−buffer "file−name" (C−x C−w)

DESCRIPTION

write−buffer is used to write the contents of the buffer to a NEW file, use save−buffer(2) if the buffer
is to be written to the existing file already associated with the buffer.

write−buffer writes the contents of the current buffer to the named file file−name. The action of the
write also changes the file name associated with the current buffer to the new file name.

Unlike append−buffer(2), write−buffer always replaces an existing file and the new file inherits the
buffers file characteristics instead of the old file's.

On writing the file, if time(2m) mode is enabled then the time stamp string is searched for in the file
and modified if located, to reflect the modification date and time.

If the buffer contains a narrow(2m) it will automatically be removed before saving so that the whole
buffer is saved and restored when saving is complete

If backup(2m) mode is enabled and the buffer is associated with a different file (compared with
file−name) then any automatic save copies of the file associated with the buffer are deleted.

The argument n can be used to change the default behavior of write−buffer described above, n is a bit
based flag where:−

0x01

Enables validity checks (default). These include a check that the proposed file does not already exist,
if so confirmation of writing is requested from the user. Also MicroEmacs '02 checks all other current
buffers for one with the proposed file name, if found, again confirmation is requested. Without this
flag the command will always succeed wherever possible.

0x02

Disables the expansion of any narrows (see narrow−buffer(2)) before saving the buffer. NOTES

MicroEmacs '02

write−buffer(2) 618

undo(2) information is discarded when the file is written.

SEE ALSO

$auto−time(5), backup(2m), time(2m), buffer−mode(2), file−attrib(3), change−file−name(2),
save−buffer(2), append−buffer(2).

MicroEmacs '02

write−buffer(2) 619

yank(2)

NAME

yank − Paste (copy) kill buffer contents into buffer

SYNOPSIS

n yank (C−y)

DESCRIPTION

When a non negative argument is supplied to yank, the command copies the contents of the kill
buffer n times into the current buffer at the current cursor position. This does not clear the kill buffer,
and therefore may be used to make multiple copies of a section of text. On windowing systems which
support clip−boards, such as windows and X−terms, MicroEmacs will also cut to and paste from the
global clip−board.

If yank is IMMEDIATELY followed by a reyank(2) then the yanked text is replaced by text of the
next entry in the kill ring. (another reyank replaces the text with the previous reyank text and so on).

If an −ve argument is given, yank removes the last 0−n items from the kill ring.

Text is inserted into the kill buffer by one of the following commands:−

backward−kill−word(2), copy−region(2), forward−kill−word(2), kill−line(2),
kill−paragraph(2), kill−region(2), forward−delete−char(2), backward−delete−char(2).

All the above commands (except copy−region) cut text out of the buffer, the last 2 commands require
the letter(2m) mode enabled to add the text to the kill buffer. If any of these commands are executed
immediately after any other (including itself) or the @cl(4) variable is set to one of these command,
the new kill text is appended to the last kill buffer text.

NOTES

Windowing systems such as X−Windows and Microsoft Windows utilize a global windowing kill
buffer allowing data to be moved between windowing applications (cut buffer and clipboard,
respectively). Within these environments MicroEmacs '02 automatically interacts with the windowing
systems kill buffer, the last MicroEmacs '02 kill buffer entry is immediately available for a paste
operation into another application (regardless of how it was inserted into the kill buffer). Conversely,
data placed in the windowing kill buffer is available to MicroEmacs '02, via yank, until a new item
has been inserted into the kill buffer (the data may still be available via reyank(2)).

EXAMPLE

MicroEmacs '02

yank(2) 620

The following example is a basic macro code implementation of the transpose−lines(2) command,

beginning−of−line
kill−line
forward−line
yank
−1 yank
backward−line

Note that similar to transpose−lines it does not leave the moved line in the kill buffer, effectively
tidying up after itself.

SEE ALSO

yank−rectangle(2), copy−region(2), kill−region(2), letter(2m), reyank(2), @y(4), @cc(4).

MicroEmacs '02

yank(2) 621

Variable Glossary
VARIABLE GLOSSARY

The following is an alphabetic list of MicroEmacs '02 variables:−

$INFOPATH(5) GNU info files base directory
$LOGNAME(5) System user name (UNIX)
$MEBACKUPPATH(5) Backup file location
$MEBACKUPSUB(5) Backup file name modifier
$MENAME(5) MicroEmacs user name
$MEPATH(5) MicroEmacs search path
$ME_ISHELL(5) Windows ishell command.com
$ME_PIPE_STDERR(5) Command line diversion to stderr symbol
$auto−time(5) Automatic buffer save time
$box−chars(5) Characters used to draw lines
$buffer−backup(5) Buffer backup file name
$buffer−bhook(5) Buffer macro hook command name (buffer current)
$buffer−bname(5) Name of the current buffer
$buffer−dhook(5) Buffer macro hook command name (buffer deletion)
$buffer−ehook(5) Buffer macro hook command name (buffer swapped)
$buffer−fhook(5) Buffer macro hook command name (buffer creation)
$buffer−fmod(5) Buffer file modes (or attributes)
$buffer−fname(5) Name of the current buffer's file name
$buffer−hilight(5) Define current buffer hilighting scheme
$buffer−indent(5) Current buffer indentation scheme
$buffer−input(5) Divert buffer input through macro
$buffer−ipipe(5) Divert buffer incremental pipe input through macro
$buffer−mask(5) Current buffer word class mask
$buffer−mode−line(5) Buffer mode line string
$buffer−names(5) Filtered buffer name list
$buffer−scheme(5) Buffer color scheme
$c−brace(5) C−mode; brace indentation
$c−case(5) C−mode; case indentation
$c−contcomm(5) C−mode; comment continuation string
$c−continue(5) C−mode; line continuation indent
$c−contmax(5) C−mode; line continuation maximum indent
$c−margin(5) C−mode; trailing comment margin
$c−statement(5) C−mode; statement indentation
$c−switch(5) C−mode; switch indentation
$command−names(5) Filtered command name list
$cursor−blink(5) Cursor blink rate
$cursor−color(5) Cursor foreground color
$cursor−x(5) Mouse X (horizontal) position
$cursor−y(5) Mouse Y (vertical) position
$debug(5) Macro debugging flag
$delay−time(5) Mouse time event delay time

Variable Glossary 622

$file−ignore(5) File extensions to ignore
$file−names(5) Filtered file name list
$file−template(5) Regular expression file search string
$fill−bullet(5) Paragraph filling bullet character set
$fill−bullet−len(5) Paragraph filling bullet search depth
$fill−col(5) Paragraph Mode; right fill column
$fill−eos(5) Paragraph filling; end of sentence fill characters
$fill−eos−len(5) Paragraph filling; end of sentence padding length
$fill−ignore(5) Ignore paragraph filling character(s)
$fill−mode(5) Paragraph mode; justification method
$find−words(5) Filtered word list
$fmatchdelay(5) Fence matching delay time
$frame−depth(5) Number of lines on the current frame canvas
$frame−width(5) Number of columns on the current frame canvas
$global−fmod(5) Global file modes (or attributes)
$global−scheme(5) Global buffer color scheme
$home(5) Users `home' directory location
$idle−time(5) System idle event delay time
$kept−versions(5) Number of backups to be kept
$line−scheme(5) Set the current line color scheme
$line−template(5) Command line regular expression search string
$ml−scheme(5) Message line color scheme
$mode−line(5) Mode line format
$mode−line−scheme(5) Mode line color scheme
$mode−names(5) Filtered mode name list
$mouse(5) Mouse configuration variable
$mouse−pos(5) Mouse position information
$mouse−x(5) Mouse X (horizontal) position
$mouse−y(5) Mouse Y (vertical) position
$osd−scheme(5) OSD color scheme
$platform(5) MicroEmacs host platform identifier
$progname(5) Program file name
$random(5) Generate a random number
$rcs−ci−com(5) RCS (and SCCS) check in command
$rcs−cif−com(5) RCS (and SCCS) check in first command
$rcs−co−com(5) RCS (and SCCS) check out command
$rcs−cou−com(5) RCS (and SCCS) check out unlock command
$rcs−file(5) RCS (and SCCS) file name
$rcs−ue−com(5) RCS (and SCCS) unedit file command
$recent−keys(5) Recent key history
$repeat−time(5) Mouse time event repeat time
$result(5) Various command return values
$screen−depth(5) Number of character lines on the screen canvas
$screen−width(5) Number of character columns on the screen canvas
$scroll(5) Screen scroll control
$scroll−bar(5) Scroll bar configuration
$scroll−bar−scheme(5) Scroll bar color scheme
$search−path(5) MicroEmacs search path
$show−modes(5) Select buffer modes to display

MicroEmacs '02

Variable Glossary 623

$show−region(5) Enable the hilighting of regions
$status(5) Macro command execution status
$system(5) System configuration variable
$tabsize(5) Tab character width
$tabwidth(5) Tab character interval
$temp−name(5) Temporary file name
$time(5) The current system time
$timestamp(5) Time stamp string
$trunc−scheme(5) Truncation color scheme
$variable−names(5) Filtered variable name list
$version(5) MicroEmacs version date−code
$window−acol(5) Window cursor actual column
$window−aline(5) Window cursor actual line
$window−chars(5) Character set used to render the windows
$window−col(5) Window cursor column (no expansion)
$window−depth(5) Number of text lines in a window
$window−flags(5) Current window setup flags
$window−line(5) Window cursor line
$window−mode−line(5) Window mode line position
$window−scroll−bar(5) Window scroll bar (or separator) position
$window−wcol(5) Window cursor column (historic)
$window−width(5) Number of character columns in a window
$window−wline(5) Window cursor line (historic)
$window−x−scroll(5) Current window X scroll
$window−xcl−scroll(5) Current window current line X scroll
$window−y−scroll(5) Current window Y scroll
%compile−com(5) Default system compile command line
%cygnus−bin−path(5) Cygwin BASH directory
%cygnus−hilight(5) Cygwin shell hilight enable flag
%cygnus−prompt(5) Cygwin shell prompt
%diff−com(5) Diff command line
%ftp−flags(5) Configure the FTP console
%gdiff−com(5) Gdiff command line
%grep−com(5) Grep command line
%http−flags(5) Configure the HTTP console
%http−proxy−addr(5) Set HTTP proxy server address
%http−proxy−port(5) Set HTTP proxy server port
%tag−file(5) Tag file name
%tag−option(5) Tag file search option
%tag−template(5) Tag file search string
.calc.result(5) Last calc calculation result

MicroEmacs '02

Variable Glossary 624

info(3)

NAME

info − Display a GNU Info database
info−on − Display Info on a given topic
info−goto−link − Display Info on a given link
$INFOPATH − GNU info files base directory
.info.path − Cached info search path

SYNOPSIS

info

info−on topic−str

info−goto−link link−str

$INFOPATH string

.info.path string

DESCRIPTION

info interprets the GNU info pages, and presents the info file information within a buffer window
called *info XXXXX, where XXXXX is the name of the info file. The root of the info page is
displayed and may be traversed by selecting the links with the mouse, or by using the standard info
traversal keys.

The root of the info tree is, by default, a file called dir, which points to the other information sources.
The default search paths for the info directories are:−

c:/info − MS−DOS and MS−Windows (all).
/usr/local/info − All UNIX platforms.

The root directory may also be specified with the $INFOPATH environment variable. This is a colon
(:) or semi−colon (;) separated list of directory paths which specify the locations of the info files, for
UNIX and Microsoft DOS/Windows environment's, respectively.

info−on gets info on a user specified top level topic, e.g. "gcc", the info file "topic−str.info" must
be found in the info search path.

info−goto−link gets and displays info on a user specified link or subject. The link may be within the
currently displayed topic (the link−str need only specify the subject node name) or a subject within
another topic (in which case the link−str takes the following form "(topic) subject").

MicroEmacs '02

info(3) 625

NOTES

info is a macro implemented in file info.emf.

When an info command is run for the first time, the info search path is constructed and stored locally
in the command variable .info.path. This variable must be directly changed by the user if changes to
the info search path are required.

SEE ALSO

info(9).

MicroEmacs '02

info(3) 626

$MENAME(5)

NAME

$MENAME − MicroEmacs user name
$LOGNAME − System user name (UNIX)

SYNOPSIS

$MENAME string; Default is guest

$LOGNAME string

DESCRIPTION

$MENAME is an environment variable used to initialize the MicroEmacs '02 environment for a
given user. At start−up, if $MENAME is defined then the user's configuration and history file
"name.erf" is located and read, where name is the variable value.

If at start−up $MENAME is not defined then $MENAME is assigned the value of $LOGNAME, if
$LOGNAME is not defined the file default.emf is located and executed. This macro file is
created by user−setup(3) to set $MENAME to the default user. If this fails then $MENAME defaults
to guest and a default configuration is used.

The user configuration and history file has many uses, see user−setup(3) and read−history(2) for more
information.

Microsoft Windows Environments

Within Microsoft Windows environments, if login is enabled then the users login name is
automatically used as the first choice login name. No environment variables need to be set. If login is
not enabled then one of the aforementioned methods should be used.

UNIX

In UNIX environments, $LOGNAME is typically defined.

NOTES

The three variables must be defined before start−up for them to have any effect.

$LOGNAME is often defined by the system and should not be altered. If a different user name is

MicroEmacs '02

$MENAME(5) 627

required, setting of $MENAME is preferable.

SEE ALSO

user−setup(3), read−history(2), $MEPATH(5).

MicroEmacs '02

$MENAME(5) 628

$buffer−backup(5)

NAME

$buffer−backup − Buffer backup file name

SYNOPSIS

$buffer−backup FileName

DESCRIPTION

$buffer−backup is automatically set to the file name the current buffer's file would be backed up to if
required. If the current buffer has no file name the variable will be set to "".

The value depends on whether DOS compliant file names are being used (see $system(5)), whether
multiple backups are being kept (see $kept−versions(5)) and the setting of the environment variables
$MEBACKUPPATH and $MEBACKUPSUB. The variable does not take into consideration the
current setting of the buffer's backup(2m) mode which determine whether a backup will be made.

The environment variable $MEBACKUPPATH can be used to change the location of the backup
files, it can also be used to prepend the backup filename with a string. $MEBACKUPPATH can
specify an absolute path (e.g. "c:/temp/mebackup/") or a relative path (e.g. "mebackup/"
which will move all backup files into a sub−directory automatically in the files directory).

The trailing '/' is important as the file name is simple appended, i.e. is creating a backup for
"c:/foo/bar.txt" and $MEBACKUPPATH is set the "backup" the backup file name will be
"c:/foo/backupbar.txt".

The environment variable $MEBACKUPSUB can be used to substitute strings within the backup
filename for another. The format of the value is a list of sed(1) string substitutions, i.e.

$MEBACKUPSUB="s/from1/to1/ s/from2/to2/ s/fr..."

The 3 divide characters do not have to be '/'s, they can be any character as long as they are the same,
e.g. "sXfrom1Xto1X". When define MicroEmacs performs a simple search for string "from1" (i.e.
no regex support) and replaces any match with the string "to1" etc.

EXAMPLE

The following example compares the differences between the current version and the bucked up
version using the diff(3) macro. The diff−changes macro is defined in tools.emf.

define−macro diff−changes
 !if &seq $buffer−fname ""

MicroEmacs '02

$buffer−backup(5) 629

 ml−write "[Current buffer has no file name]"
 !abort
 !endif
 !if &bmod "edit"
 !if &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 !endif
 !endif
 ; get the real file name − this only has effect on unix, copes with symbolic links
 set−variable #l0 &stat "a" $buffer−fname
 ; get the backup name
 set−variable #l1 $buffer−backup
 diff #l1 #l0
!emacro

NOTES

The variable $buffer−backup can not be set, any attempt to set it will result in an error.

On Windows and DOS platforms if the $MEBACKUPPATH and $MEBACKUPSUB variables are
used all remaining ':' characters are changed to '/'s as these are illegal in the middle of a filename.

SEE ALSO

backup(2m), $system(5), $kept−versions(5).

MicroEmacs '02

$buffer−backup(5) 630

$search−path(5)

NAME

$search−path − MicroEmacs search path $MEPATH − MicroEmacs search path

SYNOPSIS

$search−path string

[Microsoft Windows/MS−DOS]
MEPATH= <path1>;<path2>;....;<pathn>

[UNIX]
MEPATH= <path1>:<path2>:....:<pathn>

DESCRIPTION

$search−path is initialized to the environment variable $MEPATH, and identifies the search paths
which are searched to locate editor specific files. Multiple search paths may be specified, separated by
the platform path separator (semi−colon (';') on Microsoft Windows or MS−DOS environments and a
colon (':') on UNIX environments). Where multiple search paths are defined then they are search left
to right.

The search paths are generally ordered from highest priority to lowest priority and might be arranged
such as:−

MEPATH=<user>:<company>:<me>

where <user> represents the users path; <company> is the company file path (e.g. template files) and
<me> are the standard MicroEmacs '02 files.

This would correspond to a directory installation, of user foo such as:−

/usr/foo/microemacs − User files.
/usr/group/microemacs − Company wide files
/usr/local/microemacs − MicroEmacs installation directory

and a $MEPATH such as:−

MEPATH=/usr/foo/microemacs:/usr/group/microemacs:/usr/local/microemacs

USAGE

The current working directory is checked first for the location of a file.

MicroEmacs '02

$search−path(5) 631

$search−path is used to locate all macro files, and other files located with operators such as
&find(4).

NOTES

If $MEPATH is not set then $search−path is initialized to the environment variable $PATH.

On UNIX systems the path /usr/local/microemacs is automatically added to the end of $MEPATH,
or if not defined, to the beginning of $PATH.

SEE ALSO

Variable Functions, execute−file(2), $MENAME(5), &find(4).

MicroEmacs '02

$search−path(5) 632

ishell(3)

NAME

ishell − Open a interactive shell window
$ME_ISHELL − Windows ishell command comspec

PLATFORM

Windows '95/'98/NT − win32
Unix − All variants.

SYNOPSIS

ishell

[Windows Only]
$ME_ISHELL = <comspec>

DESCRIPTION

ishell creates an interactive shell window within the a MicroEmacs buffer window, providing access
to the native operating systems command shell. Within the window commands may be entered and
executed, the results are shown in the window.

On running ishell a new buffer is created called *shell* which contains the shell. Executing the
command again creates a new shell window called *shell1*, and so on. If a *shell* window is
killed off then the available window is used next time the command is run.

Additional controls are available within the shell window to control the editors interaction with the
window. The operating mode is shown as a digit on the buffer mode line, this should typically show
"3", which corresponds to F3. The operating modes are mapped to keys as follows:−

F2

Locks the window and allows local editing to be performed. All commands entered into the window
are interpreted by the editors. F2 mode is typically entered to cut and paste from the window, search
for text strings etc. In mode 2, a 2 is shown on the mode line.

F3

The normal operating mode, text typed into the window is presented to the shell window. Translation
of MicroEmacs commands (i.e. beginning−of−word) are translated and passed to the shell. For
interactive use this is the default mode. In mode 3, a 3 is shown on the mode line.

MicroEmacs '02

ishell(3) 633

F4

All input is passed to the shell, no MicroEmacs commands are interpreted and keys are passed straight
to the shell window. This mode is used where none of the keys to be entered are to be interpreted by
MicroEmacs. Note that you have to un−toggle the F4 mode before you can swap buffers as this
effectively locks the editor into the window.

F5

Clears the buffer contents. This simply erases all of the historical information in the buffer. The
operation of the shell is unaffected.

To exit the shell then end the shell session using the normal exit command i.e. "exit" or "C−d" as
normal and then close the buffer. A short cut "C−c C−k" is available to kill off the pipe. However, it
is not recommended that this method is used as it effectively performs a hard kill of the buffer and
attached process

UNIX

The UNIX environment uses the native pty support of the operating system. The shell that is opened
is determined by the conventional $SHELL environment variable.

The shell window assumes that the user is running some sort of Emacs emulation on the command
line (i.e. VISUAL=emacs for ksh(1), zsh(1), bash(1), tsch(1)) and passes Emacs controls for
command line editing.

The shell window understands re−size operations and provides a limited decoding of the termio
characters for a VT100 screen. From within the shell window it is possible to run the likes of top(1)
correctly. It is even possible to run another MicroEmacs terminal session !!

WINDOWS

The Windows environment provides a very poor command shell facility, this is more of a
fundamental problem with the operating system than anything else. Unfortunately NT is no better
than Windows '95/'98, stemming from the fact that the Windows is not actually an O/S but a huge
window manager, hindered by legacy issues of MS−DOS.

For those familiar with the UNIX command shell then it is strongly recommended that the cygnus(3)
BASH shell is used as an alternative. This is a far more responsive shell window and provides the
familiar Emacs editing of the command line.

The command shell under Windows is slow and very unresponsive, this would appear to be a problem
with the command.com as the same problems are not apparent with the cygwin environment.
However, the shell window is good for kicking off command line utilities (such as make), or any
command line processes that generate output on stdout as all of the output is captured in the buffer
window which can be scrolled backwards for post analysis. For this very reason it is more preferable
to the standard MS−DOS box.

MicroEmacs '02

ishell(3) 634

It is not possible to run any utilities that use embedded screen control characters as these are not
interpreted by the editor.

Changing the Shell

The default shell that is executed is defined by the environment variable $COMSPEC. Where the
user is using a different command shell (i.e. 4−DOS), then problems may arise if this is an old 16−bit
executable. The shell that MicroEmacs executes may be overridden by setting the environment
variable $ME_ISHELL. This is typically set in the me32.ini(8) file i.e.

[username]
ME_ISHELL=c:\windows\command.com

Bugs

WinOldAp

Winoldap is created by the Microsoft environment whenever a shell is created. On occasions where
processes have terminated badly the user may be prompted to kill these off; this is the normal
behaviour of Windows. It is strongly advised that the shell is always exited correctly (i.e. exit)
before leaving the editor. The Windows operating system for '95/'98 is not particularly resilient to
erroneous processes can bring the whole system down. I believe that NT does not suffer from these
problems (much).

Locked Input

There are occasions after killing a process the editor appears to lock up. This is typically a case that the old
application has not shut down correctly. Kill off the erroneous task (Alt−Ctrl−Del − End Task) then bring
the editor under control using a few C−g abort−command(2) sequences. NOTES

The ishell command uses the ipipe−shell−command(2) to manage the pipe between the editor and the
shell. The window is controlled by the macro file hkipipe.emf which controls the interaction with
the shell.

SEE ALSO

ipipe−shell−command(2), cygnus(3), me32.ini(8).

MicroEmacs '02

ishell(3) 635

pipe−shell−command(2)

NAME

pipe−shell−command − Execute a single operating system command
$ME_PIPE_STDERR − Command line diversion to stderr symbol

SYNOPSIS

n pipe−shell−command "command" ["buffer−name"] (esc @)

[MS−DOS and Win32s Only]
$ME_PIPE_STDERR "string"; Default is undefined.

DESCRIPTION

pipe−shell−command executes one operating system command command and pipes the resulting
output into a buffer with the name of *command*.

The argument n can be used to change the default behavior of pipe−shell−command described above,
n is a bit based flag where:−

0x01

Enables the use of the default buffer name *command* (default). If this bit is clear the user must
supply a buffer name. This enables another command to be started without effecting any other
command buffer.

0x02

Hides the output buffer, default action pops up a window and displays the output buffer in the new
window.

0x04

Disable the use of the command−line processor to launch the program (win32 versions only).
By default the "command" is launched by executing the command:

 %COMSPEC% /c command

Where %COMSPEC% is typically command.com. If this bit is set, the "command" is launched
directly.

0x08

MicroEmacs '02

pipe−shell−command(2) 636

Detach the launched process from MicroEmacs (win32 versions only). By default the command is
launched as a child process of MicroEmacs with a new console. With this bit set the process is
completely detached from MicroEmacs instead.

0x10

Disable the command name mangling (win32 versions only). By default any '/' characters found in the
command name (the first argument only) are converted to '\' characters to make it Windows compliant.
NOTES

On MS−DOS and Win32s the standard shell command.com(1) does not support the piping of stderr
to a file. Other shells, such as 4Dos.com(1), do, using the command−line argument ">&". If the
environment variable "ME_PIPE_STDERR" is defined (the value is not used) then MicroEmacs
assumes that the current shell supports piping of stderr.

SEE ALSO

ipipe−shell−command(2), shell−command(2).

MicroEmacs '02

pipe−shell−command(2) 637

$auto−time(5)

NAME

$auto−time − Automatic buffer save time

SYNOPSIS

$auto−time seconds; Default is 300 seconds

0 <= seconds <= t

DESCRIPTION

Sets the number of seconds to wait until an edited buffer is auto−saved to temporary file to t seconds.
A setting of 0 disables the auto−saving command. Auto−saving can be enabled and disabled on a per
buffer basis using buffer mode autosv(2m).

The auto−save file naming convention is the same as the backup name only using hash ('#') instead of
tilde ('~') and is automatically removed on saving a buffer.

On unlimited length file name systems (UNIX), the following file naming conventions are used for
file xxxxx:

xxxxx −> xxxxx#

On systems with an xxxxxxxx.yyy file name (DOS etc), the following file naming conventions are
used:

xxxxxxxx −> xxxxxxxx.###
xxxxxxxx.y −> xxxxxxxx.y##
xxxxxxxx.yy −> xxxxxxxx.yy#
xxxxxxxx.yyy −> xxxxxxxx.yy#

NOTES

The user is warned to be extra careful if files ending in '~' or '#'s are used, it is advisable to disable
backup creation (see global−mode(2)) and auto−saving ($auto−time = 0). The author denies all
responsibility (yet again) for any loss of data! Please be careful.

Auto−save files of URL files (i.e. "ftp://..." and "http://...") are written to the system's
temporary directory. This avoids potentially slow auto−saves. This can however lead to recovery
problems as the buffer name must be used to avoid auto−saving conflict with other buffers with the
same base file name but different paths.

MicroEmacs '02

$auto−time(5) 638

SEE ALSO

autosv(2m), backup(2m), buffer−mode(2) find−file(2), ftp(3).

MicroEmacs '02

$auto−time(5) 639

$box−chars(5)

NAME

$box−chars − Characters used to draw lines

SYNOPSIS

$box−chars "string"; Default is "|+++++++++−"

DESCRIPTION

$box−chars is a fixed length string that defines the set of characters used to render lines to the screen.
Osd(2), directory−tree(2), list−registry(2) and many macros use these characters as a platform
independent method of drawing lines. The characters have fixed indices defined as follows:−

Index 0

Line joining north to south (vertical line).

Index 1

Line joining south to east.

Index 2

Line joining south to west.

Index 3

Line joining north to east.

Index 4

Line joining north to west.

Index 5

Line joining east to south to west.

Index 6

Line joining north to east to south.

Index 7

MicroEmacs '02

$box−chars(5) 640

Line joining north to east to south to west.

Index 8

Line joining north to south to west.

Index 9

Line joining north to east to south.

Index 10

Line joining east to west. EXAMPLE

The $box−chars is typically platform dependent, it's setting is determined by the characters available
in character set of the hosting platform. MS−DOS and Microsoft Windows environments might use a
string such as:−

"\xB3\xDA\xBF\xC0\xD9\xC2\xC3\xC5\xB4\xC1\xC4"

X−Windows environments might use a string such as:−

"\x19\x0D\x0C\x0E\x0B\x18\x15\x0F\x16\x17\x12"

Both utilize platform specific characters.

SEE ALSO

Osd(2), directory−tree(2), list−registry(2) $window−chars(5).

MicroEmacs '02

$box−chars(5) 641

$buffer−fhook(5)

NAME

$buffer−fhook − Buffer macro hook command name (buffer creation)
$buffer−dhook − Buffer macro hook command name (buffer deletion)
$buffer−bhook − Buffer macro hook command name (buffer current)
$buffer−ehook − Buffer macro hook command name (buffer swapped)

SYNOPSIS

$buffer−fhook FunctionName
$buffer−dhook FunctionName
$buffer−bhook FunctionName
$buffer−ehook FunctionName

DESCRIPTION

Sets the buffer create, delete, begin and end hook command which are executed:

buffer−fhook

When the buffer is created.

buffer−dhook

When the buffer is deleted.

buffer−bhook

When the buffer becomes the current buffer.

buffer−ehook

When the buffer is swapped out from being the current buffer.

The variable $buffer−fhook is largely redundant as the file hook is executed only once and before it
can be sent. Its main use is within macros which wish to ascertain what type of buffer it is executing
on, i.e. if a command was to be executed only on c file then the follow ensures that this is the case:

!if ¬ &seq $buffer−fhook "fhook−cmode"
 !abort
!endif

Where the command fhook−cmode is the c file hook.

MicroEmacs '02

$buffer−fhook(5) 642

dhooks are executed when a buffer is deleted, but before the contents of the buffer are lost. Note that
dhooks will not be called if the buffer never becomes active, or if MicroEmacs '02 quits due to the
receipt of a panic signal.

bhooks and ehooks are usually used to set and restore global variables which require different setting
in the current buffer.

The order of The default settings of these variable are determined by the command add−file−hook(2).

SEE ALSO

add−file−hook(2).

MicroEmacs '02

$buffer−fhook(5) 643

$buffer−bname(5)

NAME

$buffer−bname − Name of the current buffer
$buffer−fname − Name of the current buffer's file name

SYNOPSIS

$buffer−bname BufferName
$buffer−fname FileName

DESCRIPTION

$buffer−bname the string name of the current buffer. Buffer names are unrestricted in length, but
must be unique. By default the buffer name is derived from the buffer's file name without the path.
But this can lead to conflicts, caused by identical file names but different paths. In these situations a
counter is appended to the end of the buffer name and is incremented until a unique buffer name is
created. For example:

File Name Buffer Name

/etc/file.c file.c
/tmp/file.c file.c<1>
/usr/file.c file.c<2>

$buffer−fname contains the name of the current buffer's file name complete with path.

SEE ALSO

change−buffer−name(2).

MicroEmacs '02

$buffer−bname(5) 644

$buffer−fmod(5)

NAME

$buffer−fmod − Buffer file modes (or attributes)
$global−fmod − Global file modes (or attributes)

SYNOPSIS

$buffer−fmod FileMode
$global−fmod FileMode

DESCRIPTION

$buffer−fmod is bit based variable setting the buffers file system modes or attributes. If the buffer
was loaded from an existing file then the value of $buffer−fmod is taken directly from the file. But if
the buffer was created then the buffer inherits the default file modes, $global−fmod, which is
determined from the users umask on UNIX or a default on others.

The definition of the file mode bits are platform specific and are considered independently, as
follows:

UNIX

The file modes of Unix are the standard read, write and execute permissions for user, group and
global. See chmod(1) for a full description of their use and effect.

The variable is displayed in octal.

Microsoft Windows and DOS

On Microsoft platforms each file attribute (see attrib(1)) is assigned a bit, on windows 95 and NT the
new file attributes such as compressed are also represented. The bits are assigned as follows

Bit Attrib Flag Attribute
0x001 R Read Only
0x002 H Hidden
0x004 S System
0x010 Directory
0x020 A Archive
0x080 Normal
0x100 Temporary
0x800 Compressed

MicroEmacs '02

$buffer−fmod(5) 645

EXAMPLE

The following example changes the $buffer−fmod so that the file will be executable (UNIX only),
useful when writing a shell script.

set−variable $buffer−fmod 0775

SEE ALSO

crlf(2m), ctrlz(2m), auto(2m).

MicroEmacs '02

$buffer−fmod(5) 646

$buffer−hilight(5)

NAME

$buffer−hilight − Define current buffer hilighting scheme.

SYNOPSIS

$buffer−hilight hilightNum; Default is 0

0 <= hilightNum <= 255

DESCRIPTION

$buffer−hilight Sets the current buffer's hi−lighting scheme (see hilight(2) for a full description of
hi−lighting). The default setting is 0 which specifies no hi−lighting, when set to a non−zero, the
hi−light scheme of that number MUST already be defined.

Terminals that cannot display color directly may still be able to take benefit from hi−lighting. A
terminal that has fonts can use them in the same way using the add−color−scheme(2) command. The
hi−light scheme is also used in printing (see print−buffer(2)). If, however, your terminal cannot
display color in any way, it is recommended that hi−lighting is disabled (except when printing) as it
does take CPU time.

SEE ALSO

hilight(2), print−buffer(2), $buffer−scheme(5), $buffer−indent(5).

MicroEmacs '02

$buffer−hilight(5) 647

$buffer−indent(5)

NAME

$buffer−indent − Current buffer indentation scheme.

SYNOPSIS

$buffer−indent indentNum; Default is 0

0 <= indentNum <= 255

DESCRIPTION

$buffer−indent sets the current buffers indentation scheme. indentNum is the identity of the
indentation scheme, as defined by indent(2), which is typically the same value as the buffers
hilighting scheme number (see $buffer−hilight(5)).

The default setting is 0 which specifies no indentation scheme is present (with the exception of
cmode(2m)). When non−zero, the value identifies the indentation scheme.

A buffer assigned an indentation method, MicroEmacs performs automatic line re−styling, by moving
the left indentation, according to the defined indentation method. The tab key is typically disabled.
This behavior can be altered using bit 0x1000 of the $system(5) variable, which can be changed
using user−setup(3).

The use of tab characters to create the required indentation is determined by the setting of the buffers
tab(2m) mode. If the mode is disabled tab characters are used wherever possible, otherwise spaces are
always used.

NOTES

The commands restyle−region(3) and restyle−buffer(3) use the indentation method when defined.

The buffer indentation scheme is typically assigned in the fhook macro, see Language Templates.

EXAMPLE

The following example sets up an indentation scheme for a buffer within the fhook macro.

!if &sequal .hilight.foo "ERROR"
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

MicroEmacs '02

$buffer−indent(5) 648

....

; Define the indentation scheme
0 indent .hilight.foo 2 10
indent .hilight.foo n "then" 4
indent .hilight.foo s "else" −4
indent .hilight.foo o "endif" −4

....

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

This provides an indentation of the form:−

if condition
then
 XXXX
else
 if condition
 then
 XXXX
 endif
endif

SEE ALSO

indent(2), tab(2m), $system(5), user−setup(3), restyle−buffer(3), restyle−region(3),
$buffer−hilight(5).

MicroEmacs '02

$buffer−indent(5) 649

$buffer−input(5)

NAME

$buffer−input − Divert buffer input through macro.

SYNOPSIS

$buffer−input commandName

DESCRIPTION

$buffer−input allows the buffer input mechanism to be diverted through a command macro defined
by commandName. If this variable is set to a valid command, which may be a user defined macro, this
command will be called instead. The command can access the actual key−code typed by the user via
the command variable @cc(4), e.g. the following macro prints out the name of the command that the
user presses until the abort−command(2) is executed.

define−macro test−input
 ml−write &spr "Current command: %s" @cc
 !if &seq @cc "abort−command"
 set−variable $buffer−input ""
 !endif
!emacro

set−variable $buffer−input test−input

WARNING

Caution is advised when using this, if there is no way of reseting the variable then MicroEmacs '02
must be killed.

SEE ALSO

abort−command(2), @cc(4).

MicroEmacs '02

$buffer−input(5) 650

$buffer−ipipe(5)

NAME

$buffer−input − Divert buffer incremental pipe input through macro.

SYNOPSIS

$buffer−ipipe commandName

DESCRIPTION

$buffer−ipipe allows the buffer incremental pipe input mechanism to be diverted through a command
macro defined by commandName. On a buffer running an ipipe−shell−command(2) the command, set
by this variable, will be called whenever new text has been inserted by the executing process. Two
alpha−marks will be set in the buffer, 'i' denotes the start of the newly inserted text and 'I' denotes
the end.

SEE ALSO

goto−alpha−mark(2), ipipe−shell−command(2).

MicroEmacs '02

$buffer−ipipe(5) 651

$buffer−mask(5)

NAME

$buffer−mask − Current buffer word class mask.

SYNOPSIS

$buffer−mask string; Default is luh

DESCRIPTION

$buffer−mask sets the current buffer word class mask. MicroEmacs '02 has an internal word lookup
table which defines whether a given letter is considered to be part of a word. This functionality is used
in many areas such as forward−word(2), forward−kill−word(2) hilighting etc. The mask is composed
with any combination of the following flags, the order in which the flags are specified is not
important:

l

All lower case letters.

u

All upper case letters.

h

All hexadecimal characters (used to include numerical digits).

s

Spell extended characters, typically set to accent ('), hyphen (−) and period (.).

1

User set 1, usually set to just underscore (_) for many system and programming files such as 'C'.

2

User set 2, usually set to '−', '$', '&', '#', '!', '%', ':' and '@' for MicroEmacs files.

3

User set 3, not usually defined.

MicroEmacs '02

$buffer−mask(5) 652

4

User set 4, not usually defined.

The character sets may be modified using the set−char−mask(2) command.

SEE ALSO

set−char−mask(2), forward−word(2).

MicroEmacs '02

$buffer−mask(5) 653

$buffer−mode−line(5)

NAME

$buffer−mode−line − Buffer mode line string

SYNOPSIS

$buffer−mode−line "string"

DESCRIPTION

Sets the buffer mode line, unique to this buffer, see $mode−line(5) use, description and syntax. If this
variable is NOT set for a buffer and $mode−line is changed, then the buffer's mode line will also
change to the new value. If this variable is set, then then buffer's mode line will be unaffected by any
setting of $mode−line.

SEE ALSO

$mode−line(5).

MicroEmacs '02

$buffer−mode−line(5) 654

$buffer−names(5)

NAME

$buffer−names − Filtered buffer name list

SYNOPSIS

$buffer−names BufferName

DESCRIPTION

$buffer−names must first be set to the required filter string, if the variable is evaluated before it is
initialized the value will be set to "ABORT" and the command will fail. The filter takes the form of a
regex.

Once initialized, evaluating $buffer−names returns the name of the next buffer which matches the
filter until no more buffers are found, in which case an empty string is returned.

EXAMPLE

The following example prints out the name of all buffers to the massage line one at a time. Note that
&set(4) is used on the !while(4) statement to avoid evaluating $buffer−names twice per loop.

set−variable $buffer−names ".*"
!while ¬ &seq &set #l0 $buffer−names ""
 100 ml−write &cat "buffer: " #l0
!done

The following example is the same except it lists only the buffers which are not directory listings

set−variable $buffer−names ".*[^/]"
!while ¬ &seq &set #l0 $buffer−names ""
 100 ml−write &cat "buffer: " #l0
!done

NOTES

The list of buffers is evaluated when the variable is initialized, buffers created after the initialization
will not be included in the list.

Deleting buffers which are in the list, before they are evaluated, will have undefined effects.

SEE ALSO

MicroEmacs '02

$buffer−names(5) 655

list−buffers(2), $buffer−bname(5), $file−names(5), $command−names(5), $mode−names(5), Regular
Expressions.

MicroEmacs '02

$buffer−names(5) 656

$buffer−scheme(5)

NAME

$buffer−scheme − Buffer color scheme.

SYNOPSIS

$buffer−scheme schemeNum; Default is 0

DESCRIPTION

$buffer−scheme sets the current buffer's color scheme to schemeNum, where schemeNum is a color
scheme defined with add−color−scheme(2), which identifies the foreground and background color
schemes of the buffer. The color scheme is initialized to the global color scheme settings (see
$global−scheme(5)) when the buffer is created.

SEE ALSO

$buffer−hilight(5), $cursor−color(5), $trunc−scheme(5), $global−scheme(5), $ml−scheme(5),
$mode−line−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$buffer−scheme(5) 657

$c−brace(5)

NAME

$c−brace − C−mode; brace indentation

SYNOPSIS

$c−brace integer; Default is −4

−n <= integer <= n

DESCRIPTION

$c−brace is part of the cmode(2m) environment for C programmers.

Sets the indent of a '{' and a '}' on a new line, from the current indent. For example, using the default
settings, if the current indent was 20 then a line starting with a '{' or a '}' would be indented to 16, i.e.

 xxxxxxxxxxx
 xxxxxxxxxxx
 { xxxxxxxxxxx
 xxxxxxxxxxx
 } xxxxxxxxxxx
 xxxxxxxxxxx

This may seem strange, but the current indent is the indent of the last '{' (or "if", "else" etc.) plus
$c−statement(5) which is 4, so this brings it back into line with '{''s, "if"'s and "else"'s etc., e.g.

 if(xxxxxx)
 {
 xxxxxxxxxx
 xxxxxxxxxx
 }

With a setting of −2, this would become:−

 if(xxxxxx)
 {
 xxxxxxxxxx
 xxxxxxxxxx
 }

This works in conjunction with $c−statement(5), a change to $c−statement will change the position
of '{'s.

SEE ALSO

MicroEmacs '02

$c−brace(5) 658

cmode(2m), $c−statement(5).

MicroEmacs '02

$c−brace(5) 659

$c−case(5)

NAME

$c−case − C−mode; case indentation
$c−switch − C−mode; switch indentation

SYNOPSIS

$c−case integer; Default is −4
−n <= integer <= n

$c−switch integer; Default is 0
−n <= integer <= n

DESCRIPTION

$c−case and $c−switch are part of the cmode(2m) environment for C programmers.

$c−switch sets the offset of a "case" entry statement from the opening brace left margin position.
The default value is zero. e.g.

 switch(xxxxxxxxx)
 {
 case 1:
 xxxxxxxxxx
 xxxxxxxxxx
 case 2:
 xxxxxxxxxx
 }

Setting the value to 4, increases the leading space on the "case" statement, e.g.

 switch(xxxxxxxxx)
 {
 case 1:
 xxxxxxxxxx
 xxxxxxxxxx
 case 2:
 xxxxxxxxxx
 }

$c−case sets the offset of the lines following a "case" statement, from the current indent. For
example, using the default settings, if the current indent was 20 then a line starting with a "case"
would be indented to 16, i.e.

 xxxxxxxxxx
 case xxxxxxxxxx
 xxxxxxxxxx

MicroEmacs '02

$c−case(5) 660

This is used inside "switch" statements, the default setting give the following lay−out:−

 switch(xxxxxxxxxx)
 {
 case 1:
 xxxxxxxxxx
 xxxxxxxxxx
 case 2:

This works in conjunction with the $c−statement(5), a change to $c−statement will change the
position of '{'s.

SEE ALSO

cmode(2m), $c−statement(5).

MicroEmacs '02

$c−case(5) 661

$c−contcomm(5)

NAME

$c−case − C−mode; comment continuation string

SYNOPSIS

$c−contcomm "string"

DESCRIPTION

$c−contcomm is part of the cmode(2m) environment for C programmers.

This defines the string which is inserted when a new line is started while in a comment. The string is
only inserted if the cursor is at the end of the line when the newline(2) command is given. For
example, for the default settings, if a newline was entered at the end of the first line, the second line
would initialize to:−

 /* xxxxxxxxxx
 @

where '@' is the current cursor position. With a setting of " * ", then:−

 /* xxxxxxxxxx
 * @

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−contcomm(5) 662

$c−continue(5)

NAME

$c−continue − C−mode; line continuation indent
$c−contmax − C−mode; line continuation maximum indent

SYNOPSIS

$c−continue integer; Default is 10
−n <= integer <= n

$c−contmax integer; Default is 16
−n <= integer <= n

DESCRIPTION

$c−continue and $c−contmax are part of the cmode(2m) environment for C programmers.

$c−continue sets the indent to be added to a split line, i.e. for an indent of 20, a continued statement
would be indented to 30. A continued statement is a single c statement which is spread over 2 or more
lines, the 2nd and any following lines would be indented to 30. For example

 thisIsAVeryLongVariableWhichMeansAssignmentsAreSplit =
 ThisIsTheFirstContinuedStatementLine +
 ThisIsTheSecondContinuedStatementLine + etc ;

The indent is changed if there is an open bracket, continued statements are indented to the depth of
the open bracket plus one, e.g.

 func(firstFuncArg,
 secondFuncArg,
 anotherBracketForFun(firstAnotherBracketForFunArg,
 secondAnotherBracketForFunArg),
 thirdFuncArg) ;

$c−contmax sets an upper limit of the indentation where an open bracket is encountered, in the case
where the leading indent of the function name and open bracket exceeds $c−contmax, then the
continuation is reduced to the continuation indent.

The effect of $c−contmax is described as follows; if $c−contmax is set to a large value then the
default open brace offset appearence is:−

longVariable = LongFunctionNameWhichMeans(isSoFar,
 OverAndYouRunOutOfRoom) ;

Setting $c−contmax to 16 gives:

MicroEmacs '02

$c−continue(5) 663

longVariable = LongFunctionNameWhichMeans(isSoFar,
 overAndYouRunOutOfRoom) ;

Where by the second argument indent has been artificially reduced because of it's length.

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−continue(5) 664

$c−margin(5)

NAME

$c−margin − C−mode; trailing comment margin

SYNOPSIS

$c−margin integer; Default is −1

−1 <= integer <= n

DESCRIPTION

$c−margin is part of the cmode(2m) environment for C programmers.

If inserting a comment at the end of a C line, it is tedious typing x number of spaces to the comment
column (by default tab doesn't insert a tab when cmode(2m) is enabled, it reformats the indentation of
the line regardless of the cursor position). This variable sets the indent column of these comments. So
with the default settings and the following line,

 xxxxxx ;/

when a '*' is type the line becomes

 xxxxxx ; /*

The indenting of the "/*" occurs only if there is text on the line before it, and none after it. If the
current column is already past $c−margin then it is indented to the next tab stop.

A value of −1 disables this feature.

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−margin(5) 665

$c−statement(5)

NAME

$c−statement − C−mode; statement indentation

SYNOPSIS

$c−statement integer; Default is 4

−n <= integer <= n

DESCRIPTION

$c−statement is part of the cmode(2m) environment for C programmers.

The indent of the current line is derived from $c−statement plus the indent of the last c token (if, else,
while etc.) or the last '{' (which ever was found first). i.e. if the last '{' was found at column 16 then
the current line will be indented to 20:−

 {
 xxxxxxxxxx
 xxxxxxxxxx

or

 if(xxxxx)
 xxxxxxxxxx

C tokens are only used to indent the next line, whereas '{' are used in indenting every line to it's
partnering '}'.

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−statement(5) 666

$command−names(5)

NAME

$command−names − Filtered command name list

SYNOPSIS

$command−names CommandName

DESCRIPTION

$command−names must first be initialized to the required filter string, if the variable is evaluated
before it is initialized the value will be set to "ABORT" and the command will fail. The filter takes the
form of a regex.

Once initialized, evaluating $command−names returns the name of the next command which
matches the filter until no more commands are found, in which case an empty string is returned.

EXAMPLE

The following example prints out the name of all commands to the massage line one at a time. Note
that &set(4) is used on the !while(4) statement to avoid evaluating $command−names twice per loop.

set−variable $command−names ".*"
!while ¬ &seq &set #l0 $command−names ""
 100 ml−write &cat "command: " #l0
!done

The following example is an alternative implementation of command−apropos(2).

define−macro alt−commad−apropos
 set−variable #l1 @ml "Apropos string"
 set−variable $command−names &cat &cat ".*" #l1 ".*"
 !force 0 delete−buffer "*commands*"
 1 popup−window "*commands*"
 !while ¬ &seq &set #l0 $command−names ""
 insert−string &spr " %s\n" #l0
 !done
 beginning−of−buffer
 −1 buffer−mode "edit"
 1 buffer−mode "view"
!emacro

NOTES

MicroEmacs '02

$command−names(5) 667

$command−names does not differentiate between built in commands and macros.

The list of commands is evaluated when the variable is initialized, macros created after the
initialization will not be included in the list.

SEE ALSO

list−commands(2), command−apropos(2), $buffer−names(5), $file−names(5), $mode−names(5),
$variable−names(5), Regular Expressions.

MicroEmacs '02

$command−names(5) 668

$cursor−blink(5)

NAME

$cursor−blink − Cursor blink rate $cursor−color − Cursor foreground color

SYNOPSIS

$cursor−blink integer; Default is 0

$cursor−color colorNum; Default is 0

0 <= colorNum <= n

DESCRIPTION

$cursor−blink sets the cursor's flash rate, i.e. the period in which the cursor is drawn, hidden and
then redrawn. The default setting of 0 disables cursor blinking. When set to a none zero value the
variable is split into two componants, the first 16 bits, or lower short, sets the cursor visible time in
milliseconds, and the higher short sets the hidden time. If the hidden time is set to 0 then the cursor
will be hidden for the same length of time it is visible.

The cursor blink rate can be setup in the platform section of user−setup(3).

$cursor−color sets the cursor's fore−ground color, and can greatly improve cursor visibility.
colorNum is a integer palette number created using add−color(2), the default is 0.

PLATFORM

UNIX termcap interface does not support $cursor−color.

EXAMPLE

The following example sets the cursor visible time to 600 ms (0x258) and a hidden time to 200 ms
(0xc8):

set−variable $cusror−blink 0x00c80258

SEE ALSO

user−setup(3), add−color(2), $global−scheme(5), $ml−scheme(5), $mode−line−scheme(5),
$system(5).

MicroEmacs '02

$cursor−blink(5) 669

$cursor−x(5)

NAME

$cursor−x − Cursor X (horizontal) position
$cursor−y − Cursor Y (vertical) position

SYNOPSIS

$cursor−x integer

0 <= integer <= $frame−width − 1

$cursor−y integer

0 <= integer <= $frame−depth − 1

DESCRIPTION

$cursor−x and $cursor−y are automatically set to the position of the cursor at the last screen update
(i.e. the variables are not updated between screen updates). The top left character of the screen is
coordinate 0,0 bottom right is $frame−width, $frame−depth.

NOTES

These variables can not be set. Any attempt to set them will result in an error.

SEE ALSO

$mouse−x(5), $frame−depth(5), $frame−width(5).

MicroEmacs '02

$cursor−x(5) 670

$debug(5)

NAME

$debug − Macro debugging flag

SYNOPSIS

$debug debugLevel; Default is 0

−2 <= debugLevel <= 2

DESCRIPTION

$debug is a flag to trigger macro debugging. A setting of 1 or 2 enables debugging, 0 disables
debugging (default). A $debug setting of 2 debugs all macro lines encountered, whereas a setting of 1
debugs only the lines executed, i.e. if a false !if was encountered the lines within the !if would not be
printed. Problems arise with !elif and !else and a debugLevel setting of 1 as the !elif and !else lines are
never printed.

A −ve setting disables debugging and has no immediate effect. However as soon as the bell is rung
the value is inverted (−1 to 1, −2 to 2) enabling debugging. This can be invaluable when tracing
problems, for example the following macro code will loop infinitely:−

!repeat
 beginning−of−line
 backward−char
 !force forward−line
!until ¬ $status

This is a fairly obvious bug, but if buried in a thousand lines of macro code it could be very difficult
to spot and to find it during execution would be very tedious if not impossible. But by setting $debug
to −1 the macro can be executed as normal and as soon as the macro is stuck the user can simply press
"C−g" (abort−command) which rings the bell and starts macro debugging at the current execution
point.

SEE ALSO

execute−file(2).

MicroEmacs '02

$debug(5) 671

$delay−time(5)

NAME

$delay−time − Mouse time event delay time
$repeat−time − Mouse time event repeat time

SYNOPSIS

$delay−time milliseconds; Default is 500
$repeat−time milliseconds; Default is 25

10 <= milliseconds <= t

DESCRIPTION

$delay−time sets the time waited between the user picking a mouse button and the generation of a
mouse−time−? key event.

When user presses the left button (say) a mouse−pick−1 key event is generated, If this key is
bound then the command it is bound to is executed. If the user then holds down the button for
$delay−time or more milliseconds then MicroEmacs checks the binding of the special
mouse−time−1 key, if this pseudo key is bound then the command it is bound to will be executed.

If the user continues to hold down the button for a further $repeat−time milliseconds another
mouse−time−1 key event will be generated. A mouse−time−1 key event will be generated after
every $repeat−time milliseconds until the user releases the button, at which point a mouse−drop−1
key event is generated.

EXAMPLE

The following example implements the vertical scroll−bar up and down scrolling arrows for a buffer
window:−

define−macro mouse−pick−command
 set−cursor−to−mouse
 !if &equ &band $mouse−pos 15 5
 ml−write "Mouse on up−arrow"
 1 scroll−up
 1 global−bind−key scroll−up "mouse−time−1"
 !elif &equ &band $mouse−pos 15 9
 ml−write "Mouse on down−arrow"
 1 scroll−down
 1 global−bind−key scroll−down "mouse−time−1"
 !endif
!emacro

MicroEmacs '02

$delay−time(5) 672

define−macro mouse−drop−command
 !force global−unbind−key "mouse−time−1"
!emacro

global−bind−key mouse−pick−command "mouse−pick−1"
global−bind−key mouse−drop−command "mouse−drop−1"

SEE ALSO

$idle−time(5), set−cursor−to−mouse(2), $mouse−pos(5).

MicroEmacs '02

$delay−time(5) 673

$file−ignore(5)

NAME

$file−ignore − File extensions to ignore

SYNOPSIS

$file−ignore "string"; Default is ""

DESCRIPTION

$file−ignore specifies a space separated list of file endings which the file completion is to ignore.
This is used by any function which prompts the user for a file name, such as find−file(2). A file
ending in this case is NOT the extension but the last n characters where n is the number of characters
in the specified ignore file.

EXAMPLE

To ignore all files which have the extension "o", using:

set−variable $file−ignore "o"

would not only ignore "foo.o", but also "foo.oo", "foo.po" and "foo" as well as any file that
ends in an "o". What is really required is

set−variable $file−ignore ".o"

It is useful to ignore the "./" and "../" directories so that a directory containing one file will
auto−complete to that one file. This is achieved by using:

set−variable $file−ignore "./"

To ignore MicroEmacs '02 backup files ("~"), C object files (".o"), "./" and "../" directories try
using:

set−variable $file−ignore "~ .o ./"

NOTES

The file completion only completes further than the first non−unique point in the current list of
possibles if and only if it can ignore all but one file, so if the current directory contains:

./ ../ foo foo.c foo.c~ foo.o

MicroEmacs '02

$file−ignore(5) 674

using the above ignore list, completing with "" has no effect as "foo" and "foo.c" cannot be
ignored; completing with "foo." will however complete to "foo.c".

SEE ALSO

find−file(2).

MicroEmacs '02

$file−ignore(5) 675

$file−names(5)

NAME

$file−names − Filtered file name list

SYNOPSIS

$file−names FileName

DESCRIPTION

$file−names must first be initialized to the required filter string, if the variable is evaluated before it
is initialized the value will be set to "ABORT" and the command will fail.

The filter takes the form of a regex. The filter string should also contain the path to the required
directory, the path many not contain wild−cards. If no path is specified the the path of the current
buffers file name is taken, if the current buffer has no file name then the current working directory is
used.

On initialization, $result(5) is set to the absolute path of the directory being evaluated.

Once initialized, evaluating $file−names returns the name of the next buffer which matches the filter
until no more buffers are found, in which case an empty string is returned.

EXAMPLE

The following example creates a list of all files in the current directory to a fixed buffer "*files*".
Note that &set(4) is used on the !while(4) statement to avoid evaluating $file−names twice per loop.

set−variable $file−names ".*"
!force 0 delete−buffer "*files*"
1 popup−window "*files*"
insert−string &spr "Directory listing of %s\n\n" $result
!while ¬ &seq &set #l0 $file−names ""
 insert−string &spr " %s\n" #l0
!done
beginning−of−buffer
−1 buffer−mode "edit"
1 buffer−mode "view"

NOTES

Unlike MS−DOS and Windows systems, to match every file a filter of just "*" is required. A filter of
"*.*" only matches file names with a '.' in them.

MicroEmacs '02

$file−names(5) 676

The list of files is evaluated when the variable is initialized, files created after the initialization will
not be included in the list.

SEE ALSO

$result(5), find−file(2), $buffer−fname(5), $buffer−names(5), $command−names(5),
$mode−names(5), Regular Expressions.

MicroEmacs '02

$file−names(5) 677

$file−template(5)

NAME

$file−template − Regular expression file search string

SYNOPSIS

$file−template "string"; Default is ""

DESCRIPTION

$file−template defines a regular expression search string used to identify a file in the grep(3) and
compile(3) buffers. The format of the string is the same as magic mode search strings (see
search−forward(2)).

EXAMPLE

A UNIX file name may be considered to contain any ASCII character except a space or a ':' (used as
a divider in many programs). Thus $file−template should be:

set−variable $file−template "[!−9;−z]+"

This will correctly identify "foo.c" in the following example.

foo.c: 45: printf("hello world\n") ;

SEE ALSO

$line−template(5), compile(3), get−next−line(2), grep(3), search−forward(2).

MicroEmacs '02

$file−template(5) 678

$fill−bullet(5)

NAME

$fill−bullet − Paragraph filling bullet character set
$fill−bullet−len − Paragraph filling bullet search depth

SYNOPSIS

$fill−bullet "string"; Default is "*)].−"
$fill−bullet−len length; Default is 5

0 <= length <= $fill−col

DESCRIPTION

$fill−bullet contains the set of characters which are classified as bullet markers for fill−paragraph(2).
If these characters are encountered in the first $fill−bullet−len characters of the paragraph AND the
character is followed by a SPACE or a tab character then the user is given the option to indent to the
right of the bullet.

$fill−bullet−len determines the maximum depth into the paragraph (in characters) the filling routines
should search for a bullet character. The default value is 15. Note that the paragraph starts at the first
non−white space character. e.g. to detect "xviii) " as a bullet then the bullet length must be set to
at least 6 to detect the bullet character ")".

EXAMPLE

Examples of filled bullet paragraphs are shown as follows, based on the default $fill−bullet character
set.

a) This is an example of a fill−paragraph. The closing
 bracket is classified as a bullet character and filling
 optionally takes place to the right of the bullet.

a] Another paragraph

* A bullet paragraph

1. A numbered paragraph.

item − A dashed bullet.

SEE ALSO

MicroEmacs '02

$fill−bullet(5) 679

$fill−col(5), $fill−ignore(5), $fill−mode(5), fill−paragraph(2), justify(2m).

MicroEmacs '02

$fill−bullet(5) 680

$fill−col(5)

NAME

$fill−col − Paragraph Mode; right fill column

SYNOPSIS

$fill−col columnNumber; Default is 78

−1 <= columnNumber <= 32767

DESCRIPTION

$fill−col defines the current fill column number. columnNumber defaults to 78 when undefined. This
value is used in conjunction with justify(2m) and wrap(2m) modes.

SEE ALSO

buffer−mode(2), fill−paragraph(2), justify(2m), wrap(2m).

MicroEmacs '02

$fill−col(5) 681

$fill−eos(5)

NAME

$fill−eos − Paragraph filling; end of sentence fill characters
$fill−eos−len − Paragraph filling; end of sentence padding length

SYNOPSIS

$fill−eos "string"; Default is ".!?"

$fill−eos−len integer; Default is 1
0 <= integer <= n

DESCRIPTION

$fill−eos defines the end of sentence character set. Sentences ending in these characters are padded
with additional end−of−sentence spaces, as defined by $fill−eos−len.

$fill−eos−len sets the number of spaces inserted after a full stop during paragraph filling. The default
is 1 space.

SEE ALSO

fill−paragraph(2).

MicroEmacs '02

$fill−eos(5) 682

$fill−ignore(5)

NAME

$fill−ignore − Ignore paragraph filling character(s)

SYNOPSIS

$fill−ignore "string"; Default is ">_@"

DESCRIPTION

$fill−ignore describes a set of characters used by fill−paragraph(2) which disable paragraph filling
when they appear at the start of a paragraph. An obvious example is an inserted mail message which
is usually quoted with ">" characters. Any attempt to fill the paragraph causes fill−paragraph to skip
to the end of it.

EXAMPLE

This is an example of an ignored paragraph when encountered by fill−paragraph with the default
ignore character set.

> This is an example of a paragraph that
> is ignored.

SEE ALSO

$fill−col(5), $fill−bullet(5), $fill−mode(5), fill−paragraph(2), justify(2m).

MicroEmacs '02

$fill−ignore(5) 683

$fill−mode(5)

NAME

$fill−mode − Paragraph mode; justification method

SYNOPSIS

$fill−mode justification; Default is N

justificationb | c | l | n | o | r | B | C | L | N | R

DESCRIPTION

$fill−mode defines the justification mode i.e. left/right/both/... The default value is none automatic
(N). The modes available are:−

b Both

Enables left and right margin justification.

c Center

Enables center justification.

l Left

Enables left justification.

n None

No filling is performed, adjacent lines are not merged into a single line. This subtly different from left
justification which fills lines to the $fill−col(5).

o One Line

Enables the filling of the paragraph to a single line. Typically used to prepare a file for transfer to a
word processing package.

r Right

Enables right justification.

B Both (automatic)

MicroEmacs '02

$fill−mode(5) 684

Automatically determines the mode, defaulting to left and right (both) justification.

C Center (automatic)

Automatically determines the mode, defaulting to center justification.

L Left (automatic)

Automatically determines the mode, defaulting to left justification.

N None (automatic)

Automatically determines the mode, defaults to both and not none.

R Right (automatic)

Automatically determines the mode, defaulting to right justification.

The lines are automatically justified only when the justification mode justify(2m) is enabled.
Justification is performed between the left and right margins, defined as 0 and $fill−col(5)
respectively.

Automatic Filling

Automatic filling is performed when the mode $fill−mode is specified in upper case. The format of
the line (and adjacent lines) is interrogated and an informed guess is made as to the expected
formating which is then adopted. The criteria for automatic formatting is defined as follows:−

center

If the left and right margins contain approximately the same amount of white space +/−1 character
then the paragraph is centered.

right

If the text commences past half of the $fill−col(5) (i.e. first half of the line comprises white space)
AND the line extends to, or past, the $fill−col then the paragraph is assumed to be right justified.

none

If the text commences in column 0 and occupies less than half of the line then the paragraph is
assumed to be not justified. (i.e. left justified, but consecutive lines of the paragraph are not filled)

default

If none of the above criteria are met then the default mode is adopted, as determined by the lower−case value
of the $fill−mode value. SEE ALSO

MicroEmacs '02

$fill−mode(5) 685

$fill−col(5), buffer−mode(2), fill−paragraph(2), justify(2m).

MicroEmacs '02

$fill−mode(5) 686

$find−words(5)

NAME

$find−words − Filtered word list

SYNOPSIS

$find−words word

DESCRIPTION

$find−words must first be initialized to the required filter string, if the variable is evaluated before it
is initialized the value will be set to "ABORT" and the command will fail.

The filter string can contain wild−card characters compatible with most file systems, namely:−

?

Match any character.

[abc]

Match character only if it is a, b or c.

[a−d]

Match character only if it is a, b, c or d.

[^abc]

Match character only if it is not a, b or c.

*

Match any number of characters.

Note that these are not the same characters used by exact(2m) mode.

Once initialized, evaluating $find−words returns the next word found in the main spell dictionaries
which matches the filter until no more words are found, in which case an empty string is returned.

EXAMPLE

MicroEmacs '02

$find−words(5) 687

The following example finds all the words with "foo" in it (e.g. "footnote"), printing them to the
massage line one at a time. Note that &set(4) is used on the !while(4) statement to avoid evaluating
$find−words twice per loop.

set−variable $find−words "*foo*"
!while ¬ &seq &set #l0 $find−words ""
 100 ml−write &cat "Word: " #l0
!done

NOTES

The order of the words is undefined.

Due to the way words are derived, it is possible to have two or more copies of a word in the
dictionary. If this is a matching word $find−words will return the word two or more times.

SEE ALSO

spell(2).

MicroEmacs '02

$find−words(5) 688

$fmatchdelay(5)

NAME

$fmatchdelay− Fence matching delay time

SYNOPSIS

$fmatchdelay delayTime; Default is 2000

0 <= delayTime <= n

DESCRIPTION

The number of milliseconds to wait in a fence match operation. When a closing fence ')' ']' or '}' is
added the opening fence is searched for, scrolling the screen up where necessary, this is the time that
the opening fence is displayed, interruptible by typing any key.

When cmode(2m) is enable the search algorithm used is 'C' aware and if a matching fence is not
found then the bell is rung as a warning. The automatic matching of fences can be enabled/disabled
via the fence(2m) mode.

A cursor can be moved to the matching fence using the goto−matching−fence(2) command.

SEE ALSO

fence(2m), cmode(2m), goto−matching−fence(2).

MicroEmacs '02

$fmatchdelay(5) 689

$frame−depth(5)

NAME

$frame−depth − Number of lines on the current frame canvas
$frame−width − Number of columns on the current frame canvas

SYNOPSIS

$frame−depth integer

3 <= integer <= 400

$frame−width integer

8 <= integer <= 400

DESCRIPTION

These variables allow the viewable size of the current frame canvas to be determined.

$frame−depth identifies depth of the current frame given as the number of character lines. This is the
whole frame width, not just what is currently visible. The value returned is in the range 3 − n, n is
system dependent but no greater than 400.

$frame−width identifies the width of the current frame as the number of character columns. The
value returned is in the range 8 − n, n is system dependent but no greater than 400.

NOTES

The name of these variables changed from $screen−depth and $screen−width due to the support for
multiple frames introduced in April 2002.

SEE ALSO

change−frame−depth(2), change−frame−width(2).

MicroEmacs '02

$frame−depth(5) 690

$global−scheme(5)

NAME

$global−scheme − Default global buffer color scheme.

SYNOPSIS

$global−scheme schemeNum; Default is 0

DESCRIPTION

$global−scheme defines the default buffer color scheme to schemeNum, a color scheme defined by
add−color−scheme(2).

SEE ALSO

add−color(2), add−color−scheme(2), $buffer−hilight(5), $buffer−scheme(5), $cursor−color(5),
$trunc−scheme(5), $ml−scheme(5), $osd−scheme(5), $mode−line−scheme(5),
$scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$global−scheme(5) 691

$home(5)

NAME

$home − Users `home' directory location

SYNOPSIS

$home directory

DESCRIPTION

The file naming convention utilizes tilde ('~') to identify the users home directory ($HOME). When
entering a file name:

~/xxx −> $home/xxx
~yyy/xxx −> $home/../yyy/xxx

On most systems this is automatically set to the environment variable "HOME" if it is defined or may
be defined explicitly in the start−up file. '~' may be used in the me.emf files but must be specified as
'~'. It may be picked up in command files as $home.

MicroEmacs '02

$home(5) 692

$idle−time(5)

NAME

$idle−time − System idle event delay time

SYNOPSIS

$idle−time milliseconds; Default is 1000

10 <= milliseconds <= t

DESCRIPTION

$idle−time sets the time waited between the last user event and the generation of a idle−pick key
event. When user input stops for $idle−time milliseconds MicroEmacs checks the binding of the
special idle−pick key, if this pseudo key is bound then the command it is bound to will be
executed. MicroEmacs will then cycle, generating a idle−pick every $idle−time milliseconds until
user activity starts. At this point a idle−drop key event is generated, if this pseudo key is bound
then the command it is bound to will be executed.

This system is useful for things which can be done in the background.

EXAMPLE

The following example is taken from ssaver.emf and implements a simple screen saver:−

set−variable %screen−saver 0
define−macro screen−saver
 !if ¬ &pinc %screen−saver 1
 !if &seq @cck "idle−pick"
 ; default is to switch on in 5 minutes time
 &cond @? @# 300000 create−callback screen−saver
 !else
 !if &seq @cck "callback"
 @# create−callback screen−saver
 !elif @?
 ; user has suppled argument, install or remove
 !if &gre @# 0
 &mul @# 60000 global−bind−key screen−saver "idle−pick"
 !else
 !force global−unbind−key "idle−pick"
 !endif
 set−variable %screen−saver &sub %screen−saver 1
 !return
 !endif
 set−variable @# $frame−depth
 !while &dec @# 1

MicroEmacs '02

$idle−time(5) 693

 2 screen−poke @# 0 $global−scheme &spr "%n" $frame−width " "
 !done
 0 screen−poke 0 0 $global−scheme &spr "%n" $frame−width " "
 −1 show−cursor
 ; must set this to stop recursion when waiting for a key!
 set−variable %screen−saver 0
 set−variable @# @cg
 set−variable %screen−saver 1
 1 show−cursor
 screen−update
 ml−clear
 !endif
 !endif
 set−variable %screen−saver &sub %screen−saver 1
!emacro

NOTES

Care must be taken to ensure that a recursive loop is not created, consider the following example:−

define−macro bored
 !if &iseq @mc1 "Are you bored (y/n)? " "nNyY" "y"
 ml−write "Play a silly game!"
 !endif
!emacro
global−bind−key bored idle−pick

If this was executed MicroEmacs would very quickly crash! As soon as a second past bored would
execute, which will prompt the user and wait for input. If a second passes without input bored will be
executed again and again and again until stack memory runs out! To avoid this idle−pick should
be unbound before waiting for user input, i.e.:−

define−macro bored
 global−unbind−key idle−pick
 !if &iseq @mc1 "Are you bored (y/n)? " "nNyY" "y"
 ml−write "Play a silly game!"
 !endif
 global−bind−key bored idle−pick
!emacro
global−bind−key bored idle−pick

SEE ALSO

$delay−time(5).

MicroEmacs '02

$idle−time(5) 694

$kept−versions(5)

NAME

$kept−versions − Number of backups to be kept

SYNOPSIS

$kept−versions integer; Default is 0

0 <= integer <= n

DESCRIPTION

$kept−versions allows the user to specify the number of backup versions that are required for each
file. For file "XXXX", each backup version is renamed to "XXXX.~?~", where ? is the backup
number. If $kept−versions is set to 0 this feature is disabled and the default single backup file is
created.

The most recent backup will always be .~0~ and the last version will be .~n~ where n is
$kept−versions − 1. when the file is next saved the .~0~ backup file is moved to .~1~, .~1~ to
.~2~ etc, backup .~n~ is removed. Evidently if $kept−versions it set to a large number this can
effect performance.

RESTRICTIONS

$kept−versions may only be used when DOS file name restrictions are not enabled. This means that
some systems (such as DOS) cannot use this functionality, see $system(5) for more information.
Backup files are only created when buffer mode backup(2m) is enabled.

NOTES

This feature is not supported when writing ftp files, a single backup file is created when backup files
are enabled.

SEE ALSO

$system(5), autosv(2m), backup(2m), ftp(3), save−buffer(2).

MicroEmacs '02

$kept−versions(5) 695

$line−scheme(5)

NAME

$line−scheme − Set the current line color scheme

SYNOPSIS

$line−scheme schemeNum; Default is −1

DESCRIPTION

$line−scheme sets the color scheme to be used for the current line of the current window. The given
schemeNum can be any scheme number previously defined by the function add−color−scheme(2).

A line's $line−scheme setting is removed by setting the variable to −1.

A $line−scheme setting takes precedence over the buffer's color scheme ($buffer−scheme(5)) and the
buffer's hilighting scheme ($buffer−hilight(5)).

EXAMPLE

c−hash−eval(3) greys out lines of text by doing:

set−variable $line−scheme %lblack

The lines are rest by doing

set−variable $line−scheme −1

The gdb(3) interface hilights the current line of source by doing:

set−variable $line−scheme %yellow−lblack

NOTES

Due to line storage restrictions, only 15 different color schemes can be used in a buffer at any one
time. When the 16th color scheme is used it replaces the first color scheme, all lines using the first
color scheme will be colored using the new color scheme.

SEE ALSO

MicroEmacs '02

$line−scheme(5) 696

add−color−scheme(2), c−hash−eval(3), $buffer−scheme(5), $buffer−hilight(5),
$mode−line−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$line−scheme(5) 697

$line−template(5)

NAME

$line−template − Command line regular expression search string

SYNOPSIS

$line−template "string"; Default is ""

DESCRIPTION

$line−template defines a regular expression search string used to identify a line number in the
grep(3) and compile(3) buffers. The format of the string is the same as magic mode search strings (see
search−forward(2)).

EXAMPLE

The line number may be considered to contain any numeric number, thus $line−template is defined
as:

set−variable $line−template "[0−9]+"

This correctly identifies "45" in the following *grep* output example:

foo.c: 45: printf("hello world\n") ;

SEE ALSO

$file−template(5), compile(3), get−next−line(2), grep(3), search−forward(2).

MicroEmacs '02

$line−template(5) 698

$ml−scheme(5)

NAME

$ml−scheme − Message line color scheme

SYNOPSIS

$ml−scheme schemeNum; Default is 0

DESCRIPTION

$ml−scheme defines the color scheme to be used on the message line, the color scheme schemeNum
identifies the foreground and background color and is defined by an invocation to
add−color−scheme(2).

The background color is always defined by $global−scheme(5).

SEE ALSO

$global−scheme(5), $osd−scheme(5), $mode−line−scheme(5), $scroll−bar−scheme(5), $system(5),
add−color−scheme(2).

MicroEmacs '02

$ml−scheme(5) 699

$mode−line(5)

NAME

$mode−line − Mode line format

SYNOPSIS

$mode−line "string"; Default is "%s%r%u me (%e) − %l %b (%f) "

DESCRIPTION

$mode−line defines the format of the mode line printed for every window, where the character
following a percent ('%') has the following effect:−

D Prints the current day.
M Prints the current month.
Y Prints the current year (2 digits).
y Prints the current year (4 digits).
b Prints the current buffer's name.
c Prints the current buffer's column number.
e Prints the current buffer's editing modes.
f Prints the current buffer's file name.
h Prints the current hour of the day.
k Prints the current keyboard macro status.
l Prints the current buffer's line number.
m Prints the current minute of the hour.
n Prints the current buffer's total number of lines.
r Prints the current root user status (UNIX only).
s Prints the horizontal window split character.
u Prints the current buffer's (un)changed or view mode flag.
% Prints a percentage escape character.
− Prints a literal minus character ('−') − see NOTES.
* All other characters are printed literally.

NOTES

Refer to $window−chars(5) for the characters utilized in the mode line. Typically a the '−'
character is changed to a '=' if it is the current window. If a '−' is always required, use "%−".

♦

A buffer can have its own mode−line, and be uneffected be the global mode line, see
$buffer−mode−line(5).

♦

SEE ALSO

MicroEmacs '02

$mode−line(5) 700

$buffer−mode−line(5), $mode−line−scheme(5), $window−chars(5).

MicroEmacs '02

$mode−line(5) 701

$mode−line−scheme(5)

NAME

$mode−line−scheme − Mode line color scheme

SYNOPSIS

$mode−line−scheme schemeNum; Default is 1

DESCRIPTION

Sets the window mode−line color scheme, defining the foreground and background colors. The
schemeNum is defined by a previous invocation to add−color−scheme(2).

SEE ALSO

add−color−scheme(2), $global−scheme(5), $ml−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$mode−line−scheme(5) 702

$mode−names(5)

NAME

$mode−names − Filtered mode name list

SYNOPSIS

$mode−names ModeName

DESCRIPTION

$mode−names must first be initialized to the required filter string, if the variable is evaluated before
it is initialized the value will be set to "ABORT" and the command will fail. The filter takes the form
of a regex.

Once initialized, evaluating $mode−names returns the name of the next mode which matches the
filter until no more modes are found, in which case an empty string is returned.

EXAMPLE

The following example prints out the name of all modes to the massage line one at a time. Note that
&set(4) is used on the !while(4) statement to avoid evaluating $mode−names twice per loop.

set−variable $mode−names "*"
!while ¬ &seq &set #l0 $mode−names ""
 100 ml−write &cat "mode: " #l0
!done

SEE ALSO

buffer−mode(2), &bmode(4), $buffer−names(5), $command−names(5), Regular Expressions.

MicroEmacs '02

$mode−names(5) 703

$mouse(5)

NAME

$mouse − Mouse configuration variable

SYNOPSIS

$mouse bitmask; Default is system dependent

DESCRIPTION

The $mouse is used to define and configure the MicroEmacs mouse support, it is a bit based flag
where:−

0x00f

Defines the number of button the mouse has, only values 1, 2 & 3 are useful. By default MicroEmacs
uses the system information to determine the number of buttons on the mouse, this is not fool proof so
the user can set these bits to the appropriate number if the initial value is incorrect.

0x010

If set the mouse is enabled, if clear the mouse will not function. On systems which do not support
mice (such as UNIX Termcap) this bit will be clear and can not be altered.

0x020

If set the buttons are reversed, i.e. the left button becomes the right and vice versa. By default this bit
is clear.

0xf0000

Defines the current mouse icon to used, valid values are as follows:

0x00000 − Set mouse to default icon.
0x10000 − Set mouse to arrow icon.
0x20000 − Set mouse to text I−beam icon.
0x30000 − Set mouse to crosshair icon.
0x40000 − Set mouse to the grab icon.
0x50000 − Set mouse to the wait icon.
0x60000 − Set mouse to the stop icon.

This feature is not supported on some systems and on others some icons are not obvious due
to platform limitations.

MicroEmacs '02

$mouse(5) 704

EXAMPLE

The following example checks that the mouse is currently available, if not, it aborts.

!if ¬ &band $mouse 0x10
 ml−write "[Mouse support is not currently available]"
 !abort
!endif

NOTES

The mouse can be easily configured using user−setup(3).

SEE ALSO

user−setup(3), $system(5), $platform(5).

MicroEmacs '02

$mouse(5) 705

$mouse−pos(5)

NAME

$mouse−pos − Mouse position information

SYNOPSIS

$mouse−pos integer

DESCRIPTION

$mouse−pos is generated by invocation of the command set−cursor−to−mouse(2). The variable is set
to a value that indicates the position of the mouse within a window. The values to the mouse
intersection are interpreted as follows:−

0 − Text area

Intersection with the window text area.

1 − Message Line

Intersection with the message line.

2 − Mode Line

Intersection with the mode line.

3 − Horizontal Separator

Intersection with the horizontal window separator. This value is only set if a scroll bar is not present.

4 − Up Arrow

Intersection with the scroll bar up−arrow character.

5 − Upper Shaft

Intersection with the scroll bar upper shaft (above the scroll box).

6 − Scroll Box

Intersection with the scroll bar scroll box.

7 − Lower Shaft

MicroEmacs '02

$mouse−pos(5) 706

Intersection with the scroll bar lower shaft (below the scroll box).

8 − Down Arrow

Intersection with the scroll bar down−arrow character.

9 − Corner

Intersection with the window corner, that is the character at the intersection of the scroll bar (or
separator) and the mode line.

10 − Menu Line

Intersection with the menu line.

255 − Error

The position of the mouse could not be determined. This value should not arise, if it does then it is an
indication that the window structure is probably corrupted. A delete−other−windows(2) is suggested
or rapid exit from the editor after a save−some−buffers(2) command to save any edits (latter option is
preferred).

Bit 4 − 2nd Column

Bit 4 (16) is set if 2 character column scroll bar or vertical window separator is in effect and the cursor exists
in the second column This value is bitwise OR'ed with the aforementioned intersection values. EXAMPLE

The following macro can be used to print out the current position of the mouse, try binding the macro
to the "mouse−move" key:

define−macro print−mouse−position
 !force set−cursor−to−mouse
 set−variable #l0 &band $mouse−pos 15
 !if &equ #l0 0
 ml−write "Mouse in text window"
 !elif &equ #l0 1
 ml−write "Mouse on message line"
 !elif &equ #l0 2
 ml−write "Mouse on Mode line"
 !elif &and &gre #l0 2 &les #l0 10
 ml−write "Mouse on scroll bar"
 !elif &equ #l0 10
 ml−write "Mouse on corner"
 !elif &equ #l0 11
 ml−write "Mouse on menu line"
 !endif
!emacro

global−bind−key print−mouse−position mouse−move

$mouse−pos is utilized by the mouse picking code, found in macro file mouse.emf.

MicroEmacs '02

$mouse−pos(5) 707

SEE ALSO

$mouse−x(5), $mouse−y(5), set−cursor−to−mouse(2), set−scroll−with−mouse(2).

MicroEmacs '02

$mouse−pos(5) 708

$mouse−x(5)

NAME

$mouse−x − Mouse X (horizontal) position
$mouse−y − Mouse Y (vertical) position

SYNOPSIS

$mouse−x integer

0 <= integer <= $frame−width − 1

$mouse−y integer

0 <= integer <= $frame−depth − 1

DESCRIPTION

$mouse−x and $mouse−y are automatically set to the position of the mouse at the last mouse event,
where an event is a button press or release. Initialized to 0,0. The top left character of the screen is
coordinate 0,0 bottom right is $frame−width, $frame−depth.

NOTES

These variables can not be set. Any attempt to set them will result in an error.

SEE ALSO

set−cursor−to−mouse(2), $mouse−pos(5), $cursor−x(5), $frame−depth(5), $frame−width(5).

MicroEmacs '02

$mouse−x(5) 709

$osd−scheme(5)

NAME

$osd−scheme − OSD color scheme

SYNOPSIS

$osd−scheme schemeNum; Default is 1

DESCRIPTION

$ml−scheme defines the color scheme by default on an osd(2) dialog, the color scheme schemeNum
identifies the foreground and background color and is defined by an invocation to
add−color−scheme(2). Every osd dialog can over−ride this value by using the 'S' flag.

SEE ALSO

osd(2), add−color−scheme(2), $global−scheme(5), $ml−scheme(5), $mode−line−scheme(5),
$scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$osd−scheme(5) 710

$platform(5)

NAME

$platform − MicroEmacs host platform identifier
%platform − MicroEmacs host platform type identifier

SYNOPSIS

$platform "string"; Default is platform specific
%platform "string"; Default is platform specific

DESCRIPTION

The $platform variable is a fixed ASCII string used to identify the current working platform,
attempts to set this variable result in an error returned from set−variable(2).

Possible values are:

"aix"

All IBM AIX O/S.

"dos"

All IBM−PCs and compatibles running MS−DOS.

"freebsd"

All FreeBSD O/S.

"hpux"

All Hewlett Packard's with HP−UX O/S.

"irix"

All Silicon Graphics (SGI) IRIX platforms 4.x, 5.x, 6.x.

"linux"

All LINUX O/S.

"sunos"

MicroEmacs '02

$platform(5) 711

All Sun's with SUNOS O/S.

"unixwr1"

PC based UNIX platform (Consensus and Unixware).

"win32"

Microsoft Windows based systems including Windows 3.x (with Win32s), Windows '95 and NT.

$platform is often used in .emf files to allow portability of macro files across platforms, allowing
macro files to perform platform specific operations. $system(5) is also often used for this purpose as
its value is easier to assess.

%platform is created at start−up when me.emf is executed, its value is identical to $platform
except when the platform is a console in which case a 'c' is appended to the $platform value, e.g. for
MicroEmacs running a termcap version on LINUX the value will be "linuxc". The variable is used
when the console and window based versions need to be distinguish, e.g. some of the user−setup
settings.

EXAMPLE

The following example is taken from the me.emf file which uses the $platform variable to load the
platform specific initialization files.

;
; load in the platform specific stuff
execute−file $platform

This could be more explicitly done by:

;
; load in the platform specific stuff
!if &seq $platform "dos" ; is it an IBM−PC running dos ?
 execute−file "dos"
!elif &seq $platform "irix" ; is it an sgi ?
 execute−file "irix"
!elif &seq $platform "hpux" ; is it an hp ?
 execute−file "hpux"
 .
 .
!endif

NOTES

The $platform variable can not be set. Any attempt to set it will result in an error.

SEE ALSO

MicroEmacs '02

$platform(5) 712

$system(5), set−variable(2).

MicroEmacs '02

$platform(5) 713

$progname(5)

NAME

$progname − Program file name

SYNOPSIS

$progname string

DESCRIPTION

$progname is set the the MicroEmacs '02 program file name currently being run. This can be used by
macros for many purposes, from spawning another MicroEmacs '02 session to working out where
MicroEmacs '02 is running from.

EXAMPLE

The following example is used to spawn of another MicroEmacs '02 command to create a C tags
file:−

shell−command &cat $progname " \"@ctags\" *.c *.h"

SEE ALSO

me(1).

MicroEmacs '02

$progname(5) 714

$random(5)

NAME

$random − Generate a random number

SYNOPSIS

$random integer

0 <= integer <= 65535

DESCRIPTION

The $random variable returns a unique random number in the range 0 − n on reference to the
variable.

The random number is derived from the system's random number generator (the quality of which is
often dubious so try to avoid using the bottom bits). Setting this variable with any value resets the
random sequence using the system time as the seed.

The range of the random number generator is system dependent. The value is typically capped using
the &mod(4) arithmetic operator.

EXAMPLE

The variable may be assigned to generate a new seed as follows:−

set−variable $random 0 ; Set it so we get a new seed

The returned value is used with the &mod operator to limit the value to a desired range:−

set−variable %random0to9 &mod $random 10

SEE ALSO

&mod(4).

MicroEmacs '02

$random(5) 715

$rcs−file(5)

NAME

$rcs−file − RCS (and SCCS) file name
$rcs−ci−com − RCS (and SCCS) check in command
$rcs−cif−com − RCS (and SCCS) check in first command
$rcs−co−com − RCS (and SCCS) check out command
$rcs−cou−com − RCS (and SCCS) check out unlock command
$rcs−ue−com − RCS (and SCCS) unedit file command

SYNOPSIS

$rcs−file "string"; Default is ""
$rcs−ci−com "string"; Default is ""
$rcs−cif−com "string"; Default is ""
$rcs−co−com "string"; Default is ""
$rcs−cou−com "string"; Default is ""
$rcs−ue−com "string"; Default is ""

DESCRIPTION

RCS (Revision Control System) and SCCS (Source Code Control System) are programmers source
code history data−bases. RCS introduces a system in which only one programmer can edit a source
file at any one time, enforcing some form of stability in the global environment. The fact that this
interface was developed for the RCS system is irrelevant, and should be usable under any other
control systems such as SCCS.

When using RCS, finding a file (see find−file(2)) checks for the existence of the actual file. If this is
not found then it checks for the existence of an RCS $rcs−file variable, and if present then it
constructs the RCS file name and checks for its existence. If this file does not exist then it really is a
new file and an new buffer is created. If the file does exist then the file is checked out using the
$rcs−co−com which executes to create a file with the original file name, ready for loading.

$rcs−file is the name of the file when it is fully check in, as opposed to when it is ready to be viewed
or edited. In RCS, this is usually in the RCS directory with an appended ",v", i.e. for the file foo.c
in the /test directory, when fully checked in, the file will not be found at "/test/foo.c", but at
"/test/RCS/foo.c,v". When testing for an RCS file, the file name is split into two parts, the
path name and the file name, the path is always inserted at the start, and the file name can inserted in
the rcs string by using the special "%f" token, thus if $rcs−file is set to "RCS/%f,v", the RCS file
name is constructed from "/test/" + "RCS/" + "foo.c" + ",v".

If the RCS file is found then the $rcs−co−com (RCS Check Out COMmand) which is a simple
system command line with the exception for %f which is replaced by the file name, is executed. This
is expected to create the file (with the correct file name) ready for viewing.

MicroEmacs '02

$rcs−file(5) 716

Once a file is loaded, then the rcs−file(2) command has one of two effects:−

If the file is in view mode then the $rcs−cou−com (RCS Check Out Unlock COMmand) is
executed (system command line using the "%f" as the file name). If the RCS file does not
exist then is simply toggles the view mode, allowing editing.

If the file is not in view mode MicroEmacs attempts to check the file back into RCS using
either $rcs−ci−com (if the RCS file already exists) or the the $rcs−cif−com (RCS Check In
First COMmand). The "%f" is again used for the file name, the "%m" can also be used to get a
comment from the user at check in time which will be inserted (without quotes) into the
$rcs−ci−com command line. For example, one possible $rcs−ci−com setting is "ci
−m\"%m\" %f" which uses the ci(1) program with the −m option to give a check in
message.

If rcs−file is given a −ve argument instead of checking in or out the current buffer's file it executes the
command specified by $rcs−ue−com to unedit or abort any changes made to the file. After the
command has been executed the file is reloaded.

NOTES

The RCS variables are by default undefined and must be explicitly enabled in the start−up files.

EXAMPLE

The following are typical variable definitions for the RCS interface:−

set−variable $rcs−file "RCS/%f,v"
set−variable $rcs−co−com "co %f"
set−variable $rcs−cou−com "co −l %f"
set−variable $rcs−ci−com "ci −u −m\"%m\" %f"

Note that the $rcs−cif−com variable is usually left unassigned and $rcs−ci−com is used by default.

The following are typical variable definitions for the SCCS interface:−

set−variable $rcs−file "SCCS/s.%f"
set−variable $rcs−co−com "sccs get %f"
set−variable $rcs−cou−com "sccs edit %f"
set−variable $rcs−ci−com "sccs delget −y\"%m\" %f"
set−variable $rcs−ci−com "sccs create %f"
set−variable $rcs−ue−com "sccs unedit %f"

The following variable definitions can be used for MicroSoft's Visual Source Safe:−

set−variable $rcs−file "%f"
set−variable $rcs−cou−com "ss.exe checkout %f"
set−variable $rcs−co−com "ss.exe checkout %f"
set−variable $rcs−ci−com "ss.exe checkin %f \"−c%m\""

MicroEmacs '02

$rcs−file(5) 717

The above definitions can check a file out for edit and commit changes back.

SEE ALSO

find−file(2), rcs−file(2).

MicroEmacs '02

$rcs−file(5) 718

$recent−keys(5)

NAME

$recent−keys − Recent key history.

SYNOPSIS

$recent−keys string

DESCRIPTION

$recent−keys is a system variable that displays the last 100 keys entered into the system in reverse
order. This variable is typically used to solve keyboard mapping problems when keys are not bound
etc. allowing a visual inspection of the input into the editor.

SEE ALSO

buffer−bind−key(2), global−bind−key(2), translate−key(2).

MicroEmacs '02

$recent−keys(5) 719

$result(5)

NAME

$result − Various command return values

SYNOPSIS

$result returnValue

DESCRIPTION

$result is used to return the results of several commands:

buffer−info(2) $result is set to the same output string as printed to the message−line by this
command.

change−font(2)

$result is used to return the user select font when hte windows font selection dialog is used (Windows
systems only).

count−words(2)

$result is set to the same output string as printed to the message−line by this command.

find−registry(2)

$result is used to return the name of a registry child node given the parent and index from the user.

get−registry(2)

$result is used to return the current value of a user supplied registry entry.

mark−registry(2)

$result is used to return the full name of the given registry node.

osd(2)

$result is used to give and return information to osd item commands, information depends on
the type of osd item.

osd−dialog(3)

MicroEmacs '02

$result(5) 720

osd−xdialog(3)

$result is used to return the button pressed by the user.

shell−command(2)

$result is set to the exit status of the system call. The combination of shell−command calls
and return value checking can be used in a variety of ways, for example, to test the existence
of a file:

set−variable %filename @ml"Enter file name"
shell−command &cat "test −f " %filename
!if &equ $result 0
 ml−write "file exists"
!else
 ml−write "file does not exists"
!endif

show−region(2)

$result is set to the current status of the region when an argument of 0 is given to
show−region.

spell(2)

$result is used to return information on the current word, the information depends on the
argument given to spell.

$file−names(5)

$result is set to the absolute path of the $file−names query directory when the variable is set.

For more information see the help pages on referenced commands and variables.

NOTES

The current value of $result is lost on the next command call which uses it. As a call to
create−callback(2) can cause the execution of a macro to interrupt another which is waiting for user
input, the value of $result should be copied before getting user input.

SEE ALSO

buffer−info(2), change−font(2), count−words(2), find−registry(2), get−registry(2), mark−registry(2),
osd(2), shell−command(2), show−region(2), spell(2), $file−names(5). create−callback(2), $status(5).

MicroEmacs '02

$result(5) 721

$scroll(5)

NAME

$scroll − Screen scroll control

SYNOPSIS

$scroll scrollNum; Default is 1

0 <= scrollNum <= n

DESCRIPTION

$scroll controls the horizontal and vertical scrolling method used to display long lines and buffers.
The variable is split into two componants, the first nibble (0x0f) sets the horizontal scroll, and the
second nibble (0xf0) sets the vertical. For the purpose of documentation these parts are kept
separate, but when setting the variable a single combined value must be given.

The horizontal settings are defined as follows:

0x00

Scroll method 0 will only scroll the current line, this is the fastest method in execution time.

0x01

Scroll method 1 (the default) will scroll the whole page horizontally when the scroll−left(2) and
scroll−right(2) commands are used. However, when the current line must be scrolled to display the
cursor due to a forward−char(2) type cursor movement, only the current line is scrolled and the rest
are reset.

0x02

Scroll method 2 always scrolls the whole page horizontally, keeping the cursor in the current column
range. If the cursor moves out of this range then all the page is scrolled to the new position. This is
particularly useful when editing long lined tables.

0x03

Scroll method 3 fixes the scroll column using the scroll−left and scroll−right functions. If the current
cursor position is not visible in the column range then only the current line is scrolled to the new
position.

The vertical settings are defined as follows:

MicroEmacs '02

$scroll(5) 722

0x00

Scroll method 0 (the default) will scroll the current line to the middle of the current window whenver
it is moved off screen, this is the fastest method in execution time.

0x10

Scroll method 1 will scroll the current line to the the top of the window whenver the current line is moved off
the screen using backward−line(2) and to the bottom of the window when forward−line(2) is used. This
creates the effect of a smooth scroll. EXAMPLE

The following example sets the scrolling method to be the default horizontally (0x01) and smooth
method (0x10) vertically :

set−variable $scroll 0x11

SEE ALSO

scroll−left(2), forward−line(2), $window−x−scroll(5), $window−y−scroll(5).

MicroEmacs '02

$scroll(5) 723

$scroll−bar(5)

NAME

$scroll−bar − Scroll bar configuration

SYNOPSIS

$scroll−bar "bitmask"; Default is platform specific

DESCRIPTION

$scroll−bar defines the configuration of the scroll bar and/or the horizontal window separator for
both main text windows and osd(2) dialogs. The variable is interpreted as a bit mask and defines
which components of the scroll bar (or separator) should be rendered in a window. The characters
used to render the scroll bar or separator are defined by $window−chars(5). The bit mask is defined as
follows:−

0x001 − Vertical Scroll Bar Width

Bit 0 controls the width of the vertical scroll bar (or separator). A value of 0 corresponds to a single
column width, a value of 1 is a double column width.

0x002 − Upper end cap

Bit 1 set indicates that the scroll bar has an upper end cap. This is the up arrow character at the top of
a scroll bar.

0x004 − Lower end cap

Bit 2 set indicates that the scroll bar has a lower end cap. This is the down arrow character at the
bottom of a scroll bar.

0x008 − Corner

Bit 3 set indicates that separate corner character is used at the intersection of the mode line and the
separator.

0x010 − Scroll Box Enable

Bit 4 determines if the scroll bar has a scrolling box, when the bit is set each scroll bar will have a
scroll box. When clear, scroll bars are rendered according to bits 0−3 & 7 only and the main area of
the bar is left empty.

0x020 − Reverse Video Box

MicroEmacs '02

$scroll−bar(5) 724

Bit 5 when set enables the scroll box to be rendered in reverse video, that is the background and
foreground/hilight scroll colors are interchanged. This bit is typically set on X−Window platforms
allowing the scroll box to comprise of SPACE characters allowing a solid box to be rendered in the
foreground color.

Bit 5 is only enacted if scroll boxes are enabled.

0x040 − Horizontal Scroll Bar Width

Bit 6 controls the width of the horizontal scroll bar, used only by osd(2). A value of 0 corresponds to a
single column width, a value of 1 is a double column width.

0x080 − Splitter

Bit 7 set indicates that the scroll bar has a splitter. This is the split bar character at the top of a scroll
bar.

0x100 − Enable window Scroll Bars

When Bit 8 is clear, scroll bars are not present on windows. If a horizontal split has been performed
then the window separator is rendered plain. This is useful when performance is important, as scroll
bars require constant up−date.

0x200 − Horizontal Scroll Bar Width

Bit 9 enables scroll bars, when the bit is set each window is assigned a scroll bar in the right−hand column(s)
of the window with a scroll box. SEE ALSO

$mouse−pos(5), $scroll−bar−scheme(5), set−scroll−with−mouse(2), $window−chars(5).

MicroEmacs '02

$scroll−bar(5) 725

$scroll−bar−scheme(5)

NAME

$scroll−bar−scheme − Scroll bar color scheme

SYNOPSIS

$scroll−bar−scheme schemeNum; Default is 1

DESCRIPTION

Sets the horizontal window scroll bar color scheme, assigning the foreground, background and
selection colors which are used to render the vertical separator / scroll bars (see
add−color−scheme(2). The separator is rendered in reverse video, i.e. the foreground color of the
color scheme is used as the background color, and vice versa.

The separator is rendered in the standard colors when the associated buffer is not active, and in the
current color when the buffer is active.

The scroll−bar is the window separator constructed by split−window−horizontally(2) or when the
scroll bars are enabled via $scroll−bar(5).

SEE ALSO

$global−scheme(5), $ml−scheme(5), $mode−line−scheme(5), $scroll−bar(5), $system(5),
$window−chars(5), split−window−horizontally(2).

MicroEmacs '02

$scroll−bar−scheme(5) 726

$show−modes(5)

NAME

$mode−line − Select buffer modes to display

SYNOPSIS

$show−modes "bit−string"; Default is ""

DESCRIPTION

$show−modes defines which buffer modes are displayed on the mode−line.

SEE ALSO

$user−setup(3), $mode−line(5).

MicroEmacs '02

$show−modes(5) 727

$show−region(5)

NAME

$show−region − Enable the hilighting of regions

SYNOPSIS

$show−region flag; Default is 1

DESCRIPTION

$show−region enables or disables the current region hilighting, normally associated with mouse
interaction in a buffer. Region hilighting occurs between the mark (see set−mark(2)) and point
(current cursor) positions within the current buffer. An argument n of 0 disables region hilighting, an
argument of 1 enables region hilighting between the two positions. If it is set to 3 then region
hilighting will be enabled and a defined region (created using copy−region(2)or yank(2)) will
continue to be hilighted until the region is changed.

A defined region can be redisplayed (if still valid) using the command show−region(2). The color of
the region hilighting is defined by add−color−scheme(2) and is determined by $buffer−scheme(5),
$global−scheme(5) or $buffer−hilight(5).

SEE ALSO

show−region(2), $buffer−hilight(5), $buffer−scheme(5), $global−scheme(5), $buffer−scheme(5),
add−color−scheme(2), set−mark(2).

MicroEmacs '02

$show−region(5) 728

$status(5)

NAME

$status − Macro command execution status

SYNOPSIS

$status boolean

booleanTRUE (1) | FALSE (0)

DESCRIPTION

$status contains the return status of the last command executed (TRUE or FALSE). $status is
generally used with the !force directives in macros.

NOTES

This variable can not be set, any attempt to set it will result in an error.

EXAMPLE

The following example shows how the variable is used within a macro construct, it converts all tab
characters to their SPACE equivalent.

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 ; Remember line
 set−variable #l0 $window−line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 set−variable #l1 $window−acol
 backward−delete−char
 &sub #l1 $window−acol insert−space
 !force search−forward "\t"
 !done
 goto−line #l0
 screen−update
 ml−write "[Converted tabs]"
!emacro

In this case $status monitors the search−forward command which is searching for a tab character. The

MicroEmacs '02

$status(5) 729

command returns a status value of TRUE if a tab is found, otherwise FALSE.

The !force statement prevents the macro from terminating when a FALSE condition is detected, if
omitted the macro would terminate with an error as soon as the FALSE status is encountered. The
definition of tabs−to−spaces(3) can be found in format.emf.

SEE ALSO

execute−file(2), !force(4), $result(5), tabs−to−spaces(3).

MicroEmacs '02

$status(5) 730

$system(5)

NAME

$system − System configuration variable

SYNOPSIS

$system bitmask; Default is system dependent

DESCRIPTION

The $system is used to define and configure the MicroEmacs environment, it is a bit based flag
where:−

0x001

This bit is set if MicroEmacs is running in Console mode. On UNIX systems the default is to use X
whenever possible, in which case this bit will be clear. If X is not used then a TERMCAP base
interface is used instead and this bit will be set (see notes below on how to set which interface to use).
On all other systems this bit will be clear.

0x002

If this bit is set then the current system supports definable RGB colors allowing any color to be
created and used in a color scheme. This bit cannot be set, typically Windows and UNIX X−Windows
systems support this.

0x004

If this bit is set then the current system supports ANSI colors (8 colors, black, red, green, yellow,
blue, magenta, cyan & white), bits 0x002 and 0x004 are mutually exclusive. On UNIX systems if the
TERMCAP interface is being used then this bit can be changed to (de)select the used of color. Many
unix terminals do not support color so this should be set appropriately. On all other systems this bit
cannot be changed and MS−DOS is currently the only other system to use ANSI colors.

0x008

If this bit is set then the current system supports Extended ANSI colors, brighter versions of the 8
ANSI colors doubling the number of colors available to 16. On UNIX systems if the TERMCAP
interface is being used then this bit can be changed to (de)select the used of bold with color to create
this extended color set for foreground colors. But many UNIX terminals do not support this use of
color with the bold font so this should be set appropriately. On all other systems this bit cannot be
changed and MS−DOS is currently the only other system to support this.

MicroEmacs '02

$system(5) 731

0x010

If this bit is set then the current system supports the use of fonts (bold, italic, light and underline).
Whether these fonts can be successfully utilized depends upon the platform and the system font being
used, for UNIX TERMCAP systems it will also depend on the terminal being used. This option is not
supported on MS_DOS.

0x080

This bit is set if the current system is a UNIX based system such as LINUX or HPUX. This bit cannot
be altered, its use is within macros.

0x100

This bit is set if the current system is a Microsoft based system such as DOS or Windows '95. This bit
cannot be altered, its use is within macros.

0x200

If this bit is set then the current system uses the concept of drives (i.e. c:/ on DOS systems). This bit
cannot be altered, its use is within macros.

0x400

If this bit is set then a DOS style 8.3 file naming system should be used (i.e. "BBBBBBBB.XXX"),
otherwise an unlimited file name length is used. This effects the backup and auto−save file names
generated by MicroEmacs, the bit can be altered on systems that support unlimited file name length.

0x800

If this bit is set then the current system supports and uses ipipe−shell−command(2) when required.
For systems such as DOS which cannot support ipipes, this bit will be clear and cannot be altered. For
systems which do support ipipes, this bit can be cleared to disable their use.

0x1000

If this bit set, the then execution of the tab(2) command (bound to tab) always checks and adjusts the
indentation of the current line when the current buffer is in cmode(2m) or has an indentation method.
If the bit is clear then the tab may only checks the indentation when the cursor is in column zero
depending on the setting of bit 0x200000.

0x2000

If this bit is set the main menu Alt hot−key bindings are enabled. These are dynamic bindings
automatically generated from the main menu. Typically the first item in the main menu is "File"
with a hot key of 'F', with this bit set 'A−f' will open this menu item. Note that global and local key
bindings override these. Also see bit 0x4000.

0x4000

MicroEmacs '02

$system(5) 732

If this bit is set the Alt key acts as a prefix 1 modifier key. By default 'A−n' is not bound, with this bit
set the key is inferred to 'esc n' which is bound to forward−paragraph. Note that global, local and
menu hot−key bindings override these. Also see bit 0x2000.

0x8000

If this bit is set the undo history is kept after a save allowing the undo(2) command to back−up
changes beyond the last save. When clear the undo history is discarded after the buffer is saved.

0x10000

Enable box character rendering fix, supported on Win32 and XTerm interfaces only.
Windows ANSI fonts and many XTerm ISO−8859−1 fonts do not have well formed box
characters which are used by osd(2) and other commands to create a better looking interface.
When this bit is enabled MicroEmacs traps the printing of characters with an ASCII value of
less than 32 and renders them directly. Following is a table of supported characters, other
characters in the range of 0x00 to 0x1f not listed are rendered as a space:

0x08

Special Character; Backspace

0x09

Special Character; Tab

0x0b

Box Character; Bottom right

0x0c

Box Character; Top right

0x0d

Box Character; Top left

0x0e

Box Character; Bottom left

0x0f

Box Character; Center cross

0x10

Arrows; Right

MicroEmacs '02

$system(5) 733

0x11

Arrows; Left

0x12

Box Character; Horizontal line

0x15

Box Character; Left Tee

0x16

Box Character; Right Tee

0x17

Box Character; Bottom Tee

0x18

Box Character; Top Tee

0x19

Box Character; Vertical Line

0x1e

Arrows; Up

0x1f

Arrows; Down

0x20000

Enables the client server, default is disabled (UNIX and Win32 NT or Win95+ platforms only). When
enabled a hidden "*server*" buffer is created which monitors commands written to the server, the
socket "/tmp/mesrvuid" on UNIX systems and the command input file
"$TEMP/me$MENAME.cmd" on Win32 systems. Commands can be written out using the
command ipipe−write(2) while in the "*server*" buffer, the command is written to the same socket on
UNIX systems and to the response file and response file "$TEMP/me$MENAME.rsp" on Win32
systems. This functionality is used by the −m and −o command−line options and by the MicroSoft
DevStudio interface.

0x40000

MicroEmacs '02

$system(5) 734

Enables the capture of the Alt space key ("A−space"), default is enabled (Win32 platform only). In
the Windows environment the Alt Space key is used to activate the main window's pull down menu at
the top left. if this bit is set MicroEmacs captures this key and executes it as normal, thereby disabling
this standard windows binding.

0x80000

Enables the drawing of visible white spaces, i.e. space, tab and new−line characters. When disabled
(default) white spaces are drawn using spaces (' ') which means the user cannot distinguish between a
tab and spaces or determine the last character of the line by merely looking at the display. When
enabled MicroEmacs uses visible characters to draw the white spaces, the characters used are set with
the variable $window−chars(5).

0x100000

Enables hiding MicroEmacs generated backup files. On Windows and Dos platforms the Hidden file
attribute is used to hide the file, whereas on UNIX the backup file name is prepended with a '.'.

0x200000

If this bit set, the then execution of the tab(2) command (bound to tab) checks and adjusts the
indentation of the current line when the cursor is in column zero and current buffer is in cmode(2m)
or has an indentation method. The setting of this bit has no effect if bit 0x1000 is set. If this and bit
0x1000 are clear then the tab will not check the indentation.

0x400000

When this bit is set the external clipboard (Windows & XTerm platforms) will never be set to empty,
if the current yank buffer is the empty string the cut buffer will be set to a space (i.e. " "). This feature
has been added to avoid problems with other software (e.g. exceed(1) which can crash if given an
empty cut buffer).

0x800000

When this bit is set all use of the external clipboard (Windows & XTerm platforms) is disabled, this means
that MicroEmacs will not attempt to retrieve or set the content of the system clipboard. EXAMPLE

The follow example works out the current buffer's backup file name using $system to determine the
naming system being used by MicroEmacs:−

set−variable #l0 &stat "a" $buffer−fname
; Is an 8.3 dos style naming system being used?
!if &band $system 0x400
 !if ¬ &set #l1 &sin "." #l0
 set−variable #l1 &cat #l0 ".~~~"
 !elif &gre &set #l1 &sub &len #l0 #l1 2
 set−variable #l1 &cat &lef #l0 &sub &len #l0 1 "~"
 !else
 set−variable #l1 &spr "%s%n" #l0 &sub 3 #l1 "~"
 !endif

MicroEmacs '02

$system(5) 735

!elif $kept−versions
 set−variable #l1 &cat #l0 ".~0~"
!else
 set−variable #l1 &cat #l0 "~"
!endif

The following macro can be used to toggle the visible drawing of white spaces:

define−macro toggle−visible−white−spaces
 set−variable $system &bxor $system 0x80000
 screen−update
!emacro

NOTES

Most of the $system functionality can be set using the $user−setup(3) dialog.

UNIX X verses Termcap

By default, on X supporting systems MicroEmacs creates a new X window. This feature may be
disabled in one of two ways:

The environment variable $TERM is set to "vt...", in this case it is assumed that the
machine is a server, and the host cannot support X.

♦

The −n option is used on the command line (see me(1)) to disable the windowing interface.♦

If X is disabled then the termcap interface is used instead, still allowing the use of colors through the
ANSI standard, or the use of fonts (see bits 0x004 and 0x008).

X provides the following features over and above a termcap based version of MicroEmacs '02:

R,G,B style color creator giving access to up to 256 different colors for the ultimate hilighting
schemes (see bit 0x002 and add−color(2)).

♦

Full mouse support, allowing user definable bindings to every mouse event (see
global−bind−key(2)).

♦

Copy from and pasting to X's selection buffer (see yank(2)).♦

SEE ALSO

user−setup(3), $mouse(5), $platform(5), add−color(2), add−color−scheme(2),
ipipe−shell−command(2), $global−scheme(5).

MicroEmacs '02

$system(5) 736

$tabsize(5)

NAME

$tabsize − Tab character width

SYNOPSIS

$tabsize integer; Default is 4

−0 < integer <= n

DESCRIPTION

$tabsize defines the width of a tab character.

Setting tabs to arbitrary widths is possible in MicroEmacs '02 but you must be aware of a subtle
difference that it makes to your file and hence to your editing. When you start MicroEmacs '02, the
tab width is set to the default (usually every 8th column) for the tab character (CTRL−I). As long as
you stay with the default, every time you insert the tab character, a CTRL−I get inserted. Hence, you
logically have a single character which might appear to be several spaces on the screen (or the output)
depending upon the column location of the tab character. This means that to remove the spacing you
have to delete a single character −− the tab character.

On the other hand, the moment you explicitly set the tab interval (even if it is to the default value),
MicroEmacs '02 handles the tab character by expanding the character into the required number of
spaces to move you to the appropriate column. In this case, to remove the spacing you have to delete
the appropriate number of spaces inserted by M−e to get you to the right column.

The operating mode of the tab expansion is controlled by the tab(2m)mode.

SEE ALSO

buffer−mode(2) tab(2m), $tabwidth(5).

MicroEmacs '02

$tabsize(5) 737

$tabwidth(5)

NAME

$tabwidth − Tab character interval

SYNOPSIS

$tabwidth integer; Default is 8

−0 < integer <= n

DESCRIPTION

$tabwidth defines the interval of a tab character.

The tab interval is set to the given numeric argument. As always, the numeric argument precedes the
command. Hence to get tabs every 4 spaces you would set the $tabwidth to 4.

SEE ALSO

buffer−mode(2) tab(2m), $tabsize(5). tabs−to−spaces(3).

MicroEmacs '02

$tabwidth(5) 738

$temp−name(5)

NAME

$temp−name − Temporary file name

SYNOPSIS

$temp−name FileName

DESCRIPTION

$temp−names is automatically set to a nonexistent file name in the systems temporary file directory.
On UNIX systems the temporary directory is fixed to "/tmp/", on other systems the temporary
directory is set by the $TEMP environment variable.

EXAMPLE

The following example uuencodes a given file into a temporary file and then inserts this file into the
current buffer.

set−variable #l0 @ml04 "Uuencode and insert file"
set−variable #l1 $temp−name
!force shell−command &spr "uuencode %s < %s > %s" #l0 #l0 #l1
insert−file #l1
!force shell−command &cat "rm " #l1

NOTES

This variable can not be set, any attempt to set it will result in an error.

The returned file name is not guaranteed to be unique between calls, only that the file does not
currently exist.

SEE ALSO

shell−command(2), file−op(2).

MicroEmacs '02

$temp−name(5) 739

$time(5)

NAME

$time − The current system time

SYNOPSIS

$time "string"

DESCRIPTION

$time is a constantly changing variable which is set to the current system time. The format of $time is
"YYYYCCCMMDDWhhmmssSSS", where:−

YYYY

The current year (full 4 digits so should be millennium bug free).

CCC

Day of the year (0−366).

MM

The month of the year (1−12).

DD

The day of the month (1−31).

W

The day of the week (0−6 Sunday=0).

hh

The hour (0−23).

mm

The minute (0−59).

ss

MicroEmacs '02

$time(5) 740

The second (0−59).

SSS

The millisecond (0−999).

$time can be set to an integer value which is a time offset in seconds, for example if the following
was executed;−

set−variable $time "3600"
ml−write &cat "$time is " $time
set−variable $time "0"

The written time would one hour ahead of the system time.

EXAMPLE

The following macro times the time taken to execute a user command:−

define−macro time
 !force set−variable #l2 @1
 !if ¬ $status
 set−variable #l2 @ml00 "Time command"
 !endif
 set−variable #l0 $time
 !force execute−line #l2
 set−variable #l1 $time
 set−variable #l2 &add &mid #l0 16 2 &mul 60 &add &mid #l0 14 2 &mul 60 &mid #l0 12 2
 set−variable #l3 &add &mid #l1 16 2 &mul 60 &add &mid #l1 14 2 &mul 60 &mid #l1 12 2
 !if &les &set #l4 &sub &rig #l1 18 &rig #l0 18 0
 set−variable #l2 &add #l2 1
 set−variable #l4 &add 1000 #l4
 !endif
 ml−write &spr "Command took %d sec %d msec" &sub #l3 #l2 #l4
!emacro

time(3) is a macro defined in misc.emf.

organizer(3) uses $time to work out the current month.

SEE ALSO

time(3), organizer(3).

MicroEmacs '02

$time(5) 741

$timestamp(5)

NAME

$timestamp − Time stamp string

SYNOPSIS

$timestamp "string"; Default is "<%Y%M%D.%h%m>"

DESCRIPTION

$timestamp defines the file time−stamping string. MicroEmacs '02 searches for, and modifies, the
string to the current time and date whenever the file is saved (written to disk) and time(2m) mode is
enabled.

Time stamp string is defined, by default, as "<%Y%M%D.%h%m>". The first occurrence of the string in
the file is up−dated with the time and date information when the buffer is written. The $timestamp
string may contain any text, and includes the following, magic characters escaped by a percentage
(`%') character:−

D − Day.
M − Month.
Y − Year.
h − Hour.
m − Minute.
s − Second.

The format string may be redefined into any format. The '%' character has to be delimited by another
'%' if it is to be used in the text (i.e. "%%").

The year component (%Y) may be a 2 or 4 digit string, depending whether it includes the century.
When the time stamping searches for the %Y component it searches for either variant and replaces
appropriately.

EXAMPLE

The startup file may define the time stamp required as follows:−

set−variable $timestamp "Last Modified : %Y/%M/%D %h:%m:%s"

Time stamping is performed on the string :−

Last Modified : 90/11/23 10:12:01

MicroEmacs '02

$timestamp(5) 742

Where the time stamp is modified according to the file (buffer) type then the time stamp string may be
modified within the buffer hooks. This allows different files to utilize different time stamping strings.
The following example shows how the entry and exit buffer hooks are defined to modify the string:

0 define−macro bhook−nroff
 set−variable .timestamp $timestamp
 ; Buffer specific time stamp string.
 set−variable $timestamp "[%Y/%M/%D %h:%m:%s]"
!emacro
0 define−macro ehook−nroff
 ; Restore the existing time stamp.
 set−variable $timestamp .bhook−nroff.timestamp
!emacro

On entry to the buffer (buffer becomes current) the buffer hook bhook−nroff is executed which stores
the current setting and then modifies the time stamp string. On exit from the buffer the buffer hook
ehook−nroff is executed restoring the time stamp string.

SEE ALSO

buffer−mode(2) time(2m).

MicroEmacs '02

$timestamp(5) 743

$trunc−scheme(5)

NAME

$trunc−scheme − Truncation color scheme.

SYNOPSIS

$trunc−scheme schemeNum; Default is 0

DESCRIPTION

$trunc−scheme sets the color scheme used when drawing a line truncation indicator. The left
truncation character (usually a '$' char) drawn at the start of the line indicates that the line has been
scrolled to the right and therefore the start of the line has been truncated. A right truncation char (also
usually a '$') drawn at the end of the line indicates the remainder of the line is too long to fit onto the
width of the window so the end has been truncated and the indicator drawn.

The schemeNum selected must be a color scheme defined with add−color−scheme(2), which identifies
the foreground and background color schemes. A hilight scheme can define its own truncation color
scheme, see hilight(2) for more information.

NOTES

The truncation characters used are set by the $window−chars(5) variable.

SEE ALSO

$buffer−scheme(5), $global−scheme(5), add−color−scheme(2), hilight(2), $window−chars(5).

MicroEmacs '02

$trunc−scheme(5) 744

$variable−names(5)

NAME

$variable−names − Filtered variable name list

SYNOPSIS

$variable−names VariableName

DESCRIPTION

$variable−names must first be initialized to the required filter string, if the variable is evaluated
before it is initialized the value will be set to "ABORT" and the command will fail.

The filter string can contain wild−card characters compatible with most file systems, namely:−

?

Match any character.

[abc]

Match character only if it is a, b or c.

[a−d]

Match character only if it is a, b, c or d.

[^abc]

Match character only if it is not a, b or c.

*

Match any number of characters.

Note that these are not the same characters used by exact(2m) mode.

Once initialized, evaluating $variable−names returns the name of the next variable which matches
the filter until no more variables are found, in which case an empty string is returned.

EXAMPLE

MicroEmacs '02

$variable−names(5) 745

The following example prints out the name of all variables to the massage line one at a time. Note that
&set(4) is used on the !while(4) statement to avoid evaluating $variable−names twice per loop.

set−variable $variable−names "*"
!while ¬ &seq &set #l0 $variable−names ""
 100 ml−write &cat "variable: " #l0
!done

NOTES

The list of variables is evaluated when the variable is initialized, variables defined after the
initialization will not be included in the list. The list can contain the current buffer's buffer variables
(See Variables(4) for more information on the different types of variables).

Using unset−variable(2) to delete a variable which are in the list, before it has be evaluated, will have
undefined effects.

SEE ALSO

list−variables(2), $command−names(5).

MicroEmacs '02

$variable−names(5) 746

$version(5)

NAME

$version − MicroEmacs version date−code

SYNOPSIS

$version "YYYYMMDD"

DESCRIPTION

$version is a system variable which is defined as the MicroEmacs build date code. This value is fixed
at compile time and cannot be changed. The variable may be used in macros to identify
incompatibility issues.

EXAMPLE

Given a macro that only operates with a MicroEmacs executable built on or after 1st August 2001
then this macro should check that $version is not less than 20010801. The check may be
performed as follows:

!if &les $version "20010801"
 ml−write "[Error: MicroEmacs executable is incompatible]"
 !abort
!endif

NOTES

This variable was introduced in 2001−08−01, evaluating this variable on an earlier version of
MicroEmacs would return the string "ERROR" unless an environment variable $version has been
defined. "ERROR" evaluates to 0 hence the test still operates correctly.

This variable is used in the macro file me.emf to check for any macro − executable incompatibility
issues.

MicroEmacs '02

$version(5) 747

$window−col(5)

NAME

$window−col − Window cursor column (no expansion)
$window−line − Window cursor line (with narrows)
$window−acol − Window cursor actual column (expansion)
$window−aline − Window cursor actual line (ignore narrows)

SYNOPSIS

$window−col integer

0 <= integer <= 65535

$window−line integer

1 <= integer <= n

$window−acol integer

0 <= integer <= n

$window−aline integer

1 <= integer <= n

DESCRIPTION

$window−col is defined as the current position of the cursor in the current line in the current window.
Column zero is the left hand edge. This differs from $window−acol in that tab and special characters
only count for 1 character. $window−col is valid in the range 0 − n.

$window−line is defined as the current buffer line number the cursor is on in the current window.
Line numbering starts from 1. $window−line is valid in the range 1 − n.

$window−aline is identical to $window−line except when the current buffer contains narrowed out
sections before the current line. In this case $window−line will be set to the line number without
counting the number of lines in the narrow, whereas $window−aline will return the current line
number including all lines narrowed out before it. When this variable is set, the line required may lie
in a narrowed out section in which case the narrow is automatically removed. See narrow−buffer(2)
for more information on narrowing.

$window−acol is defined as the current column of the cursor in the current window. Column zero is
the left hand edge. This differs from $window−col in that tab and special characters may not count

MicroEmacs '02

$window−col(5) 748

for 1 character.

NOTES

Variable $window−wcol was renamed to $window−acol in June 2000. Variable $window−wline was
also removed and a new variable $window−y−scroll introduced at this time. The following macro
code can be used to calculate the value of the original $window−wline variable:

&sub &sub $window−line $window−y−scroll 1

SEE ALSO

$frame−depth(5), $window−depth(5), $window−width(5), $window−y−scroll(5), narrow−buffer(2).

MicroEmacs '02

$window−col(5) 749

$window−chars(5)

NAME

$window−chars − Character set used to render the windows

SYNOPSIS

$window−chars "sting"; Default is
"=−#*%=^|#|v*==^^||##||vv**|<−#−>*||<<−−##−−>>** x*[]>\.$$\"

DESCRIPTION

$window−chars is a fixed length string that defines the set of characters used to render the windows.
The characters have fixed indices defined as follows:−

Index 0

The active window mode line separator character, This replaces all Index 1 characters when the
window is current. Default is '='.

Index 1

The inactive window mode line separator character. This character is replaced by Index 0 characters
when the window becomes current. Default is '−'.

Index 2

UNIX based platforms only. The root or superuser indicator character that appears on the mode line.
Default is '#'.

Index 3

The buffer changed indicator character that appears on the mode line. Default is '*'.

Index 4

The buffer in view(2m) mode indicator character that appears in the mode line. Default is '%'.

Index 5

Single column vertical scroll bar split window horizontally character. Default is '='.

Index 6

MicroEmacs '02

$window−chars(5) 750

Single column vertical scroll bar up−arrow character. Default is '^'.

Index 7

Single column vertical scroll bar upper−shaft character. Default is '|'.

Index 8

Single column vertical scroll box character. Default is '#'.

Index 9

Single column vertical scroll bar lower−shaft character. Default is '|'.

Index 10

Single column vertical scroll bar down−arrow character. Default is 'v'.

Index 11

Single column vertical scroll bar corner character. Default is '*'.

Index 12−13

Double column vertical scroll bar split window horizontally character. Default is '=='.

Index 14−15

Double column vertical scroll bar up−arrow characters. Default is "^".

Index 16−17

Double column vertical scroll bar upper−shaft characters. Default is "||".

Index 18−19

Double column vertical scroll box characters. Default is "##".

Index 20−21

Double column vertical scroll bar lower−shaft characters. Default is "||".

Index 22−23

Double column vertical scroll bar down−arrow characters. Default is "vv".

Index 24−25

Double column vertical scroll bar corner characters. Default is "**".

MicroEmacs '02

$window−chars(5) 751

Index 26−32

Single column horizontal scroll bar. Default is "|<−#−>*".

Index 33−46

Double column horizontal scroll bar. Default is "||<<−−##−−>>**".

Index 47

Osd title bar blank character. Default is ' '.

Index 48

Osd title bar right corner kill character. Default is 'x'.

Index 49

Osd dialog bottom right corner resize character. Default is '*'.

Index 50

Osd open button character. Default is ' '.

Index 51

Osd close button character. Default is ' '.

Index 52

Displayed tab character (used when $system(5) bit 0x80000 is set). Default is '>'.

Index 53

Displayed new−line character (used when $system(5) bit 0x80000 is set). Default is '\'.

Index 54

Displayed space character (used when $system(5) bit 0x80000 is set). Default is '.'.

Index 55

Displayed truncated text to left character (used when the current line is scrolled to the right). Default
is '$'.

Index 56

Displayed truncated text to right character (used when the current line is longer than the window
width). Default is '$'.

MicroEmacs '02

$window−chars(5) 752

Index 57

Inserted end of wrapped line character in an ipipe−shell−command(2) buffer. Default is '\'. EXAMPLE

The $window−chars is typically platform dependent, it's setting is determined by the characters
available in character set of the hosting platform. MS−DOS and Microsoft Windows use an OEM font
might use the following value:

"=−#*%=\C^\xB1 \xB1\C_\CD==\C^\C^\xB1\xB1 \xB1\xB1\C_\C_\C[
\CZ|\CQ\xB1 \xB1\CP\CD||\CQ\CQ\xB1\xB1 \xB1\xB1\CP\CP\C[
\CZ x* >\\.$$\\"

This utilizes character−set specific characters to render some of the window components.

NOTES

$scroll−bar(5) allows the scroll box to be rendered in reverse video allowing a space to be
used for the scroll box.

♦

Use symbol(3) to determine the displayable characters on the host platform.♦
The use of MicroEmacs's extended character set on Windows and XTerm platforms can
greatly improve the look and usability of MicroEmacs, see the Extend Char Set option in the
Platform page of user−setup(3) and bit 0x10000 of variable $system(5).

♦

SEE ALSO

split−window−horizontally(2), symbol(3), $box−chars(5), $global−scheme(5), $mode−line(5),
$mode−line−scheme(5), $scroll−bar(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$window−chars(5) 753

$window−depth(5)

NAME

$window−depth − Number of text lines in a window
$window−width − Number of character columns in a window

SYNOPSIS

$window−depth integer

1 <= integer <= $frame−depth

$window−width integer

0 <= integer <= $frame−width − 1

DESCRIPTION

$window−depth returns the depth (height) of the current window, excluding the mode line, specified
in text lines. (i.e. the number of lines of text in the window). The returned value is an integer in the
range:

0 − ($frame−depth − 3)

$window−width returns the width, in characters, of the current window. The returned value is an
integer in the range:

0 − $frame−width.

NOTES

These variables can not be set, any attempt to set them results in an error.

SEE ALSO

$frame−depth(5), $frame−width(5), $window−scroll−bar(5), $window−mode−line(5),

MicroEmacs '02

$window−depth(5) 754

$window−flags(5)

NAME

$window−flags − Current window setup flags

SYNOPSIS

$window−flags bitmask; Default is 0

DESCRIPTION

The $window−flags variable is used to set or get various behavioural characteristic settings of the
current window, it is a bit based flag where:

0x001

If set the width of the window is locked, calls to resize−all−windows(2) will maintained the width of
this window whenever possible.

0x002

If set the depth of the window is locked, calls to resize−all−windows(2) will maintained the depth of
this window whenever possible.

0x004

If set the buffer being displayed by the window is locked, the user can still manually change the
buffer being displayed (by using commands like find−buffer(2)) but commands that pop−up buffers
(such as help(2) or find−tag(2)) will not use this window.

0x008

When set the command compare−windows(2) will ignore this window.

0x010

When set the commands like previous−window(2) and next−window(2) will skip this window unless
the numeric argument given to the command is used to override the flag setting.

0x020

When set the command delete−other−windows(2) will not delete this window unless the numeric
argument given to the command is used to override the flag setting.

MicroEmacs '02

$window−flags(5) 755

0x040

When set the command delete−window(2) will not delete this window unless the numeric argument
given to the command is used to override the flag setting.

0x080

When set the window cannot be split using either the split−window−horizontally(2) or
split−window−vertically(2) commands.

0x100

If not set the window cannot be deleted if it is the only window without this bit set. This more esoteric feature
is utilized by the toolbar, all toolbar windows have this bit set which means that the main user window cannot
be delete. NOTES

The $window−flags setting is not preserved during a window splitting operation (i.e. using a
command like split−window−vertically(2)) as the persistence of these settings can lead to unexpected
behaviour.

The toolbar uses bit 0x1000 to indicate that the window is displaying a toolbar tool, this bit should not
be used by users and its value should be maintained.

SEE ALSO

next−window(2), delete−other−windows(2), compare−windows(2).

MicroEmacs '02

$window−flags(5) 756

$window−mode−line(5)

NAME

$window−mode−line − Window mode line position
$window−scroll−bar − Window scroll bar (or separator) position

SYNOPSIS

$window−mode−line integer

1 <= integer <= $frame−depth − 2

$window−scroll−bar integer

0 <= integer <= $frame−width − 1

DESCRIPTION

$window−mode−line stores the screen line of the current windows mode−line, where screen lines are
counted from 0 at the top of the screen. Often used in conjunction with set−cursor−to−mouse(2) and
$mouse−y(5) to add more complex mouse functionality.

$window−scroll−bar stores the screen position of the right−hand horizontal window separator line or
scroll−bar (see split−window−horizontally(2) and $scroll−bar(5)). A value of greater than
$frame−width(5) indicates that there is no right−hand separator column or scroll bar present. Often
used in conjunction with $mouse−x(5).

EXAMPLE

In the following example the position of the mouse is checked to see if it is on the mode line of the
window, if so then a different action is taken.

set−cursor−to−mouse
; If we are on the mode line then interpret position of
; the cursor on line to control the screen.
!if &equal $window−mode−line $mouse−y
 !if &less $mouse−x "2"
 menu−main ; Inform buffer to pop up menu.
 !elif &equal $mouse−x "2"
 delete−window
 !elif &equal $mouse−x "3"
 delete−other−windows
 !elif &equal $mouse−x "4"
 backward−page
 !elif &equal $mouse−x "5"
 forward−page

MicroEmacs '02

$window−mode−line(5) 757

 !elif &equal $mouse−x "6"
 recenter
 !elif &equal $mouse−x "7"
 undo
 !endif
!else

!endif

SEE ALSO

$mode−line(5), $mouse−x(5), $mouse−y(5), $scroll−bar(5), $mouse−pos(5),
set−cursor−to−mouse(2), split−window−horizontally(2).

MicroEmacs '02

$window−mode−line(5) 758

$window−x−scroll(5)

NAME

$window−x−sroll − Current window X scroll
$window−xcl−sroll − Current window current line X scroll
$window−y−sroll − Current window Y scroll

SYNOPSIS

$window−x−sroll integer
$window−xcl−sroll integer

0 <= integer <= 65535

$window−y−sroll integer

0 <= integer <= n

DESCRIPTION

$window−x−sroll defines the horizontal scroll position in the current window for all lines except the
current line, $window−xcl−sroll defines the scroll position for the current line. The variables set how
many characters are scrolled off the left hand edge of the current window, the variables are indirectly
set by commands such as scroll−left(2), forward−char(2) etc.

$window−y−sroll defines the vertical scroll position in the current window. It sets the number of
lines are scroll up off the top of the current window, it is indirectly set by commands such as
scroll−up(2), forward−line(2) etc.

EXAMPLE

The following example first stores the current window's buffer position and the window layout. The
middle '...' section could be replaced with macro code performing any number of operations before
the last section which restores the initial position:

 set−variable #l0 $window−line
 set−variable #l1 $window−col
 set−variable #l2 $window−xcl−scroll
 set−variable #l3 $window−x−scroll
 set−variable #l4 $window−y−scroll
 .
 .
 .
 set−variable $window−line #l0
 set−variable $window−col #l1

MicroEmacs '02

$window−x−scroll(5) 759

 set−variable $window−xcl−scroll #l2
 set−variable $window−x−scroll #l3
 set−variable $window−y−scroll #l4

NOTES

If these variables are set by the user or a macro the value is validated against the $scroll(5) method
and the current cursor position which may lead to the variable being reset if found to be invalid. For
example, if the current line is 10 when the $window−y−scroll is set to 20 the variable will be reset to
0 as a value of 20 will mean the current line is not displayed in the current window.

SEE ALSO

scroll−left(2), scroll−up(2), $scroll(5), $window−line(5), $window−col(5), $window−acol(5).

MicroEmacs '02

$window−x−scroll(5) 760

%compile−com(5)

NAME

%compile−com − Default system compile command line

SYNOPSIS

%compile−com "string"; Default is "make"

DESCRIPTION

Sets the default command−line inserted into the message line when the compile(3) command is
executed. %compile−com does not need to be defined to run the compile command.

SEE ALSO

compile(3), %grep−com(5).

MicroEmacs '02

%compile−com(5) 761

cygnus(3)

NAME

cygnus − Open a Cygwin BASH window
%cygnus−bin−path − Cygwin BASH directory
%cygnus−hilight − Cygwin shell hilight enable flag
%cygnus−prompt − Cygwin shell prompt

PLATFORM

Windows '95/'98/NT − win32 ONLY

SYNOPSIS

cygnus

%cygnus−bin−path "path"
%cygnus−hilight [0|1]
%cygnus−prompt "hilightString"

DESCRIPTION

cygnus creates an interactive BASH shell window within a MicroEmacs buffer window, providing a
UNIX command line facility within the Microsoft Windows environment. This is a preferable
environment to the MS−DOS shell and is certainly far more comfortable for those people familiar
with UNIX.

Within the window BASH commands may be entered and executed, the results are shown in the
window. Within the context of the BASH shell window then directory naming conforms to the
cygwin standard conventions (as opposed to the Microsoft directory naming).

On running cygnus a new buffer is created called *cygnus* which contains the shell. Executing the
command again creates a new shell window called *cygnus1*, and so on. If a cygwin window is
killed off then the available window is used next time the command is run.

Additional controls are available within the shell window to control the editors interaction with the
window. The operating mode is shown as a digit on the buffer mode line, this should typically show
"3", which corresponds to F3. The operating modes are mapped to keys as follows:−

F2

Locks the window and allows local editing to be performed. All commands entered into the window
are interpreted by the editors. F2 mode is typically entered to cut and paste from the window, search

MicroEmacs '02

cygnus(3) 762

for text strings etc. In mode 2, a 2 is shown on the mode line.

F3

The normal operating mode, text typed into the window is presented to the shell window. Translation
of MicroEmacs commands (i.e. beginning−of−word) are translated and passed to the shell. For
interactive use this is the default mode. In mode 3, a 3 is shown on the mode line.

F4

All input is passed to the shell, no MicroEmacs commands are interpreted and keys are passed straight
to the shell window. This mode is used where none of the keys to be entered are to be interpreted by
MicroEmacs. Note that you have to un−toggle the F4 mode before you can swap buffers as this
effectively locks the editor into the window.

F5

Clears the buffer contents. This simply erases all of the historical information in the buffer. The
operation of the shell is unaffected.

To exit the shell then end the shell session using "exit" or "C−d" as normal and then close the
buffer. A short cut "C−c C−k" is available to kill off the pipe. However, it is not recommended that
this method is used as it effectively performs a hard kill of the buffer and attached process

%cygnus−bin−path is a user defined variable that defines the file system location of the cygwin
directory. This variable MUST be defined within the user start up script in order for the cygnus
command to start the shell. With a default installation of cygwin then the settings are typically defined
as:−

Release B19

set−variable %cygnus−bin−path "C:/Cygnus/B19/h−i386~1/bin"

Release B20

set−variable %cygnus−bin−path "c:/cygnus/cygwin−b20/H−i586−cygwin32/bin"

%cygnus−hilight is a boolean flag which controls how the cygnus command shell window is
hilighted. This value MUST be defined within the user start up script prior to executing cygnus if
hilighting is to be enabled; by default hilighting is disabled. A value of 1 enables shell hilighting i.e.

set−variable %cygnus−hilight 1

%cygnus−prompt is an optional variable that is used in conjunction with %cygnus−hilight, it
defines the hilighting string identifying the prompt. This allows the prompt to be rendered with a
different color. The default prompt is bash−2.01$ and may be hilighted using a definition:−

set−variable %cygnus−prompt "bash−2.01$"

MicroEmacs '02

cygnus(3) 763

The user typically overrides the prompt definition within the BASH startup file, a more appropriate
definition of the prompt may be:−

set−variable %cygnus−prompt "^[a−z]*@[^>]*>"

NOTES

The cygnus command uses the ipipe−shell−command(2) to manage the pipe between the editor and
the bash shell. The window is controlled by the macro file hkcygnus.emf which controls the
interaction with the shell.

The macro cygnus in hkcygnus.emf defines the parameter setup to connect to the cygwin bash
shell (Version 19), installed in the default location c:/cygnus. If your installation of cygnus is in a
different location then correct the macro to match your install location, preferably correct by creating
a mycygnus.emf file in your user directory simply containing a re−defined cygnus macro.

If you have exported some of the cygwin environment variables in your autoexec.bat then you
will have to figure out for yourself what variables macro cygnus needs to export − the current
configuration is for a vanilla install.

The bash shell is executed with options i, for interactive shell and m to enable job control.

TESTED CONFIGURATIONS

This configuration has only been tested on a Windows '98 installation, whether this works on NT and
Windows '95 (OEM SR2) is unknown.

We have only been running "make" operations in the shell and do not know how the likes of "more",
"man" or anything other terminal interaction works.

Tested Configurations

Windows '98 (Pentium 120MHz/Pentium Pro 200MHz/Cyrix 300MHz/Pentium II 450MHz)

cygwin version B19.3 − this is the original "cygwin" distribution + the latest
"coolview.tar.gz" patch.
cygwin version B20 − the latest cygwin distribution.

BUGS

Break Key

A break in a bash shell is C−c, the macros define the key C−c C−c to perform the break. This
sequence is sent to the process but is not enacted by the shell. This is a property of the Bash shell
rather than MicroEmacs.

MicroEmacs '02

cygnus(3) 764

Slow Response

If you are getting a very slow response from the bash shell then check the directory where bash was
started. Sometimes there are problems if the shell is started in "c:/" (which is typically "/") then the
bash shell is very unresponsive and tends to 'ignore me' for periods of time. If it is started in another
location, i.e. "c:/temp" directory, then this problem does not occur.

You can see the start−up location in the top of the buffer when the shell is started.

Prompt at top of buffer

Very, very occasionally the ishell sticks at the top of the buffer with only a couple of lines showing. A
swap of the buffers or a quick window resize sorts out the problem. A fix for this problem has been
applied but still may occasionally occur.

WinOldAp

Winoldap is created by the Microsoft environment whenever a BASH shell is created. On occasions
where processes have terminated badly the user may be prompted to kill these off; this is the normal
behaviour of windows. It is strongly advised that all of the BASH processes are killed from within the
Bash shell itself and the shell is always exited correctly (i.e. exit) before leaving the editor. The
Windows operating system for '95/'98 is not particularly resilient to erroneous processes (for those of
us familiar with UNIX) and can bring the whole system down. I believe that NT does not suffer from
these problems (much).

Locked Input

There are occasions after killing a process the editor appears to lock up. This is typically a case that the old
application has not shut down correctly. Kill off the erroneous task (Alt−Ctrl−Del − End Task) then bring
the editor under control using a few C−g abort−command(2) sequences. SEE ALSO

ipipe−shell−command(2), ishell(3).
Cygnus Win32 home sites www.cygnus.com and www.cygnus.co.uk

MicroEmacs '02

cygnus(3) 765

diff(3)

NAME

diff − Difference files or directories
diff−changes − Find the differences from a previous edit session
%diff−com − Diff command line

SYNOPSIS

diff "oldFile" "newFile"
diff−changes
%diff−com "string"; Default is "diff"

DESCRIPTION

diff executes the diff(1) command with the command line set by the %diff−com(5) variable and the
user supplied oldFile and newFile. The output of the command is piped into the *diff* buffer and is
hilighted to show the changes (GNU diff only).

Your version of diff(1) will determine whether it is possible to difference directories.

diff−changes is a simple macro that differences the current buffer and the last backup of the
associated file. It is a quick way to determine what has been modified recently. This macro only
works if a backup file exists.

%diff−com is the command line that is used to execute a diff(1) system command.

For GNU diff then the following command line setting is recommended:−

diff −−context −−minimal −−ignore−space−change \
 −−report−identical−files −−recursive

which should be defined in your personal user configuration. This is the default for Linux.

NOTES

diff and dif−changes are macros defined in tools.emf.

diff(1) must be executable on the system before diff or diff−changes can function.

diff(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU diff may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnudiff.zip>

MicroEmacs '02

diff(3) 766

For MS−DOS users, a DJGPP port of diff is also available on the net. A commercial version of diff is
also available from MKS.

SEE ALSO

compare−windows(2), compile(3), gdiff(3), grep(3), %grep−com(5).

MicroEmacs '02

diff(3) 767

%ftp−flags(5)

NAME

%ftp−flags − "Configure the FTP console"
%http−flags − "Configure the HTTP console"

SYNOPSIS

%ftp−flags "[c|s|p]" ; Default is undefined.
%http−flags "[c|s|p]" ; Default is undefined.

DESCRIPTION

The %ftp−flags and %http−flags modify the behavior of the editor during FTP and HTTP file
transfers, respectively. (see ftp(3) and find−file(2)).

By default, the flags are disabled, the facilities outlined below are enabled by setting the variable in
the user configuration. The flag values for both flags are defined as follows:−

c

Create a console buffer (*ftp−console* for ftp, *http−console* for http) into which the
FTP/HTTP command interactions with the remote server are logged.

s

Show the console whenever a FTP/HTTP operation is performed. The console is popped into the
display pane and shows the current interaction status.

p

Show the download progress within the console window ('#' for every 2Kb downloaded)

Typically the following flags are enabled in the user.emf file:−

set−variable %ftp−flags "csp"
set−variable %http−flags "csp"

Once familiar with this facility the console pop−up becomes inconvenient and the flags are typically
reduced to:−

set−variable %ftp−flags "cp"
set−variable %http−flags "cp"

MicroEmacs '02

%ftp−flags(5) 768

This disables the pop−up feature of the console. Enabling the limited flag set allows some post
mortem debugging to be performed if anything goes wrong. The console buffers are manually
selected when these flags are set.

NOTES

Note that ftp and http facilities are available on UNIX by default, but must be compiled in for
Windows versions.

SEE ALSO

%http−proxy−addr(5), find−file(2), ftp(3).

MicroEmacs '02

%ftp−flags(5) 769

gdiff(3)

NAME

gdiff − Graphical file difference
%gdiff−com − Gdiff diff(1) command line

SYNOPSIS

gdiff "version1" "version2"

%gdiff−com "string"; Default is "diff −c −w"

DESCRIPTION

gdiff is a macro utility that facilitates the merging of two files (typically with different modification
revisions). The changes between the revisions are hilighted with color, allowing modification regions
and lines to be selected for the generation of a newer revision file, which might encompass selected
modifications from each of the base revisions.

gdiff executes the diff(1) command with the command line set by the %gdiff−com(5) variable and the
user supplied version1 and version2. The output is displayed in two buffer windows, side by side, and
the differences in the lines are hilighted to show the changes. In addition the content of the two
buffers is normalized such that both windows are aligned at the same line position, allowing the
changes in the text to be viewed in both windows at the same time.

Whilst in gdiff view mode then both scroll bars (if visible) are locked, such that either scrolls BOTH
windows at the same time. Other key commands are disabled, as are the menu interactions. The short
cut keys are defined as follows:−

esc h/A−h − View the help page.

Invokes the display of a OSD help box, summarizing the interaction commands

C−up − Move to previous difference

Moves to the previous changed region above the current cursor position.

C−down − Move to next difference

Moves to the next changed region below the current cursor position.

left mouse button
space
enter

MicroEmacs '02

gdiff(3) 770

r − Select difference version

Selects the difference version of the currently selected window. The region is hilighted as the required
region to be incorporated into the new revision.

R − Select neither version.

Marks both regions as not required.

l − Line select current version

Selects the current line from the region as being included, without including ALL of the region
modifications.

L − Line select neither version

Discards lines from both revisions of the file.

g − Globally selects the current version.

Shortcut allows ALL modifications to the current side to be accepted. This is typically the fastest
method to select all changes, minor region adjustment may then be performed on those regions which
are inappropriately included by the selection.

G − Globally selects neither version.

Marks all regions as not being acceptable.

C−x C−s − Save current side

Saves the current window to the specified file, merging the selected changes between the two
revisions. Note that the save only operates iff all hilighted changes have been selected.

C−x C−w − Save current side as

Same as Save current side except the user is prompted to enter a new filename to which the
modifications are written.

C−x k − Exit graphical diff

Exits the gdiff utility. Hilighting

The hilighting within the windows is dependent upon the color scheme selected, in general the
following hilights apply:−

normal text

No change

MicroEmacs '02

gdiff(3) 771

cyan/grey

Addition/removal of line(s)/region(s) between files.

yellow

Modification in line(s)/region(s).

green/red

Selected region, red or green is attributed to a selection for each window. NOTES

gdiff is a macro defined in gdiff.emf, inspired by the GNU utility of the same name gdiff(1)

diff(1) must be executable on the system before gdiff can function. The diff(1) invocation must
include the context difference, which annotates the differences with a +, − or ! markers. diff(1) is
typically invoked with the options −c −w.

diff(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU diff may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnudiff.zip>

For MS−DOS users, a DJGPP port of GNU diff is also available on the net. A commercial version of
diff is also available from MKS.

SEE ALSO

compare−windows(2), compile(3), diff(1), gdiff(3f), grep(3), %grep−com(5).

MicroEmacs '02

gdiff(3) 772

%grep−com(5)

NAME

%grep−com − Grep command line

SYNOPSIS

%grep−com "string"; Default is "grep "

DESCRIPTION

Sets the command line used to execute a grep(1) system command. The output of the grep(3)
execution should include both file and line number information so that the command get−next−line(2)
can be used properly. This is not defined by default and the grep command will not execute until it is
defined.

grep(1) is typically used with the −n option which produced line numbering information which drives
the get−next−line(2) command.

EXAMPLE

The following example shows how the grep strings are defined.

set−variable %grep−com "grep −n "
0 add−next−line "*grep*"
add−next−line "*grep*" "%f:%l:"

This definition corresponds to a grep output such as:−

m5var000.5:13:Sets the number of seconds to wait
m5var000.5:14:temporary file to t seconds. A
m5var000.5:15:Note than the temporary
m5var000.5:17:saving a buffer. Backup files are
m5var000.5:24:On unlimited length file name systems

where grep produces file and line number information for every match.

Use add−next−line(2) to define the line pattern produced by grep. Some versions of grep place the
file name on a single line matches within the file occur on subsequent lines. In this case additional
add−next−line patterns may be defined to cater for the grep output as follows:

set−variable %grep−com "grep /n "
0 add−next−line "*grep*"
add−next−line "*grep*" "File: %f:"
add−next−line "*grep*" "%l:"

MicroEmacs '02

%grep−com(5) 773

This definition would be used with a grep output such as:−

File:m5var000.5:
13:Sets the number of seconds to wait
14:temporary file to t seconds. A
15:Note than the temporary
17:saving a buffer. Backup files are
24:On unlimited length file name systems
File:m5var001.5:

NOTES

grep(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU grep may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnugrep.zip>

For MS−DOS users, a DJGPP port of grep is also available on the net. A commercial version of grep
is also available from MKS.

SEE ALSO

add−next−line(2), grep(1), grep(3), add−next−line(2).

MicroEmacs '02

%grep−com(5) 774

%http−proxy−addr(5)

NAME

%http−proxy−addr − Set HTTP proxy server address
%http−proxy−port − Set HTTP proxy server port

SYNOPSIS

%http−proxy−addr "proxy−addr"
%http−proxy−port "port−number"; Default is 80

DESCRIPTION

If the %http−proxy−addr variable is set all HTTP file loading requests, using commands like
find−file(2), are sent via the given proxy server. %http−proxy−port should be set to the proxy
servers port number, defaulting to 80 if not set. These variables are typically set in your
<user>.emf setup file, e.g.:

set−variable %http−proxy−addr "proxy.foobar.com"
set−variable %http−proxy−port "8080"

NOTES

Note that http is available on UNIX by default, but must be compiled in for win32 versions.

SEE ALSO

%http−flags(5), find−file(2), ftp(3).

MicroEmacs '02

%http−proxy−addr(5) 775

%tag−file(5)

NAME

%tag−file − Tags file name
%tag−template − Tag file search string
%tag−option − Tag file search option

SYNOPSIS

%tag−file "fileName"
%tag−template "string"
%tag−option "string"

DESCRIPTION

The %tag−file and %tag−template variables must be defined for find−tag(2) to work, they define
the information required to locate tag references.

%tag−file is the name of the tag file to be used, usually set to "tags". %tag−template is a regular
expression search string used to identify tags in a tag file. For example, a tag usually consists of a
name "%[^\t]" followed by a tab "\t" followed by the file name that contains the function
"%[^\t]" followed by another tab, followed by the search string and end of line "%[^\n]\n", i.e.

set−variable %tag−template "%[^\t]\t%[^\t]\t%[^\n]\n"

This would match a vi(1) tag string definition, as created by the UNIX utility ctags(1). The tags file
typically contains entries such as:−

$auto−time m5var000.5 /^.XI $auto−time − "Automatic buffer"$/
$buffer−bhook m5var002.5 /^.XI $buffer−bhook − "Buffer macro"$/
$buffer−ehook m5var002.5 /^.XI $buffer−ehook − "Buffer macro"$/

The tag−template definition is modified to match the output of the ctags(1) utility. The format of the
tags file may differ from platform to platform, typically the differences are encountered in the line
contents field which is usually defined as / / for a forward search tag and ? ? for
a reverse search tag. Note that a tag's search string typically starts with the character '^' and ends with
'$' which indicate the start and end of the line. The variable fields are expected to be in conventional
order of label, filename and lineText.

%tag−option is a user defined variable that modifies the behavior of find−tag(2). This is defined as a
string, where each character identifies an option, when undefined then default behavior is assumed.
The options are defined as:−

m − Enable multiple tags support

MicroEmacs '02

%tag−file(5) 776

Allows a single tag to be present multiple times in the tag file, typically used when a function is
defined multiple times. When enabled find−tag can be used to loop through all definitions of a given
tag.

r − recursive tags file

By default, the tags file is assumed to reside in the current directory location. The r option enables an
ascending search up the directory hierarchy from the current directory position in search of a
recursively generated tags file.

c − Continue recursive tag search

Used in conjunction with flag r; when not specified, the recursive searching of a tag stops at the first
tag file found, regardless of whether the given tag was located in the found tag file. If this flag is
given and the tag was not found in the first tag file, the recursive search continues. This allows local
tag files to be created and regularly maintained, yet still being able to access a higher level tag file
when required.

Modifications to this variable should be made in the user.emf file, e.g. To enable multi recursive
ascent tag searching define:−

set−variable %tag−option "mrc"

NOTES

Note that GNU Emacs uses it's own tag file format generated by etags(1) which does not contain the
appropriate information to drive the MicroEmacs '02 find−tag command.

The above settings should support the extended version 2 tag file format which has an extra tag type
field at the end of each line.

SEE ALSO

ctags(1), ctags(3f), find−tag(2), vi(1).

MicroEmacs '02

%tag−file(5) 777

.calc.result(5)

NAME

.calc.result − Last calc calculation result

SYNOPSIS

.calc.result integer

DESCRIPTION

.calc.result is used to store the result of the last calculation made by calc(3).

The "LR" (Last Result) in the next calculation is substituted with this value.

SEE ALSO

calc(3).

MicroEmacs '02

.calc.result(5) 778

Macro Language Glossary
MACRO LANGUAGE GLOSSARY

The following is a list of all of the macro language commands available in MicroEmacs '02.

Functions

All functions are denoted by a & prefix as follows:−

&abs(4) Absolute value of a number
&add(4) Add two numbers
&and(4) Logical AND operator
&atoi(4) ASCII to integer conversion
&band(4) Bitwise AND operator
&bmode(4) Determine buffer mode
&bnot(4) Bitwise NOT operator
&bor(4) Bitwise OR operator
&bxor(4) Bitwise XOR operator
&cat(4) Concatenate two strings together
&cbind(4) Return the command a key is bound to
&cond(4) Conditional expression operator
&dec(4) Pre−decrement variable
÷(4) Division of two numbers
&equal(4) Numerical equivalence operator
&exist(4) Test if a variable or command exists
&find(4) Find a file on the search path
&gmode(4) Determine global mode
&great(4) Numerical greater than operator
&inc(4) Pre−increment variable
&indirect(4) Evaluate a string as a variable
&inword(4) Test for a word character
&irep(4) Case insensitive replace string in string
&isequal(4) Case insensitive String equivalence operator
&isin(4) Case insensitive test for string in string
&itoa(4) Integer to ASCII conversion
&kbind(4) Return the key a command is bound to
&ldel(4) Delete list item
&left(4) Return the left most characters from a string
&len(4) Return the length of a string
&less(4) Numerical less than operator
&lfind(4) Find list item
&lget(4) Get list item
&linsert(4) Insert list item
&lset(4) Set list item
&mid(4) Return a portion (middle) of a string

Macro Language Glossary 779

&mod(4) Modulus of two numbers
&multiply(4) Multiply two numbers
&nbind(4) Return the numerial argument of a binding
&nbmode(4) Determine named buffer mode
&negate(4) Negation of two numbers
¬(4) Logical NOT operator
&opt(4) MicroEmacs optional feature test
&or(4) Logical OR operator
&pdec(4) Post−decrement variable
&pinc(4) Post−increment variable
®(4) Retrieve a registry value (with default)
&rep(4) Replace string in string
&right(4) Return the right most characters from a string
&risin(4) Recursive case insensitive test for string in string
&rsin(4) Recursively test for string in string
&sequal(4) String equivalence operator
&set(4) In−line macro variable assignment
&sgreat(4) String greater than operator
&sin(4) Test for string in string
&sless(4) String less than operator
&slower(4) Return the string converted to lower case
&sprintf(4) Formatted string construction
&stat(4) Retrieve a file statistic
&sub(4) Subtract two numbers
&supper(4) Return the string converted to upper case
&trboth(4) Return string trimmed of white chars on both sides
&trleft(4) Return string trimmed of white chars on left side
&trright(4) Return string trimmed of white chars on right side
&which(4) Find a program on the path
&xirep(4) Regex case insensitive Replace string in string
&xisequal(4) Case insensitive regex String equivalence operator
&xrep(4) Regex replace string in string
&xsequal(4) Regex string equivalence operator

Directives

The macro directives are denoted by a ! prefix as follows:−

!abort(4) Exit macro with a FALSE status
!bell(4) Sound audio alarm
!continue(4) Restart a conditional loop
!done(4) End a conditional loop
!ehelp(4) Terminate a help definition
!elif(4) Conditional test statement, continuation
!else(4) Conditional alternative statement
!emacro(4) Terminate a macro definition
!endif(4) Conditional test termination
!force(4) Ignore command or macro status

MicroEmacs '02

Macro Language Glossary 780

!goto(4) Unconditional labeled jump
!if(4) Conditional test statement
!jump(4) Unconditional jump
!nmacro(4) Ignore command or macro status
!repeat(4) Conditional loop (post testing)
!return(4) Exit macro with a TRUE status
!tgoto(4) Conditional labeled jump
!tjump(4) Unconditional relative branch
!until(4) Test a conditional loop
!while(4) Conditional loop

Variables

The macro variables are denoted by a % for user variables; # for a register variable and @ for an
interactive variable as follows:−

@0(4) Macro arguments (macro name)
@1(4) Macro arguments (first argument)
@2(4) Macro arguments (second argument)
@?(4) Macro arguments (numeric argument given)
@cc(4) Current command name
@cck(4) Current command key
@cg(4) Get a command name from the user
@cgk(4) Get a key from the user
@cl(4) Last command name
@clk(4) Last command key
@cq(4) Get a quoted command name from the user
@cqk(4) Get a quoted key from the user
@fs(4) Frame store variable
@hash(4) Macro arguments (numeric argument value)
@mc(4) Message line character input request
@ml(4) Message line input request
@mn(4) Message line input as normal request
@mna(4) All input from Message line as normal
@mx(4) Message line input by executing command
@mxa(4) All input from Message line by executing command
@p(4) Macro arguments (calling macro name)
@s0(4) Last search's whole match string
@s1(4) Last search's first group value
@s2(4) Last search's second group value
@wc(4) Extract character from the current buffer
@wl(4) Extract a line from the current buffer
@y(4) Yank buffer variable
BufferVariables(4) Buffer variables
CmdVariables(4) Command variables
CommandVariables(4) Last, current and get a command key/name
CurrentBufferVariables(4) Extract information from the current buffer
MacroArguments(4) Arguments to macros

MicroEmacs '02

Macro Language Glossary 781

MacroNumericArguments(4) Numeric arguments to macros
MessageLineVaraibles(4) Prompt the user for input on message line
RegisterVariables(4) Register variables
SearchGroups(4) Last search group values
Variables(4) User defined macro variables

MicroEmacs '02

Macro Language Glossary 782

&abs(4)

NAME

&abs, &add, &sub, &mul, &div, &mod, &neg, &inc, &dec, &pinc, &pdec − Numeric macro
operators

SYNOPSIS

&abs num1
&add num1 num2
&sub num1 num2
&multiply num1 num2
÷ num1 num2
&mod num1 num2
&negate num

&inc variable increment
&dec variable decrement
&pinc variable increment
&pdec variable decrement

DESCRIPTION

The numeric operators operate on variables or integers to perform integer computations, returning the
integer result of the operation. The contents of the variables are interpreted as signed integers
typically with a dynamic range of 2^31 <= num <= 2^31−1.

The operators may all be abbreviated to their three letter abbreviation (i.e. &multiply may be
expressed as &mul). In all cases the first argument is completely evaluated before the second
argument.

&abs num1

Returns the absolute value of num1 i.e. if num1 is positive it returns num1, else −num1

&add num1 num2

Addition of two numbers num1 and num2. i.e. num1 + num2

&sub num1 num2

Subtract the second number num2 from the first num1 i.e. num1 − num2.

&multiply num1 num2

MicroEmacs '02

&abs(4) 783

(Signed) Multiply num1 by num2. i.e. num1 * num2. &mul is the three letter abbreviation.

&div num1 num2

Divide the first number num1 by the second num2, returning the integer result. i.e. num1 / num2.
&div is the three letter abbreviation.

&mod num1 num2

Divide the first number num1 by the second num2, returning the integer remainder. i.e. num1 %
num2.

&negate num

Negate the integer (multiply by −1) i.e. −num. &neg is the three letter abbreviation.

Expression evaluation is prefix. Operators may be nested using a pre−fix ordering, there is no concept
of brackets (in−fix notation). The expression (2 * 3) + 4 is expressed as:−

&add &mul 2 3 4

conversely 2 * (3 + 4) is expressed as:−

&mul 2 &add 3 4

The pre/post incrementing and decrementing operators provide a mechanism for stepping through
indexed information without incurring the overhead of providing multiple statements to perform
assignment operations. The variable argument MUST be the name of a variable, it cannot be an
expression or an indirection. The increment may be any integer expression (including another auto
(dec)increment). Note that variable is re−assigned with it's new value within the operator, therefore
use with care when performing multiple (dec)increments within the same statement line. The four
operators are defined as follows:

&inc variable increment

Pre−increment the variable by increment, returning the incremented value i.e. variable += increment.

&dec variable decrement

Pre−decrement the variable by decrement, returning the decrement value i.e. variable −= decrement.

&pinc variable increment

Post−increment the variable by increment, returning the pre−increment value i.e. variable++., where
the ++ value is determined by increment. The return value is the value of variable as passed by the
caller, the next reference to variable uses the variable+increment value.

&pdec variable decrement

MicroEmacs '02

&abs(4) 784

Post−decrement the variable by decrement, returning the pre−decrement value i.e. variable−−, where the −−
value is determined by decrement. EXAMPLE

Add two numbers together and assign to a variable:−

set−variable %result &add %num1 %num2

Increment %result by 1 and add to %result2

set−variable %result &add %result 1
set−variable %result2 &add %result2 %result

The previous example could have used the increment operators to achieve the same result in a single
operation e.g.

set−variable %result2 &add %result2 &inc %result 1

SEE ALSO

Variable Functions, &great(4).

MicroEmacs '02

&abs(4) 785

&and(4)

NAME

&and, &or, ¬, &equal, &sequal − Logical macro operators

SYNOPSIS

&and log1 log2
&or log1 log2
¬ log

&equal num1 num2
&great num1 num2
&less num1 num2

DESCRIPTION

The logical testing operators perform comparison tests, returning a boolean value of TRUE (1) or
FALSE (0).

The functions may all be abbreviated to their three letter abbreviation (i.e. &great may be expressed
as &gre). In all cases the first argument is completely evaluated before the second argument. Logical
operators include:−

&and log1 log2

TRUE if the logical arguments log1 and log2 are both TRUE.

&or log1 log2

TRUE if either one of the logical arguments log1 and log2 are TRUE.

¬ log

Logical NOT. Returns the opposite logical value to log.

The numerical logical functions operate with integer arguments:

&equal num1 num2

TRUE. If numerical arguments num1 and num2 numerically equal. Abbreviated form of the function
is &equ.

great num1 num2

MicroEmacs '02

&and(4) 786

TRUE. If numerical argument num1 is greater than num2. Abbreviated form of the function is &gre.

&less num1 num2

TRUE. If numerical argument num1 is less than num2 Abbreviated form of the function is &les.

Evaluation of the logical operators are left to right, the leftmost argument is fully evaluated before the
next argument. The operator ordering is prefix notation (see &add(4) for an example of prefix
ordering).

EXAMPLE

Test for integers in the range greater than 12:

!if &great %i 12
 ...

Test for integers in the range 8−12, inclusive

!if &and &great 7 &less 13
 ...

NOTES

MicroEmacs always evaluates all arguments operators BEFORE the result is obtained, this differs
from most programming languages. Consider the following example:

!if &and &bmod "edit" &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
!endif

This would not not work as the user may expect, the user would be prompted to save every time
regardless of whether the buffer has been changed. Instead the following should be used:

!if &bmod "edit"
 !if &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 !endif
!endif

SEE ALSO

Variable Functions, &add(4), &sequal(4), &sin(4), &cond(4).

MicroEmacs '02

&and(4) 787

&atoi(4)

NAME

&ato, &gmod, &bmo, &ind, &inw, &exi − Miscellaneous functions

SYNOPSIS

&atoi char
&itoa num

&gmode mode
&bmode mode
&nbmode buffer mode
&inword char

&indirect str

&exist str

DESCRIPTION

These are a selection of miscellaneous functions providing tests and exchanging of information.

The functions may all be abbreviated to their three letter abbreviation (i.e. &indirect may be
expressed as &ind). In all cases the first argument is completely evaluated before the second
argument.

&atoi char

Converts the given character char to it's ASCII number which is returned. (see &itoa). Abbreviated
command is &ato.

&itoa num

Converts an integer num to it's ASCII character representation which is returned to the caller.
Abbreviated command is &ito.

&gmode mode

Returns 1 if the given mode mode is globally enabled. Allows macros to test the global mode state
(see Operating Modes). Abbreviated command is &gmo.

&bmode mode

MicroEmacs '02

&atoi(4) 788

Returns 1 if the mode mode is enabled in the current buffer. Allows macros to test the state of the
buffer mode. Abbreviated command is &bmo.

&nbmode buffer mode

Returns 1 if the mode mode is enabled in buffer buffer . Allows macros to test the state of a buffer
mode other than the current. Abbreviated command is &nbm.

&inword char

TRUE. If the given character char is a 'word' character, see forward−word(2) for a description of a
'word' character. Abbreviated command is &inw.

&indirect str

Evaluate str as a variable. The str argument is evaluated and takes the resulting string, and then uses it
as a variable name. i.e. a variable may reference another variable which contains the data to be
referenced. Abbreviated command is &ind.

&exist str

Tests for the existance of str which may be a variable or a command/macro name, returning TRUE if the
variable or command does currently exist. Abbreviated command is &exi. EXAMPLE

The &exi function is etremely useful in initializing, for example:

!if ¬ &exi %my−init
 ; %my−init is not yet defined so this is the first call
 set−variable %my−init 1
 .
 .

Or in all the file hooks a user defined extension is checked for and executed if defined:

define−macro fhook−c
 .
 .
 ; execute user extensions if macro is defined
 !if &exi my−fhook−c
 my−fhook−c
 !endif
!emacro

The &ind function deserves more explanation. &ind evaluates its string argument str, takes the
resulting string and then uses it as a variable name. For example, given the following code sequence:

; set up reference table

set−variable %one "elephant"
set−variable %two "giraffe"
set−variable %three "donkey"

MicroEmacs '02

&atoi(4) 789

set−variable %index "%two"
insert−string &ind %index

the string "giraffe" would have been inserted at the point in the current buffer.

The &bmode invocation allows a calling macro to determine the buffer mode state (see Operating
Modes). Consider the following example which is a macro to perform a case insensitive alphabetic
sort using the sort−lines(2) function. sort−list sorts according to the state of the exact(2m) mode,
hence the macro has to determine the buffer state in order to be able to do the sort.

define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 !if @?
 @# sort−lines
 !else
 sort−lines
 !endif
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

The &inword function is shown in the following example. In this case the mouse is positioned over a
word. The &inword function is used to determine if the cursor is on a valid word character, if so the
cursor is placed at the start of the word.

define−macro mouse−control−drop−left
 set−cursor−to−mouse
 !if &inword @wc
 backward−word
 set−mark
 forward−word
 !else
 ...
 !endif
 copy−region
 set−cursor−to−mouse
!emacro

SEE ALSO

Operating Modes, Variable Functions, &sprintf(4), &equal(4).

MicroEmacs '02

&atoi(4) 790

&band(4)

NAME

&band, &bor, &bnot, &bxor − Bitwise macro operators

SYNOPSIS

&band num1 num2
&bor num1 num2
&bxor num1 num2
&bnot num

DESCRIPTION

The bitwise operators perform bit operations on numeric values returning a numerical result of the
operation.

The functions may all be abbreviated to their three letter abbreviation (i.e. &band may be expressed
as &ban). In all cases the first argument is completely evaluated before the second argument.

&band num1 num2

Bitwise AND of num1 and num2 i.e. num1 & num2.

&bor num1 num2

Bitwise (inclusive) OR of num1 and num2 i.e. num1 | num2.

&bxor num1 num2

Bitwise (exclusive OR) XOR of num1 and num2 i.e. num1 ^ num2.

¬ num

Bitwise NOT operator of num, inverts the state of all bits i.e. ~num.

Evaluation of the bitwise operators are left to right, the leftmost argument is fully evaluated before the
next argument. The operator ordering is prefix notation (see &add(4) for an example of prefix
ordering).

SEE ALSO

Variable Functions, &add(4), &and(4), &negate(4), &or(4).

MicroEmacs '02

&band(4) 791

&cat(4)

NAME

&cat, &lef, &rig, &mid, &len, &slo, &trb − String macro operators

SYNOPSIS

&cat str1 str2
&lef str len
&right str index
&mid str index len

&len str

&slower str
&supper str

&trboth str
&trleft str
&trright str

DESCRIPTION

The string operators operate on character strings (% or $ variables), performing general string
manipulation, returning a string result.

The operators may all be abbreviated to their three letter abbreviation (i.e. &right may be expressed
as &rig). In all cases the first argument is completely evaluated before the second argument.

&cat str1 str2

Concatenate two string str1 with str2 to form a new string. i.e. str1str2

&lef str len

Return len leftmost characters from str. If str length is shorter than len then the string itself is
returned. A len of zero returns the empty string.

&rig str index

Returns the rightmost characters of string str from index index. This function causes some confusion,
consider &lef and &rig to be the string equivalents of their integer counterparts &div and &mod;
&rig returns the remainder of the equivalent &lef function. Invocation with index set to zero returns
str.

MicroEmacs '02

&cat(4) 792

&mid index len

Extracts a sub−string from string str, starting at position index of length len.

&len str

Returns the integer length of the string (number of characters).

&slower str

Returns the given string with all upper case characters converted to lower case.

&supper str

Returns the given string with all lower case characters converted to upper case.

&trboth str

Returns the given string trimmed of white spaces (i.e. ' ', '\t', '\r', '\n', '\Cl' and '\Ck') from both
sides of the string.

&trleft str

Returns the given string trimmed of white spaces from the left side of the string only.

&trright str

Returns the given string trimmed of white spaces from the right side, or end, of the string only.

Evaluation of the strings is left to right, the leftmost argument is fully evaluated before the next
argument. The operator ordering is prefix notation (see &add(4) for an example of prefix ordering).

EXAMPLE

Concatenate two strings abc and def together:−

set−variable %result &cat "abc" "def"

To concatenate three strings abc, defghi together:

set−variable %result &cat "abc" &cat "def" "ghi"

or, a slightly different ordering:

set−variable %result &cat &cat "abc" "def" "ghi"

Retrieve the leftmost character of a string variable, modify the variable to contain the remainder.

set−variable %foo "abcdef"

MicroEmacs '02

&cat(4) 793

set−variable %c &lef %foo 1
set−variable %foo &rig %foo 1

Where %c = "a"; %foo = "bcdef" following evaluation.

To retrieve the characters cde into variable %result from the string "abcdef" use:

set−variable %result &mid "abcdef" 2 3

To retrieve the rightmost character from the string:

set−variable %foo "abcdef"
set−variable %result &rig %foo &sub &len %foo 1

or the same result could be achieved using &mid:

set−variable %result &mid %foo &sub &len %foo 1 1

To get an input string from the user which is free of spaces at the start and end:

set−variable %result &trb @ml "Enter string"

NOTES

The original MicroEMACS "&rig str n" function returns the last n characters from the string str this
differs from the definition of &rig in this implementation. As most string decomposition is performed
left to right, and to make &lef and &rig complement each other, the indexing of the function has been
modified.

SEE ALSO

Variable Functions, &sin(4), &sequal(4), &lget(4), &sprintf(4).

MicroEmacs '02

&cat(4) 794

&cbind(4)

NAME

&cbind, &kbind, &nkind − Command/key binding operators

SYNOPSIS

&cbind key
&kbind n command
&nbind key

DESCRIPTION

&cbind returns the command bound to the given key sequence, &kbind can be abbreviated to &kbi.
If the key is not bound then &kbind returns the string "ERROR".

&nbind returns the numerical argument associated with the given key binding, &nbind can be
abbreviated to &nbi. If the key is not bound then &nbind returns the string "ERROR", if the binding
has no argument then an empty string ("") is returned.

&kbind returns a key sequence bound to the given command with the given numerical argument n. If
no binding can be found then &kbind returns an empty string ("").

EXAMPLE

The following example waits for the user to press a key, then prints what command the key is bound
to.

ml−write "Enter key: "
set−variable #l0 @cgk
ml−write &spr "%s is bound to %s" #l0 &cbin #l0

NOTES

In March 2001 &kbind was renamed &ckind and a new &nkind and &kbind added.

SEE ALSO

Variable Functions, global−bind−key(2).

MicroEmacs '02

&cbind(4) 795

&cond(4)

NAME

&cond − Conditional expression operator

SYNOPSIS

&cond log expr1 expr2

DESCRIPTION

The conditional expression &cond provides an alternative way to write !if−!else−!endif constructs,
e.g.:−

!if &gre %a %b
 set−variable %z %a
!else
 set−variable %z %b
!endif

may be replaced with a conditional expression, breaking down the components then

log is &gre %a %b
expr1 is %a
expr2 is %b

rewriting the expression we get:

set−variable %z &cond &gre %a %b %a %b

This is far more concise, albeit a little less readable, but does improve the performance of macros as
there is less information to interpret.

The &cond operator accepts three fields, ALL fields are evaluated although only one of the results
expr1 or expr2 is used. The log field is a logical value, if it is non−zero (TRUE) then the result of the
expr1 evaluation is used, otherwise the result of expr2 is used.

It should be noted that the conditional expression may be used in any construct i.e. &add(4), &cat(4),
etc. the expr arguments may be strings, numbers or booleans the resultant value of the expr arguments
is simply returned to the calling expression.

SEE ALSO

Variable Functions, &add(4), &great(4).

MicroEmacs '02

&cond(4) 796

&find(4)

NAME

&find − Find a file on the search path
&which − Find a program on the path

SYNOPSIS

&find <basename> <extension>
&which <progname>

DESCRIPTION

&find searches for a named file <basename><extension> on the MicroEmacs '02 search path
defined by the variable $search−path(5) (initialized from the environment variable $MEPATH(5)).
Each path component defined in $search−path is prepended to the constructed file name and it's
existence is tested. If the file exists, then the FULL path name of the file is returned to the caller,
otherwise ERROR.

<basename>

The base name of the file, excluding any extension.

<extension>

The extension of the file name, this must be specified with the extension delimiter, typically dot ('.').
A NULL string (e.g. '""') may be specified if no extension is required.

&which searches for the given executable program <progname> on the system program search path
defined the the environment variable $PATH.

USAGE

&find is typically used with insert−file(2) and find−file(2) within macro scripts, and is used to locate
user specific files.

EXAMPLE

The following example uses &find to locate the uses 'C' template file. Given a $search−path setting
of /usr/bob/emacs:/usr/local/microemacs:−

insert−file &find "c" ".etf"

MicroEmacs '02

&find(4) 797

Would insert the file /usr/bob/emacs/c.etf if it existed, else the file
/usr/local/microemacs/c.etf if it exists.

SEE ALSO

Variable Functions, find−file(2), $search−path(5), insert−file(2).

MicroEmacs '02

&find(4) 798

&rep(4)

NAME

&rep, &irep, &xrep, &xirep − Replace string in string functions

SYNOPSIS

&rep str1 str2 str3
&irep str1 str2 str3
&xrep str1 str2 str3
&xirep str1 str2 str3

DESCRIPTION

These functions search for str2 in str1, replacing it with str3, returning the resultant string.

The functions may all be abbreviated to their three letter abbreviation (i.e. &xirep may be expressed
as &xir). In all cases the first argument is completely evaluated before the second and third
arguments.

&rep string search replace

Searches for the search string in the given string using a simple case sensitive exact match algorithm.
Any occurrences are removed from string and replace is inserted in its place. Either of the 3 input
strings can be the empty string ("").

&irep string search replace

&irep is identical to &rep except a case insensitive search algorithm is used.

&xrep string regex−search regex−replace

&xrep can be used to access the more powerful regular expression searching capabilities. The
function is similar to &rep except it takes a regex search string and the replacement string may also
refer to all or part of the matched string. See Regular Expressions for information on the regex format.

&xirep string regex−search regex−replace

&xirep is identical to &xrep except a case insensitive regex search is used. EXAMPLE

The following example turns a UNIX format file name (using a '/' to divide directories − like
MicroEmacs) into an windows format name (using a '\'):

set−variable #l0 &rep #l0 "/" "\\"

MicroEmacs '02

&rep(4) 799

The following example replaces one or more white spaces in the variable with a single space, this is
an easy way to remove unnecessary spaces:

set−variable #l0 "This is not so spacey after xrep"
set−variable #l0 &xrep #l0 "\\s +" " "
ml−write #l0

SEE ALSO

Operating Modes, Variable Functions, &sequal(4), &sin(4).

MicroEmacs '02

&rep(4) 800

&sequal(4)

NAME

&seq, &iseq, &sle, &sgre, &xseq, &xiseq − String logical macro operators

SYNOPSIS

&sequal str1 str2
&isequal str1 str2
&sless str1 str2
&sgreat str1 str2

&xsequal str1 regex
&xisequal str1 regex

DESCRIPTION

The string logical testing operators perform string comparison tests, returning a boolean value of
TRUE (1) or FALSE (0).

The functions may all be shortened to their three letter abbreviation (i.e. &sequal may be expressed
as &seq). In all cases the first argument is completely evaluated before the second argument. String
logical operators include:−

&sequal str1 str2

TRUE if the two strings str1 and str2 are the same. Abbreviated form of the function is &seq.

&sless str1 str2

TRUE if string str1 alphabetically less than str2. Abbreviated form of the function is &sle.

&sgreat str1 str2

TRUE if string str1 alphabetically larger than str2. Abbreviated form of the function is &sgr.

&isequal str1 str2

TRUE if the two strings str1 and str2 are the same ignoring letter case. Abbreviated form of the
function is &ise.

&xsequal str1 regex

TRUE if the string str1 matches the regex (case sensitive). Abbreviated form of the function is &xse.

MicroEmacs '02

&sequal(4) 801

See Regular Expressions for information on the regex format.

&xisequal str1 regex

TRUE if the string str1 matches the regex (case insensitive). Abbreviated form of the function is &xis.
See Regular Expressions for information on the regex format.

Evaluation of the string logical operators are left to right, the leftmost argument is fully evaluated
before the next argument. The operator ordering is prefix notation (see &add(4) for an example of
prefix ordering).

EXAMPLE

Test for variable $buffer−bname(5) is equal to *scratch*:

!if &seq $buffer−bname "*scratch*"
 ...

The following example tests a character is in the range a−z:

!if ¬ &and &sle %c "a" &sgr %c "z"
 ...

The following example inserts the string "c" into the alphabetically order string list %test−list:

set−variable %test−list "|a|b|d|e|"
set−variable %test−insert "c"

set−variable #l0 1
!while &and ¬ &seq &lget %test−list #l0 "" ...
 ... &sle &lget %test−list #l0 %test−insert
 set−variable #l0 &add #l0 1
!done
set−variable %test−list &lins %test−list #l0 %test−insert

The first test on the !while &and conditional checks that the current item in the list is not an empty
string (""). If it is the end of the list has been reached.

The following example tests the current buffers file name for a ".c" extension:

!if &xse $buffer−fname ".*\\.c"
 ...

Note the '\' character is needed to protect the second '.', i.e. so that it does not match any character
and the second '\' is required as the string is first parsed by the macro interpreter which changes it to
".*\.c" which is then interpreted as a regex.

SEE ALSO

MicroEmacs '02

&sequal(4) 802

Variable Functions, &sin(4), &slower(4), &rep(4), &add(4), &equal(4), &cond(4), Regular
Expressions.

MicroEmacs '02

&sequal(4) 803

&sin(4)

NAME

&sin, &isin, &rsin, &risin − String in string test functions

SYNOPSIS

&sin str1 str2
&isin str1 str2
&rsin str1 str2
&risin str1 str2

DESCRIPTION

These functions test for the existence of str1 in str2, returning the position of the string in str2 or 0 if
not found.

The functions may all be abbreviated to their three letter abbreviation (i.e. &risin may be expressed
as &ris). In all cases the first argument is completely evaluated before the second argument.

&sin str1 str2

Returns 0 if string str1 does not exists in string str2. Otherwise the function returns the character
position + 1 of the location of the first character of the first occurrence of str1.

&isin str1 str2

Returns 0 if case insensitive string str1 does not exists in string str2. Otherwise the function returns
the character position + 1 of the location of the first character of the first occurrence of str1.

&rsin str1 str2

Returns 0 if string str1 does not exists in string str2. Otherwise the function returns the character
position + 1 of the location of the first character of the last occurrence of str1.

&risin str1 str2

Returns 0 if case insensitive string str1 does not exists in string str2. Otherwise the function returns the
character position + 1 of the location of the first character of the last occurrence of str1. EXAMPLE

The &sin and similar functions are useful for two different purposes. Consider the following example,
this utilizes &sin in two different contexts. !while ¬ &sin @wc " \t\n" is a test for the
end of the number, i.e. a white space character (<tab>, <SPACE> or <NL>).

MicroEmacs '02

&sin(4) 804

The invocation set−variable #l1 &isin @wc "0123456789abcdef" is subtly different.
In this case the return value is used to convert the character to it's integer hex value by using the value
returned by &isin.

;
; calc−hexnum
; Convert the sting from the current position in the buffer
; to a hexadecimal number.
define−macro calc−hexnum
 forward−delete−char
 forward−delete−char
 set−variable #l0 0
 !while ¬ &sin @wc " \t\n"
 set−variable #l1 &isin @wc "0123456789abcdef"
 !if ¬ #l1
 ml−write "Bad Hex number found"
 !abort
 !endif
 set−variable #l0 &mul #l0 16
 set−variable #l0 &add #l0 &sub #l1 1
 forward−delete−char
 !done
 insert−string #l0
!emacro

The &rsin function is very similar to sin except the value return is the position of the last occurrence
of the string in the given string instead of the first. This is particularly useful when extracting the path
or file name from a complete file name. For example, given a UNIX style file name such as
"/usr/local/bin/me" the path can be obtained using set−variable %path &lef
%pathfile &rsin "/" %pathfile and the file name by using set−variable %file
&rig %pathfile &rsin "/" %pathfile

SEE ALSO

Operating Modes, Variable Functions, &sequal(4), &rep(4).

MicroEmacs '02

&sin(4) 805

&ldel(4)

NAME

&ldel, &lfind, &lget, &linsert, &lset − List manipulation functions

SYNOPSIS

&ldel list index
&lfind list value
&lget list index
&linsert list index value
&lset list index value

DESCRIPTION

The list manipulation functions perform operations on specially formatted strings called lists. A list is
defined as:

"|value1|value2|.....|valueN|"

Where '|' is the dividing character, this is not fixed to a '|', but is defined by the first character of the
string. Following are all valid lists.

"|1|2|3|4|5|"
"X1X2X3X4X5X"
"\CAHello\CAWorld\CA"
"??"

The functions may all be abbreviated to their three letter abbreviation (i.e. &linsert may be expressed
as &lin). In all cases the first argument is completely evaluated before the second or third argument.

&ldel list index

Creates a new list from deleting item index from list. If index is out of list's range (0 < index <= #
items in list) then list is returned unchanged.

&lfind list value

Returns the index whose item is the same as value in list. If value is not found in list then "0" is
returned.

&lget list index

Returns the value of item index in list. If index is out of list's range (0 < index <= # items in list) then
an empty string is returned.

MicroEmacs '02

&ldel(4) 806

&linsert list index value

Creates a new list from inserting value into list at point index, thereby pushing item index to index+1
etc. If index is 0 the value is inserted at the beginning of the list, if index is less than 0 or greater that
the number of items in list then value is inserted at the end of the list.

&lset list index value

Creates a new list from setting index of list to value. If index is out of list's range (0 < index <= # items in list)
then &lset behaves like &linsert. EXAMPLE

The following example moves item 4 in a list to position 2:

set−variable #l0 &lget %list 4
set−variable #l1 &ldel %list 4
set−variable %list &lins #l1 2 #l0

The following example is taken from vm.emf, it firstly checks where the user has entered a vm
command, if not then the key is execute as normal, otherwise the appropriate vm command is
executed.

define−macro vm−input
 set−variable #l2 @cck
 set−variable #l3 @cc
 !if ¬ &set #l0 &lfi "|esc h|delete|space|return|A|a|C|c|....|z|" #l2
 !if ¬ &seq #l3 "ERROR"
 execute−line &spr "!nma %s %s" &cond @? @# "" #l3
 !return
 !endif
 ml−write &spr "[Key \"%s\" not bound − \"esc h\" to view help]" #l2
 !abort
 !endif
 set−variable #l1 &lget "|%osd−vm−help osd|vm−del−windows|scroll−down|....
 vm−goto−list|vm−Archive−box|vm−archive−box|....
 vm−cut−all−data|0 vm−extract−data|...|vm−forward|" #l0
 execute−line #l1
!emacro

SEE ALSO

Variable Functions, &mid(4), &cat(4).

MicroEmacs '02

&ldel(4) 807

&opt(4)

NAME

&opt − MicroEmacs optional feature test

SYNOPSIS

&opt str

DESCRIPTION

This function can be used to test the availability of optional features in the current session of
MicroEmacs. Some features, like spelling checker support, are a compilation option, other options
like mouse support may also be unavailable on some platforms. The &opt function can be used by
macros to check that required base functionality is available.

The function returns 1 in the given feature "str" is supported, otherwise it returns 0 if the feature is
unknown or not supported in the running version.

NOTES

Optional components of MicroEmacs '02 are enabled/disabled at compile time, most options are
configured by MEOPT_<NAME>#define's within the source file emain.h. Following is a
complete list of options, giving the opt string and #define label:

abb − MEOPT_ABBREV

Abbreviation functionality (see expand−abbrev(2)).

cal − MEOPT_CALLBACK

Callback and idle event handling (see create−callback(2)).

cfe − MEOPT_CFENCE

Fence matching (see $fmatchdelay(5)).

cli − MEOPT_CLIENTSERVER

Client/server support (see Client−Server).

col − MEOPT_COLOR

MicroEmacs '02

&opt(4) 808

All color support (making hilighting redundent etc, see add−color(2)).

cry − MEOPT_CRYPT

File encryption (see crypt(2m) mode).

deb − MEOPT_DEBUGM

Macro debugging (see $debug(5)).

dir − MEOPT_DIRLIST

Directory listing when loading a directory (see file−browser(3) and dir(2m) mode).

ext − MEOPT_EXTENDED

Miscellaneous more advanced commands and features such as append−buffer(2).

fho − MEOPT_FILEHOOK

File type auto−detection and configuration (see add−file−hook(2)).

fra − MEOPT_FRAME

Multiple frames (Internal or external, see opt "mwf" and command create−frame(2)).

has − MEOPT_CMDHASH

Use a hash table for rapid command name lookup.

hil − MEOPT_HILIGHT

Hilight and user definable indentation rules (see hilight(2) and indent(2)).

hsp − MEOPT_HSPLIT

Horizontal window splitting (see split−window−horizontally(2)).

ipi − MEOPT_IPIPES

Interactive pipes (see ipipe−shell−command(2)).

ise − MEOPT_ISEARCH

Incremental search (see isearch−forward(2)).

lbi − MEOPT_LOCALBIND

Buffer, message−line and OSD local binding overrides (see buffer−bind−key(2)).

MicroEmacs '02

&opt(4) 809

mag − MEOPT_MAGIC

Regular expression search engine (see magic(2m) mode).

mou − MEOPT_MOUSE

Mouse support (see $mouse(5)).

mwf − MEOPT_MWFRAME

Multiple window frame support (see opt "fra").

nar − MEOPT_NARROW

Buffer narrowing (see narrow−buffer(2)).

nex − MEOPT_FILENEXT

Location list stepping (see get−next−line(2)).

osd − MEOPT_OSD

On Screen Display GUI support (see osd(2)).

pok − MEOPT_POKE

Direct screen poking (see screen−poke(2)).

pos − MEOPT_POSITION

Position storing and returning (see set−position(2)).

pri − MEOPT_PRINT

Printing support (see print−buffer(2)).

rcs − MEOPT_RCS

File Revision Control Support (see $rcs−co−com(5)).

reg − MEOPT_REGISTRY

Internal registry and history support (see read−registry(2) and read−history(2)).

scr − MEOPT_SCROLL

Window scroll−bar support.

soc − MEOPT_SOCKET

MicroEmacs '02

&opt(4) 810

URL support, FTP and HTTP via sockets (see find−file(2)).

spa − MEOPT_SPAWN

External process launching (see shell−command(2)).

spe − MEOPT_SPELL

Spelling checker support (see spell(2)).

tag − MEOPT_TAGS

Tags support (see find−tag(2)).

tim − MEOPT_TIMSTMP

File timestamping on save (see time(2m) mode).

typ − MEOPT_TYPEAH

Input detect or 'type−ahead' for background processing support.

und − MEOPT_UNDO

Undo support (see undo(2)).

wor − MEOPT_WORDPRO

Word−processor style commands like fill−paragraph(2) (see forward−paragraph(2)). EXAMPLE

The following example checks for URL support and if not available it pops up an error:

!if ¬ &opt "soc"
 osd−dialog "Opt Test" "Error: No URL support!" " &OK "
!endif

SEE ALSO

Building MicroEmacs.

MicroEmacs '02

&opt(4) 811

®(4)

NAME

® − Retrieve a registry value (with default)

SYNOPSIS

® root subkey default

DESCRIPTION

® retrieves the value of a node defined by root/subkey from the registry. The node name is
specified in two components, typically required when iterating over a registry tree, where the root
component is static and the subkey is dynamic, subkey may be specified as the null string ("") if an
absolute registry path is specified.

The default value is the value of the node to return if the registry node does not exist.

EXAMPLE

The following example is taken from me.emf and uses the registry to retrieve some of the default
configuration files:

; Load in the color setup
!force execute−file ® "/history" &cat $platform "/color" "color"
; execute company setup
!if ¬ &seq &set #l0 ® "/history" "company" "" ""
 !force execute−file #l0
!endif

SEE ALSO

get−registry(2), set−registry(2).

MicroEmacs '02

®(4) 812

&set(4)

NAME

&set − In−line macro variable assignment

SYNOPSIS

&set <var> <expr>

DESCRIPTION

&set performs an in−line macro variable assignment assigning a variable <var> the value of the
expression <expr>, returning the evaluated result to the caller. <expr> may be numeric, boolean or a
string expression.

&set is typically used for defining (and simultaneously using) indices e.g. as with add−color(2) or
add−color−scheme(2). This is a short−hand of set−variable(2).

EXAMPLE

The following example uses&set to define new colors (see color.emf):

; Standard colors
add−color &set %white 0 200 200 200
add−color &set %black 1 0 0 0
add−color &set %red 2 200 0 0
add−color &set %green 3 0 200 0
add−color &set %yellow 4 200 200 0
add−color &set %blue 5 0 0 200
add−color &set %magenta 6 200 0 200
add−color &set %cyan 7 0 200 200

SEE ALSO

Variable Functions, &inc(4), set−variable(2).

MicroEmacs '02

&set(4) 813

&sprintf(4)

NAME

&sprintf − Formatted string construction

SYNOPSIS

&sprintf format args

DESCRIPTION

The &sprintf function (or &spr in it's abbreviated form) provides a mechanism to generated a
formatted string, similar to the 'C' programming language sprintf(2) function.

The &sprintf function is generally used where a number of different sources of information have to
be converted and joined together to form a new string. It is possible to do this using &cat(4), but it
does become complicated if the number of strings to be spliced together is greater than about 4,
sprintf alleviates these problems and results in faster execution. Where only two, or three strings are
to be concatenated &cat provides better execution times.

The &sprintf function produces a string construct for the format and a caller determined number of
arguments args (variable arguments). The format string may contain special '%' formatting
commands to insert strings and numbers into the base format string. The format for the '%' commands
is "%nc" where:−

n

An optional numerical argument, the interpretation of the numeric value is determined by the
following command (c).

c

The command determines the interpretation of the next argument arg which are specified as
follows:

d (Decimal integer)

Expects a single numeric argument arg which is inserted into the format string as decimal text
string. If n is specified then the inserted text string is fixed to n character in length.

n (Repeat String)

Expects two arguments arg, the first is a numeric argument giving the number of times to
insert the given string (the second argument). If n is specified then the string is inserted n *

MicroEmacs '02

&sprintf(4) 814

numeric−argument times.

s (String)

Expects a single argument arg which is a string to be inserted into the key. If n is given then it
is insertedn times.

x (Hexadecimal integer)

Expects a single numeric argument arg which is inserted into the format string as
hexadecimal text string. If n is given then the inserted text string will be fixed to n character
in length.

%

Inserts a single '%', n has no effect.

The &sprintf function may be nested (i.e. a string argument to &sprintf may be the result of
another &sprintf invocation). Although this type of construct is not generally required !!

EXAMPLE

The following examples show how the command may be used:−

set−variable %result &sprintf "Foo [%s%s]" "a" "b"

generates "Foo [ab]"

set−variable %result &sprintf "Foo [%n%s]" 10 "a" "b"

generates "Foo [aaaaaaaaaab]".

set−variable %result &sprintf "[%d] [%3d] [%x] [%3x]" 10 11 12 13

generates "[10] [11] [c] [d]"

NOTES

It is the callers responsibility to ensure that the correct number of arguments is supplied to match the
requested formatting string. The results are undefined if an incorrect number of arguments are
supplied.

SEE ALSO

Variable Functions, &cat(4).

MicroEmacs '02

&sprintf(4) 815

&stat(4)

NAME

&stat − Retrieve a file statistic

SYNOPSIS

&stat <stat> <filename>

DESCRIPTION

&stat returns the specified <stat> on the given <filename>. Valid <stat> values are:−

a

Returns the absolute file name, corrects relative paths and symbolic links, i.e. on unix if the filename
is a symbolic link it returns the file name the link points to (recursive), otherwise returns the file
name.

d

Returns the file's modification time stamp. The value returned is an integer, larger values indicate a
later time.

r

Returns a non−zero value if the user has permission to read the given file.

s

Returns the size of the file in bytes.

t

Returns the type of the file, where values returned are

 X File does not exist.
 R File is a regular file.
 D File is a directory.
 H File is a http URL link (see note).
 F File is an ftp URL file (see note).
 N File is an untouchable system file.

Note that a URL type is determined from the file name, e.g. http://..., and its existence is not
verified.

MicroEmacs '02

&stat(4) 816

w

Returns a non−zero value if the user has permission to write to the given file.

x

Returns a non−zero value if the user has permission to execute the given file. EXAMPLE

The following example is a macro which, given a file name, uses &stat to check that file file is
regular:

define−macro test−file
 !force set−variable #l0 @1
 !if ¬ $status
 set−variable #l0 @ml04 "File name"
 !endif
 !if ¬ &equ &stat "t" #l4 1
 ml−write &spr "[%s is not a regular file]" #l0
 !abort
 !endif
!emacro

test−file "foobar"

The macro can be passed a file name and aborts if the file is not regular, there by returning the state.

The follow example checks that a file is not empty, this is used by mail−check to test for any
incoming mail.

 !if &gre &stat "s" %incoming−mail−box
 ml−write "[You have new mail]"
 !endif

SEE ALSO

Variable Functions, find−file(2).

MicroEmacs '02

&stat(4) 817

!return(4)

NAME

!return, !abort − Exit macro

SYNOPSIS

!return [n]
!abort [n]

DESCRIPTION

The !return directive causes the current macro to exit with a TRUE status, either returning to the
caller (if any) or to interactive mode. If an argument n is specified then the return status is determined
by the value of n.

!abort has the same effect as !return only always returning a FALSE status to halt the execution of
any calling macro. If an argument n is given to !abort the bell is also rung, the valid values of n are
the same as for the !bell(4) directive.

EXAMPLE

The following example checks the current language and warns if it has not be set, i.e. Default.

; Check the current language

!if ¬ &seq %language "Default"
 !return
!endif
ml−write "Warning − you have not setup the Language − use user−setup"

The following example is shows the logic of the !return directive:−

; !return example
define−macro i−will−return
 ml−write "you will see me"
 !return
 ml−write "you wont see me"
!emacro

define−macro test−return
 ml−write "you will see me"
 i−will−return
 ml−write "you will see me"
!emacro

MicroEmacs '02

!return(4) 818

Similarly, for the !abort directive

; !abort example
define−macro i−will−abort
 ml−write "you will see me"
 !abort
 ml−write "you wont see me"
!emacro

define−macro test−abort
 ml−write "you will see me"
 i−will−abort
 ml−write "you wont see me"
!emacro

For the last two examples above, all the "will"s are displayed and none of the "wont"s are.

SEE ALSO

define−macro(2), !bell(4), !if(4), !goto(4).

MicroEmacs '02

!return(4) 819

!bell(4)

NAME

!bell − Sound audio alarm

SYNOPSIS

!bell [n]

DESCRIPTION

!bell gives a warning (audible or visual) to alert the user of a problem. !bell honors the quiet(2m)
mode, as such if quiet mode is disabled an audible warning is given, otherwise a visual warning is
given to the user (usually the message "[BELL]" in the bottom left hand corner).

The optional numerical argument n can be used to over−ride the current setting of the quite, a value
of 0 specifies a quite bell, 2 an audible one, when omitted the default is 1 for honoring the quite
mode.

!bell is generally used in conjunction with !abort, the !bell function warning the user and the !abort
function to quit the macro.

EXAMPLE

The following example checks for incoming mail and is taken from mail.emf. If any mail has arrived
an audible warning is assured by toggling the quiet mode.

;
; Mail checker
define−macro mail−check
 !if &seq &set %vm−mail−src ® "/history" &cat $platform "/mail−src" "" ""
 ml−write "[Incoming mail file not setup! Use Help/User setup]"
 !abort
 !endif
 600000 create−callback mail−check
 ml−write &spr "Checking for mail in %s..." %vm−mail−src
 set−variable #l0 &cond &gre &stat "s" %vm−mail−src 0 "M" "−"
 !if ¬ &seq &mid $mode−line 2 1 #l0
 set−variable #l1 &rig $mode−line &cond &seq &mid $mode−line 2 1 "%" 4 3
 set−variable $mode−line &cat &cat &lef $mode−line 2 #l0 #l1
 screen−update
 !if &seq #l0 "M"
 ; use no argument to the global−mode so it toggles it back to its original state
 !bell
 global−mode "quiet"
 !bell
 global−mode "quiet"

MicroEmacs '02

!bell(4) 820

 !endif
 !endif
 ml−clear
!emacro

SEE ALSO

!abort(4), abort−command(2), quiet(2m).

MicroEmacs '02

!bell(4) 821

!while(4)

NAME

!while, !continue, !done − Conditional loop

SYNOPSIS

!while condition

... loop body ...
[!continue]
!done DESCRIPTION

The !while directive allows statements only to be executed if a condition specified in the directive is
met. Every line following the !while directive, until the first !done directive, is only executed if the
expression following the !while directive evaluates to a TRUE value.

A !continue may be used in the loop, this immediately returns control to the !while statement and
skips the rest of the section.

!while statement may not be nested. That is, only one !while statement may be outstanding at a
time, a !repeat(4) statement may be used within the !while to create an inner loop if required.
Alternatively the !goto(4) used in conjunction with the !if(4) statement may be used to construct
loops.

EXAMPLE

For example, the following macro segment fills to the fill column with spaces.

!while &less $curcol $fill−col
 insert−string " "
 !if &equal %example "1" ; Silly to show continue
 !continue ; Goto !while
 !endif
 ml−write "You wont see me if %example = 1"
!done

SEE ALSO

!if(4), !goto(4), !repeat(4).

MicroEmacs '02

!while(4) 822

!emacro(4)

NAME

!emacro − Terminate a macro definition
!ehelp − Terminate a help definition

SYNOPSIS

define−macro macro−name

... macro body ...

!emacro
define−help item−name

... help body ...

!ehelp

DESCRIPTION

!emacro terminates the storage of an open macro, (opened with define−macro(2)). Only the lines
between define−macro and the !emacro directive comprise the new macro macro−name.

Similarly !ehelp terminates the storage of an open help definition, (opened with define−help(2)). Only
the lines between define−help and the !ehelp directive comprise the new help text for item
item−name.

!emacro and !ehelp may not be used in any other context.

EXAMPLE

For example if a file is being executed contains the text:

;
; Read in a file in view mode, and make the window red
;
define−macro view−a−file
 find−file @ml"File to view: "
 1 buffer−mode "view"
 set−variable $buffer−bcol %red
!emacro

define−help view−a−file
 This is the help text for the macro view−a−file.
!ehelp

MicroEmacs '02

!emacro(4) 823

ml−write "[view−a−file macro has been loaded]"

then only the lines between the define−macro command and the !emacro directive are stored in
macro view−a−file and the lines between the define−help command and the !ehelp directive are
stored as help for view−a−file. The ml−write line is executed when the file is loaded, and the message
will appear on the message line, this does not however form part of the macro or help.

SEE ALSO

Operating Modes, define−macro(2), define−help(2).

MicroEmacs '02

!emacro(4) 824

!if(4)

NAME

!if, !elif, !else, !endif − Conditional statements

SYNOPSIS

!if condition

... condition body ...
[!elif condition

... condition body ...
]
[!else

... condition body ...
]
!endif DESCRIPTION

The conditional directives allow statements to be executed only if a condition specified in the
directive is met, as follows:−

Every line following the !if directive, until the first !elif, !else or !endif directive, is only
executed if the expression following the !if directive evaluates to a TRUE value (non−zero).

♦

If the !if evaluates to FALSE and a !elif directive is next then the expression following the !if
is evaluated and following statements are executed if TRUE.

♦

If no !if or !elif is found to be TRUE and a !else is found then the statements following it are
executed.

♦

The condition may be any logical condition as evaluated by the variable functions (e.g. &equal(4))
returning TRUE or FALSE. An integer value, non−zero evaluates TRUE, zero evaluates to FALSE. A
non−numerical argument, such as a string is always FALSE.

The conditional body may be any MicroEmacs '02 function, macro or directive with the exception of
define−macro and !emacro. All directives that alter the execution of the macro are handled correctly
within the !if statement (e.g. !goto, !return etc.

EXAMPLE

The following macro segment creates the portion of a text file automatically. (yes believe me, this will
be easier to understand then that last explanation....)

!if &sequal %curplace "timespace vortex"

MicroEmacs '02

!if(4) 825

 insert−string "First, rematerialize\n"
!endif
!if &sequal %planet "earth" ;If we have landed on earth...
 !if &sequal %time "late 20th century" ;and we are then
 ml−write "Contact U.N.I.T."
 !elif &sequal %time "pre 20th century"
 ml−write "start praying for a miracle"
 !else
 insert−string "Investigate the situation....\n"
 insert−string "(SAY 'stay here Sara')\n"
 !endif
!else
 set−variable %conditions @ml"Atmosphere conditions outside? "
 !if &sequal %conditions "safe"
 insert−string &cat "Go outside......" "\n"
 insert−string "lock the door\n"
 !else
 insert−string "Dematerialize..try somewhere else"
 newline
 !endif
!endif

SEE ALSO

Variable Fuctions, !goto(4), &equal(4), !return(4), $status(5).

MicroEmacs '02

!if(4) 826

!force(4)

NAME

!force − Ignore command or macro status

SYNOPSIS

!force [n] command

DESCRIPTION

!force ignores the return status of a command while executing a macro. When MicroEmacs '02
executes a macro, if any command fails, the macro is terminated at that point. If a line is preceded by
a !force directive, execution continues whether the command succeeds or not. $status(5) may be used
following !force to determine if the command failed or not.

A double !force can be used to catch a user termination (via the abort−command(2) bound to C−g). A
macro command aborted by the user will be terminated even with a single !force directive, but not
with two. See the example below.

When specifying a numerical argument with a command, it is placed after the !force directive and
before the command i.e.

!force 1 forward−char

EXAMPLE

The following example shows how !force is used in conjunction with $status.

; Merge the top two windows

push−position ;remember where we are
1 next−window ;go to the top window
delete−window ;merge it with the second window
!force pop−position ;This will continue regardless
!if $status
 ml−write "Call PASSED"
!else
 ml−write "Call FAILED"
!endif

The following example creates an infinite loop that can only be broken out of by a user abort. The
calling macro catches this by using a double !force and continues. This concept is used by commands
which take a considerable amount of time yet cannot be simply aborted by the user such as the
spell−checker's best guess list generator.

MicroEmacs '02

!force(4) 827

define−macro infinite−loop
 set−variable #l0 1
 !while 1
 ml−write &cat "In loop, C−g to exit: " &pinc #l0 1
 !done
!emacro

define−macro catch−abort
 !force !force infinite−loop
 ml−write "You will see this"
!emacro

SEE ALSO

$status(5).

MicroEmacs '02

!force(4) 828

!goto(4)

NAME

!goto − Unconditional labeled jump
!tgoto − Conditional labeled jump

SYNOPSIS

!goto label

...
*label

!tgoto conditionlabel

...
*label DESCRIPTION

Flow can be controlled within a MicroEmacs '02 macro using the !goto directive. It takes as an
argument a label. A label consists of a line starting with an asterisk (*) and then an alphanumeric
label. Only labels in the currently executing macro can be jumped to, trying to jump to a non−existing
label terminates execution of a macro. labels may be located at any position within the macro
(forwards or backwards from the !goto).

A conditional jump may be implemented with a !tgoto, this takes an additional argument condition,
which may be a literal numeric value, a variable or an evaluated expression (see Variable Functions).
If the condition evaluates to TRUE (or non−zero) then the branch is taken and control continues from
the label.

!tgoto is an ideal replacement for !while(4) and !repeat(4) where nested loops are required.

EXAMPLE

For example, create a block of DATA statements for a BASIC program:

 insert−string "1000 DATA "
 set−variable %linenum 1000
*nxtin
 screen−update ;make sure we see the changes
 set−variable %data @ml"Next number: "
 !if &equal %data 0
 !goto finish
 !endif
 !if &greater $curcol 60
 2 backward−delete−char

MicroEmacs '02

!goto(4) 829

 newline
 set−variable %linenum &add %linenum 10
 insert−string &cat %linenum " DATA "
 !endif
 insert−string &cat %data ", "
 !goto nxtin
*finish
 2 backward−delete−char
 newline

Not that any of us are writing basic programs these days !!

NOTES

!goto and !tgoto are expensive operations because a symbolic name lookup is performed in the macro
file. For time critical macros then the !jump(4) and !tjump(4) directives should be used as these do not
perform a symbolic name search. The jump equivalents are source sensitive since a line displacement
rather than a label is used − this makes them a little dangerous to use.

SEE ALSO

Variable Functions, !if(4), !jump(4), !repeat(4), !return(4), !tjump(4), !while(4).

MicroEmacs '02

!goto(4) 830

!jump(4)

NAME

!jump − Unconditional relative branch
!tjump − conditional relative branch

SYNOPSIS

!jump offset
!tjump conditionoffset

DESCRIPTION

Flow can be controlled within a MicroEmacs '02 macro using the !jump directive. It takes as a
numerical argument offset. The offset is a signed relative displacement, it may be a literal numeric
value, a variable or an evaluated expression (see Variable Functions). The displacement to jump starts
from the current !jump line. (i.e. 0 goto) would loop forever as it jumps to itself). Negative offset
branches backwards, positive offset forwards.

A conditional relative branch, with a numerical displacement is specified using !tjump. This has an
additional argument condition which is evaluated and if TRUE (Non−zero) then the branch is taken.
The condition may be a variable or an evaluated expression.

!jump and !tjump are fast equivalents of !goto(4) and !tgoto(4), respectively. !jump should be used
with care as these calls are source sensitive and unexpected results may be obtained if the offset's are
specified incorrectly.

WARNING

Comments are not counted as valid lines within the relative displacement, these are stripped out when
the macro is loaded. When using a relative branch ensure that ONLY the code lines are counted.

EXAMPLE

For some seriously dirty macro tricks then the !jump directive becomes very useful. The following
example is taken from the Metris macro (which is packed with goodies if you can find time to work
out what it does !!). The following example uses the random number generator $random(5) to
generate a random number which scaled and used as a !jump offset, thereby creating a switch type
statement.

0 define−macro met−select−piece
 !jump &mul 5 &add 1 &div &mod $random 71 10
 set−variable :met−np1 " X " ; 1st 3 lines are dummies to get offset right

MicroEmacs '02

!jump(4) 831

 set−variable :met−np1 " X "
 set−variable :met−np1 " X "
 set−variable :met−np1 " X "
 set−variable :met−np1 " X "
 set−variable :met−np2 "XX "
 set−variable :met−np3 " X "
 set−variable :met−ncol %lyellow
 !return
 set−variable :met−np1 "XX "
 set−variable :met−np2 "XX "
 set−variable :met−np3 " "
 set−variable :met−ncol %yellow
 !return
 set−variable :met−np1 "X "
 set−variable :met−np2 "XX "
 set−variable :met−np3 " X "
 set−variable :met−ncol %lmagenta
 !return
 set−variable :met−np1 " X"
 set−variable :met−np2 " XX"
 set−variable :met−np3 " X "
 set−variable :met−ncol %lgreen
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 " XX"
 set−variable :met−ncol %magenta
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 "XX "
 set−variable :met−ncol %green
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 " X "
 set−variable :met−ncol %lblue
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 "X X"
 set−variable :met−ncol %lred
!emacro

SEE ALSO

Variable Fuctions, !goto(4), !if(4), !repeat(4), !return(4), !tgoto(4), !while(4).

MicroEmacs '02

!jump(4) 832

!nmacro(4)

NAME

!nmacro − Execute line as if not in a macro

SYNOPSIS

!nmacro command

DESCRIPTION

!nmacro causes command to be executed as if it were initiated from the command line by the user,
rather than from the macro context. When MicroEmacs '02 executes a macro, by default any input the
command requires is expected on the same line immediately following the command. If a line is
preceded by a !nmacro (or !nma) directive, the command is executed as if it was invoked from the
command line by the user, as such, the rest of the line is ignored and all input is obtained directly
from the user, as per normal command interaction.

EXAMPLE

The following example is taken from macro file meme3_8.emf and shows how to add a buffer
mode.

; Add a buffer mode
define−macro add−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 buffer−mode @1
 !if ¬ $status
 ; No − use 1 buffer−mode to add a mode
 !nma 1 buffer−mode
 !endif
!emacro

The first line checks that the mode to add has not already been given as a macro argument, e.g. by
executing the following line

buffer−add−mode "view"

If this line fails then the argument was not specified and must be obtained from the user as normal.

NOTES

Individual arguments may be obtained from the user using the @mn(4) interactive macro variables.

MicroEmacs '02

!nmacro(4) 833

SEE ALSO

@mn(4).

MicroEmacs '02

!nmacro(4) 834

!repeat(4)

NAME

!repeat, !until − Conditional loop (post testing)

SYNOPSIS

!repeat

... loop body ...
!until condition DESCRIPTION

Th !repeat command operates in a similar fashion to !while/!done except the condition is tested at the
end. Control finishes if the condition is met. As with the !while(4) there is no nesting of multiple
!repeat statements.

EXAMPLE

For example, the following macro segment fills to the fill column with spaces.

!repeat
 insert−string " "
!until &equal $curcol $fill−col

SEE ALSO

!if(4), !goto(4), !repeat(4).

MicroEmacs '02

!repeat(4) 835

MacroArguments(4)

NAME

@?, @#, @0, @1, @2, @3, ... @p − Macro arguments

SYNOPSIS

@? − Boolean flagging if a numeric argument was supplied
@# − The value of the numeric argument

@0 − The name of the macro
@1 − The first argument of macro
@2 − The second argument of macro
@3 ... @n

@p − The name of the calling (or parent) macro.

DESCRIPTION

Macros may be passed arguments, allowing a macro to be used by other macros. The @? and @# are
used to determine the numeric argument given to the command. The @n variable (where n is an
integer) used in the context of a macro allows the macro body to determine it's arguments.

From a macro all commands are called in the following form

[num] <macro−name> "arg1" "arg2"

When executed macros do not have to be given an argument, in this case @? will be 0 and @# will be
1 (the default argument). If an argument is given then @? will be 1 and @# will be set to the numeric
argument given.

The current macro command name <macro−name> can be obtain by using the @0 variable, e.g.

define−macro Test−it
 ml−write @0
!emacro

When executed, writes the message "Test−it" which is the name of the macro.

Arguments may be passed into macro commands in the same way as standard commands are given
arguments. The macro being called can access these by the @1 to @n variables, where n is a positive
integer. Any variables given as arguments are evaluated so if the variable name is required then
enclose it in quotes, e.g.

set−variable %test−var "Hello World"

MicroEmacs '02

MacroArguments(4) 836

efine−macro Test−it
 ml−write &cat &cat &cat &cat @0 " " @1 " = " &ind @1
 set−variable @1 @2
!emacro

Test−it "%test−var" "Goodbye World"

On execution the macro writes the message

"Test−it %test−var = Hello World"

and will set variable %test−var to "Goodbye World".

The @p variable can be used to obtain the name of the macro which is executing the current macro,
i.e. the value of the parent's @0 variable. If the macro was executed directly by the user then there is
no parent macro and the value of @p is an empty string ("").

DIAGNOSTICS

If an attempt is made to access an argument which has not been given then a error occurs. This error
can be trapped using the !force(4) directive, enabling the macro to take appropriate action, see
example.

EXAMPLE

Consider the implementation of replace−all−string(3) macro defined in search.emf:

define−macro replace−all−string
 !force set−variable #l0 @3
 !if ¬ $status
 set−variable #l1 @ml05 "Replace all"
 set−variable #l2 @ml05 &spr "Replace [%s] with" #l1
 set−variable #l0 @ml00 "In files"
 !else
 set−variable #l1 @1
 set−variable #l2 @2
 !endif
 .
 .
 .
!emacro

In this example if the 3rd argument is not given then the macro gets all arguments from the user.

The @p variable having a value of "" when a macro is called directly by the user can be useful when
determining the amount of information to feed−back to the user. For example, executing the clean
macro is an easy way to remove surplus white characters, so it is often used by other macros as well
as by the user. When called directly clean refreshes the display and prints a message of completion,
but when called by other macros this would cause an unwanted screen−update and message, so clean
only does this when executed by the user. This is done as follows:

MicroEmacs '02

MacroArguments(4) 837

define−macro clean
 ;
 ; Prepare to clean up file.
 .
 .
 .
 !if &seq @p ""
 screen−update
 ml−write "[Cleaned up buffer]"
 !endif
!emacro

NOTES

The parsing of arguments can be inefficient because of the way the arguments have to be parsed; to
get the 4th argument the 1st, 2nd and 3rd arguments must be evaluated. This is because each
argument is not guaranteed to be only one element, it could be an expression which needs to be
evaluated. Consider the following invocation of our Test−it macro

Test−it &cat "%test" "−var" "Goodbye World"

The 2nd argument is not "%test" as this is part of the first argument, the 2nd argument is in fact the
4th element and the invocation will have the same effect except slower.

SEE ALSO

MacroNumericArguments, define−macro(2), replace−all−string(3), !force(4).

MicroEmacs '02

MacroArguments(4) 838

CommandVariables(4)

NAME

@clk, @cl − Last key or command name
@cck, @cc − Current key or command name
@cgk, @cg − Get a key or command name from the user
@cqk, @cq − Get a quoted key or command name from the user

SYNOPSIS

@clk
@cl
@cck
@cc
@cgk
@cg
@cqk
@cq

DESCRIPTION

The Command Variables allow macros to obtain MicroEmacs '02 input commands and keystrokes
from the user. The general format of the command is:−

@ci[k]

Where,

i

Determines the source of the input as follows:−

l

The last input entered.

c

The current input entered.

q

Provides a low level character input mechanism, obtaining a single raw character input from
the user. The input fetch does not interact with the message line and the user is NOT

MicroEmacs '02

CommandVariables(4) 839

prompted for input (use ml−write(2) to create your own message). @cq is very low level, it is
generally preferable to use @cg which provides a more intelligent binding.

g

Like @cq, @cg[k] gets a single character input, however if the input is bound to a function then the
function name is returned instead of the character e.g. if ^F or <left−arrow> is depressed then
forward−char is returned. This has distinct advantages over @cq as the binding becomes device
independent and executes on all platforms. In addition, it honors the users bindings, however bizarre.

k

When, omitted command input is returned to the caller (i.e. the name of the command, such as
"forward−char"). When present, the raw keystroke is returned to the caller, i.e. "^F (control−F).

The @cl, @clk, @cc and @cck variables can also be set, this feature can be used by macros to
change the command history. While setting the current command is limited in use, setting the last
command can be immensely useful, consider the following macro code:−

kill−line
forward−line
set−variable @cl kill−line
kill−line

Without the setting of the @cl variable, the current kill buffer will contain only the last line. But the
setting of @cl to kill−line fools MicroEmacs into thinking the last command was a kill command so
the last kill line as appended to the current yank buffer, i.e. the kill buffer will have both lines in it.

This feature can be used for any command whose effect depends on the previous command. Such
commands include forward−line(2), kill−region(2), reyank(2) and undo(2). This feature should not be
abused as unexpected things may happen.

Summary

@cl

Get or set the last command.

@clk

Get or set the last key stroke.

@cc

Get or set the current command.

@cck

Get or set the current keystroke.

MicroEmacs '02

CommandVariables(4) 840

@cg

Get a command name from the user.

@cgk

Get a keystroke from the user.

@cq

Get a quoted command name from the user.

@cqk

Get a quoted keystroke from the user. EXAMPLE

The following example shows how the @cc and @cl commands are used:−

define−macro current−last−command
 insert−string &spr "Last key [%s] name [%s]\n" @clk @cl
 insert−string &spr "Current key [%s] name [%s]\n" @cck @cc
!emacro

Pressing the up key and then executing this macro using execute−named−command (esc x) will insert
the lines:−

Last key [up] name [backward−line]
Current key [esc x] name [execute−named−command]

@cg like @cq gets a single character input, however if the keyboard input is bound to a function then
the function name is returned instead of the character e.g. if ^F or <left−arrow> is depressed then
forward−char is returned. This has distinct advantages over @cq as the binding becomes device
independent and executes on all platforms, additionally it honors the users bindings, however bizarre.

@cq provides a low level character input mechanism, obtaining a single raw character input from the
user. This does not interact with the message line and the user is not prompted for input (use
ml−write(2) to create your own message). @cq is very low level, it is generally preferable to use @cg
which provides a more intelligent binding.

EXAMPLE

The following example is taken from draw.emf which uses @cg to obtain cursor movements from
the user. Note how the input from @cg (stored in variable %dw−comm) is compared with the
binding name rather than any keyboard characters.

 !repeat
 0 screen−update
 !force set−variable #l0 @cg
 !if &seq #l0 "abort−command"

MicroEmacs '02

CommandVariables(4) 841

 !if &iseq @mc1 "Really quit [y/n]? " "nNyY" "y"
 find−buffer :dw−buf
 0 delete−buffer "*draw*"
 −1 buffer−mode "view"
 !abort
 !endif
 !elif &seq #l0 "newline"
 .
 .
 !elif &seq #l0 "forward−line"
 1 draw−vert
 !elif &seq #l0 "backward−line"
 −1 draw−vert
 !elif &seq #l0 "forward−char"
 1 draw−horz
 !elif &seq #l0 "backward−char"
 −1 draw−horz
 !elif &seq #l0 "osd"
 .osd.draw−help osd
 !elif &set #l1 &sin #l0 "mdeu−="
 !if &les #l1 5
 set−variable :dw−mode &sub #l1 1
 set−variable :dw−modes #l0
 draw−setmode−line
 !elif &sin #l0 "−="
 set−variable :dw−char #l0
 draw−setmode−line
 !endif
 !else
 ml−write "[Invalid command]"
 !endif
 !until 0

SEE ALSO

@wc(4), &kbind(4), define−macro(2).

MicroEmacs '02

CommandVariables(4) 842

@fs(4)

NAME

@fs − Frame store variable

SYNOPSIS

@fs row column

DESCRIPTION

The frame store variable @fs gives macros a way of obtaining the character currently being drawn on
the screen at the given location. If the given value of row or column is out range, i.e. less than zero or
greater than or equal to the screen size (see $frame−width(5)) then the value returned is the empty
string (i.e. "").

This variable cannot be set and is only updated during a screen update, this means that macros that
change the cursor position will need to redraw the screen before using this variable.

EXAMPLE

The following example gets the word under the current mouse position, this may not be the current
cursor position:

define−macro word−under−mouse
 set−variable #l0 $mouse−y
 set−variable #l1 $mouse−x
 !if ¬ &inw @fs #l0 #l1
 ml−write "[mouse not over a word]"
 !return
 !endif
 set−variable #l2 @fs #l0 #l1
 set−variable #l1 &sub #l1 1
 !if &inw @fs #l0 #l1
 set−variable #l2 &cat @fs #l0 #l1 #l2
 !jump −3
 !endif
 set−variable #l1 $mouse−x
 set−variable #l1 &add #l1 1
 !if &inw @fs #l0 #l1
 set−variable #l2 &cat #l2 @fs #l0 #l1
 !jump −3
 !endif
 ml−write &spr "[mouse is over the word \"%s\"]" #l2
!emacro

MicroEmacs '02

@fs(4) 843

SEE ALSO

$frame−width(5), screen−update(2), MacroArguments, MacroNumericArguments, define−macro(2).

MicroEmacs '02

@fs(4) 844

MessageLineVariables(4)

NAME

@mn, @mna, @ml, @mc, @mx, @mxa − Message line input

SYNOPSIS

@mn
@mna
@ml[f][h] "prompt" ["default"] ["initial"] ["com−list"] ["buffer−name"]
@mc[f] prompt [valid−list]
@mx "command−line"
@mxa "command−line"

DESCRIPTION

The Message Line Variables provide a method to prompt the user for an input returning the data to
the caller. The @mn variable cause MicroEmacs to input data from the user in the default way for
that command's argument, i.e. the normal prompt with the normal history and completion etc.
Similarly @mna causes MicroEmacs to input the current argument and any subsequent arguments in
the default way.

The @ml variable can be used to get a string (or Line) of text from the user using the message−line in
a very flexible way. The first optional flag f is a bitwise flag where each bit has the following
meaning

0x01

The default value will be specified and this will be returned by default.

0x02

The initial value will be specified and this will be initial value given on the input line.

0x04

Auto−complete using the initial value, usually used with bit 0x02.

0x08

Hide the input string, the characters in the current input string are all displayed as '*'s.

If no value is specified then default value is 0 and h can not be specified. The default value is returned
when the user enters an empty string. If the initial string is specified the the input buffer will be

MicroEmacs '02

MessageLineVariables(4) 845

initialized to the given string instead of and empty one.

The flag h specifies what type of data is to be entered, this specifies the history to be used and the
semantics allowed, h can have the following values

0 For a general string input using the general history.
1 For an absolute file name, with completion and history.
2 For a MicroEmacs '02 buffer name, with completion and history.
3 For a MicroEmacs '02 command name, with completion and history.
4 For a file name, with completion and history.
5 For a search string, with history.
6 For a MicroEmacs '02 mode name, with completion and history.
7 For a MicroEmacs '02 variable name, with completion and history.
8 For a general string using no history.
9 For a user supplied completion list (com−list).
a For a user supplied completion list (buffer−name).

A default value of 0 is used if no value is specified. At first glance type 1 and 4 appear to be the same.
They differ only when a non absolute file name is entered, such as "foobar". Type 1 will turn this into
an absolute path, i.e. if the current directory is "/tmp" then it will return "/tmp/foobar". Type 4
however will return just "foobar", this is particularly useful with the &find(4) directive to then find
the file "foobar".

When a value of 9 is used the argument com−list must be given which specifies a list of completion
values in the form of a MicroEmacs list (see help on &lget(4) for further information on lists). The
user may enter another value which is not in the list, which will be returned.

Alternatively a completion list may be given in the form of a buffer using a value of a. The argument
buffer−name must be given to specify the buffer name from which to extract the completion list; each
line of the buffer is taken as a completion value. This option is particularly useful for large completion
lists as there is no size restrictions.

The @mc variable can be used to get a single character from the user using the message−line. The
optional flag f is a bitwise flag where each bit has the following meaning

0x01

The valid−list specifies all valid letters.

0x02

Quote the typed character, this allows keys such as 'C−g' which is bound to the abort command to be
entered.

The default value for f is 0. When @mc is used, the user is prompted, with the given prompt, for a
single character. If a valid−list is specified then only a specified valid character or an error can be
returned. For example, a yes/no prompt can be implemented by the following

!if &iseq @mc1 "Are you bored [y/n]? " "yYnN" "y"

MicroEmacs '02

MessageLineVariables(4) 846

 save−buffers−exit−emacs
!endif

By using the &isequal(4) operator a return of "Y" or "y" will match with "y".

When the @mx variable is used MicroEmacs sets the system variable $result(5) to the input prompt,
it will then execute the given command−line. If this command aborts then so does the calling
command, if it succeeds then the input value is taken from the $result variable. Similarly @mxa
causes MicroEmacs to get the current and any subsequent arguments in this way.

These variables are useful when trying to use existing commands in a different way, such as trying to
provide a GUI to an existing command. See the delete−buffer example below.

EXAMPLE

The following example can be used to prompt the user to save any buffer changes, the use of @mna
ensures the user will be prompted as usual regardless of the number of buffers changed:

save−some−buffers @mna

The following example sets %language to a language supplied by the user from a given list, giving
the current setting as a default

set−variable %languages "|American|British|French|Spanish|"
set−variable %language "American"

set−variable %language @ml19 "Language" %language %languages

The following example is taken from diff−changes in tools.emf, it uses @mc to prompt the user
to save the buffer before continuing:−

define−macro diff−changes
 !if &seq $buffer−fname ""
 ml−write "[Current buffer has no file name]"
 !abort
 !endif
 !if &bmod "edit"
 !if &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 !endif
 !endif
 .
 .

Note that the input is case insensitive. The following version would not work as the user may expect
when the buffer has not been edited:

 .
 .
 !if &and &bmod "edit" &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 .

MicroEmacs '02

MessageLineVariables(4) 847

 .

Unlike C and other similar languages MicroEmacs macro language always evaluates both &and
arguments. This means that the user will be prompted to save the buffer regardless of whether the
buffer has been edited.

The @mx variables are useful when using existing commands in a new environment. For example,
consider providing a GUI for the delete−buffer(2) command, when executed the calling GUI may not
be aware that changes could be lost or a process may still be active. These variables can be used as a
call back mechanism to handle this problem:

define−macro osd−delete−buffer−callback
 !if &sin "Discard changes" $result
 2 osd−xdialog "Delete Buffer" " Dicard changes? " 2 10 6 "&Yes" "&No"
 set−variable $result &cond &equ $result 1 "y" "n"
 !elif &sin "Kill active process" $result
 2 osd−xdialog "Delete Buffer" " Kill active process? " 2 10 6 "&Yes" "&No"
 set−variable $result &cond &equ $result 1 "y" "n"
 !else
 1000 ml−write &spr "[Unknown prompt %s]" $result
 !abort
 !endif
!emacro

define−macro osd−delete−buffer
 .
 . set #l0 to buffer name to be deleted
 .
 delete−buffer #l0 @mxa osd−delete−buffer−callback
!emacro

SEE ALSO

define−macro(2).

MicroEmacs '02

MessageLineVariables(4) 848

SearchGroups(4)

NAME

@s0, @s1, @s2, ... @s9 − Last search group values

SYNOPSIS

@s0 − Last search's whole match string
@s1 − Last search's first group value
@s2 − Last search's second group value
...
@s9 − Last search's nineth group value

DESCRIPTION

The search group variables @sn return the string matches of the last regular expression search i.e.
search−forward(2) (in magic(2m) mode) or regex−forward(3).

@s0 returns the whole of the matched string, @sn, n = 1..9, returns the bracket matches
corresponding to the group demarkation points indicated by \(and \) in the search regular
expression.

DIAGNOSTICS

An error is generated if an attempt is made to access these variables and the last search failed or the
last search did not have the specified group.

The value returned for an unused group, e.g. @s2 for the regex string "\(a\)\|\(b\)" if "a" was
matched, is an empty string ("").

EXAMPLE

The following macro code gives a simple example of their potential use:

forward−search "Token *{\\(Start\\|End\\)}"
!if $status
 ml−write "[found \"%s\"]" @s0
 if &seq @s1 "Start"
 .
 .

NOTES

MicroEmacs '02

SearchGroups(4) 849

Remember that the regular expression escape character '\' has to be duplicated within a macro file as '\'
is also the macro file escape sequence.

SEE ALSO

magic(2m), search−forward(2), regex−forward(3).

MicroEmacs '02

SearchGroups(4) 850

CurrentBufferVariables(4)

NAME

@wc, @wl − Extract characters from the current buffer

SYNOPSIS

@wl
@wc

DESCRIPTION

Buffer variables are special in that they can only be queried and cannot be set. Buffer variables allow
text to be taken from the current buffer and placed into a variable. Two types of extraction are
provided @wl provides a line extraction method, @wc provides a character extraction method.

For example, if the current buffer contains the following text:

Richmond
Lafayette
<*>Bloomington (where <*> is the current point)
Indianapolis
Gary
=* me (BE..) == rigel2 == (c:/data/rigel2.txt) ===================

The @wl variable allows text from the current buffer to be accessed, a command such as:−

set−variable %line @wl

would start at the current point in the current buffer and grab all the text up to the end of that line and
pass that back. Then it would advance the point to the beginning of the next line. Thus, after the
set−variable command executes, the string "Bloomington" is placed in the variable %line and the
buffer rigel2 now looks like this:

Richmond
Lafayette
Bloomington
<*>Indianapolis (where <*> is the current point)
Gary
=* me (BE..) == rigel2 == (c:/data/rigel2.txt) ===================

The buffer command @wc gets the current character in the buffer, it does not change the buffer
position. It is important to stress that the cursor position is not modified, in general a macro will
interrogate the character under the cursor and then affect the buffer (i.e. by moving the cursor,
deleting the character etc.) dependent upon the value of the character returned.

MicroEmacs '02

CurrentBufferVariables(4) 851

EXAMPLE

The @wc variable provides the most useful mechanism to modify the current buffer. The following
example is a macro called super−delete which is bound to <CTRL−del>. The macro deletes
characters under the cursor in blocks. If a white space character is under the cursor then all characters
up until the next non−white space character are deleted. If a non−white space character is under the
cursor then all non−white space characters up until the next white space character are deleted, then the
white space is deleted. White space in this context is a SPACE, tab or CR character.

;
;−−− Macro to delete the white space, or if an a word all of the
; word until the next word is reached.
;
define−macro super−delete
 !while ¬ &sin @wc " \t\n"
 forward−delete−char
 !done
 !repeat
 forward−delete−char
 !until &or &seq @wc "" ¬ &sin @wc " \t\n"
 !return
!emacro

global−bind−key super−delete "C−delete"

SEE ALSO

define−macro(2).

MicroEmacs '02

CurrentBufferVariables(4) 852

@y(4)

NAME

@y − Yank buffer variable

SYNOPSIS

@y − Yank buffer variable

DESCRIPTION

The Yank Buffer Variable @y retrieves the current yank(2) string from the kill buffer and returns it to
the caller.

EXAMPLE

The current contents of the yank buffer can be obtained using @y, so to set variable #l1 to the
current or last word if the cursor is not in a word, simply use:

 forward−char
 backward−word
 set−mark
 forward−word
 copy−region
 set−variable #l1 @y

SEE ALSO

yank(2), MacroArguments, MacroNumericArguments, define−macro(2).

MicroEmacs '02

@y(4) 853

Variables(4)

NAME

Variables − Macro variables

SYNOPSIS

#tn
$variableName
%variableName
.variableName
.commandName.variableName
:variableName
:bufferName:variableName

DESCRIPTION

Variables are part of MicroEmacs macro language and may be used wherever an argument is
required. The variable space comprises:−

− Register Variable
$ − System Variable
% − Global Variable
. − Command Variable
: − Buffer Variable

All variables hold string information, the interpretation of the string (numeric, string or boolean) is
determined when the variable is used within the context of the command. There are five types of
variable, Register Variables (prefixed with a hash #), System Variables (prefixed with a dollar $),
Global Variables (prefixed with a percentage %), Buffer Variables (prefixed with a colon :) and
Command Variables (prefixed with a period .).

Register Variables

Register Variables provide a set of 10 prefixed global (#g0 .. #g9), parent (#p0 .. #p9) and local (#l0 ..
#l9) register variables. The interpreted decode time of the register variables is significantly smaller
than other variable types as no name space search is performed.

Register variables are assigned using set−variable(2), their value may be queried with
describe−variable(2), unlike Global Buffer or Command variables they cannot be deleted.

Register variables are implemented like a stack, where the global registers are the top of the stack and
every executing macro gets its own set of resister variables (#l?). The macro also has access to the

MicroEmacs '02

Variables(4) 854

global registers (#g?) and its calling, or parent macro (#p?). If the macro has no parent macro then the
global registers are also the parent registers. Outside macros, i.e. using set−variable manually, the
global parent and local registers are the same.

Register variables are typically used for retaining short term state, computation steps etc. As with the
User Variables, the global register variables are global and care must be taken with nested macro
invocations to ensure that the register usage does not conflict.

System Variables

MicroEmacs defines many System variables which are used to configure many aspects of the editors
environment. The functionality of each system variable has been documented, they can be set and
described but cannot be unset. If the user attempts to set or describe a non−existent MicroEmacs
system variable (e.g. $PATH) the system environment is used instead, allowing the user to query and
alter the system environment.

Global, Command and Buffer Variables

The Global variables are denoted by an initial % character followed by the name of the variable
variableName. The variableName may be any ASCII character string up to 127 characters in length,
all characters of the name are significant. Shorter names are preferred as this speeds up execution.
Global Variables exist in a global context which all macros have access to.

Command variables exist within the scope of a command, they are denoted by the period (.) character.
They can be accessed by one of two forms, either .variableName or .commandName.variableName.
The first form, without the command name, assumes the scope to be the current command, as such
may only be used to access internal variables. The second form qualifies the scope by specifying the
command, this form is much more versatile and may be used to access any command variable from
any other command, e.g.

define−macro foo
 set−variable .foo "Hello world"
 1000 ml−write &cat "foo1: " .foo
 1000 ml−write &cat "foo2: " .foo.foo
!emacro
define−macro bar
 foo
 1000 ml−write &cat "bar1: " .foo
 1000 ml−write &cat "bar2: " .foo.foo
!emacro

bar

When bar is executed the following messages may be observed:−

foo1: Hello World
foo2: Hello World
bar1: ERROR
bar2: Hello World

MicroEmacs '02

Variables(4) 855

When a macro file or buffer is executed, they are executed within their own scope so local scope
command variables (form 1) may be created and used in that scope. Any such variables created are
automatically deleted at the end of execution. For example, the default color scheme generator macro
file, schemed.emf, creates command variables for the created colors to aid readability:−

add−color &set .green 3 0 200 0
a0dd−color &set .lgreen 11 0 255 0

...

add−color−scheme .scheme.cardback .lgreen .green .lgreen ...

The variables only exist as a file or buffer is being executed, they are not accessible by another
command once the command or buffer execution has finished.

Buffer variables are similar to Command variable in function and behaviour except that their scope is
of a buffer and are denoted by the colon (:) character. Access can be in one of two forms, either
:variableName where the scope is assumed to be the current buffer or :bufferName:variableName,
where the scope is explicitly given allowing access to any buffer variable, e.g.

find−buffer "foo"
set−variable :foo "Hello world"
find−buffer "bar"
set−variable :bar "Hello world"
1000 ml−write &cat ":foo " :foo
1000 ml−write &cat ":foo:foo " :foo:foo
1000 ml−write &cat ":bar " :bar
1000 ml−write &cat ":bar:bar " :bar:bar

When the above is executed the following messages may be observed:−

:foo ERROR
:foo:foo Hello World
:bar Hello World
:bar:bar Hello World

Global, Buffer and Command variables are automatically defined when they are used. A variable is
assigned with set−variable(2) and may be subsequently deleted with unset−variable(2). The current
assignment of a variable may be queried from the command line using describe−variable(2). e.g.

define−macro foo
!emacro
set−variable %foo "Some string"
set−variable :bar "Some string"
set−variable .foo.bar "Some string"

...

ml−write &spr "%s %s %s" %foo :bar .foo.bar

...

unset−variable :bar
unset−variable %foo
unset−variable .foo.bar

MicroEmacs '02

Variables(4) 856

An undefined variable returns the string ERROR, this known state is used to advantage with the
hilighting initialization, e.g.

!if &sequal .hilight.c "ERROR"
 set−variable .hilight.c &pinc .hilight.next 1
!endif
;
; Hi−light C Mode
;
0 hilight .hilight.c 2 50 $global−scheme

In this case the variable .hilight.c is explicitly tested for definition, if it is undefined then it is assigned
a new value.

Conventionally, names are separated with a minus sign character (−) e.g. foo−bar. It is strongly
advised that the name space is kept reasonably clean, since there are no restrictions on the number of
macros that may be defined, problems will arise if different macros use the same variables in different
contexts. Where possible, Command or Buffer Variables are preferable to Global Variables since they
have no side effects on other macros or buffers. It is advised that all variable names associated with a
particular macro set are prefixed with short identifier to make the variable name space unique. e.g. the
Metris macro prefixes all variables with :met−; the draw macro uses :dw−, the patience macro
:pat− etc.

Macro writers should endeavor to use the minimal number of variables, obviously the more variables
that exist in the system, the greater the lookup time to find a variable. Use Register Variables in
preference to Command, Global or Buffer variables for intimidate computation steps, temporary state
etc.

Note that Buffer Variables are automatically deleted when the buffer is deleted.

EXAMPLE

The following example is the macro to convert tabs to spaces, it is shown in two forms, with User
Variables and with Register Variables, the register variable implementation is obviously preferable
since no new variables have been defined.

User Variable Implementation

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 set−variable %curline $window−line ; Remember line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 3 drop−history
 set−variable %curcol $window−acol
 backward−delete−char
 &sub %curcol $window−acol insert−space

MicroEmacs '02

Variables(4) 857

 !force search−forward "\t"
 !done
 3 drop−history
 goto−line %curline
 update−screen
 ml−write "Converted tabs!"
!emacro

Register Variable Implementation

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 ; Remember line
 set−variable #l0 $window−line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 set−variable #l1 $window−acol
 backward−delete−char
 &sub #l1 $window−acol insert−space
 !force search−forward "\t"
 !done
 goto−line #l0
 screen−update
 ml−write "[Converted tabs]"
!emacro

SEE ALSO

@wc(4), define−macro(2), describe−variable(2), set−variable(2), unset−variable(2).

MicroEmacs '02

Variables(4) 858

MacroNumericArguments(4)

NAME

@#, @? − Macro numeric arguments

SYNOPSIS

@# − The numerical argument to a macro
@? − The truth of the numerical argument to a macro

DESCRIPTION

All built−in commands and macros are invoked with a numerical argument. The argument is obtained
from either the command line when the user invokes a command line such as:

esc 5 esc x forward−char

where the argument is entered after prefix 1 (esc). In this case, causing the cursor to be moved
forward 5 characters. Within a macro file the same operation is defined as:−

5 forward−char

In both cases the numerical argument 5 is passed to the command requesting that the resultant
operation is performed 5 times in succession before returning. The command itself is invoked once, it
is the responsibility of the command to iterate if requested.

The command determines how the numerical argument is interpreted, in the case of spell−word the
argument identifies the type of word that is being spelled and NOT the number of words to spell.

The invocation of named macros operate in the same way, the macro may use the variables @? and
@# to determine the status of the numerical argument passed to it. The variables are interpreted as
follows:

@?

A logical value defined as TRUE (1) if a numerical argument has been specified, otherwise FALSE
(0).

@#

A signed integer value of the supplied numeric argument. If no argument is supplied (i.e.
@?==FALSE) then @# is set to 1.

The @? and @# are only valid for the current macro invocation. Other macros or commands that are

MicroEmacs '02

MacroNumericArguments(4) 859

invoked have their own values of @? and @#.

EXAMPLE

Consider the following example, which sorts lines into alphabetical order using the sort−lines(2)
function. A new command sort−lines−ignore−case is created using a macro to sort lines case
insensitively regardless of the current buffer mode. The command sort−lines takes an optional
argument which determines which column should be used to perform the sort.

;
; sort−lines−ignore−case
; Sort lines case insensitively regardless of the current 'exact' mode
; setting.
define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 !if @?
 @# sort−lines
 !else
 sort−lines
 !endif
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

@? is used to test the presence of the argument, if it is false sort−lines is invoked without an
argument. When true the numeric argument is propagated e.g. @# sort−lines.

This particular macro highlights an important consideration when passing the numerical argument to
other functions, had the macro been implemented as:

; INCORRECT IMPLEMENTATION
define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 @# sort−lines
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

then when sort−lines−ignore−case is invoked with no arguments @# is defined as 1, this is would be
incorrectly propagated to sort−lines causing it to sort on column 1 rather than column 0 as expected.

SEE ALSO

MacroArguments, define−macro(2).

MicroEmacs '02

MacroNumericArguments(4) 860

Global Glossary
GLOSSARY

The following is a list of all keywords associated with MicroEmacs '02:

!abort(4) Exit macro with a FALSE status
!bell(4) Sound audio alarm
!continue(4) Restart a conditional loop
!done(4) End a conditional loop
!ehelp(4) Terminate a help definition
!elif(4) Conditional test statement, continuation
!else(4) Conditional alternative statement
!emacro(4) Terminate a macro definition
!endif(4) Conditional test termination
!force(4) Ignore command or macro status
!goto(4) Unconditional labeled jump
!if(4) Conditional test statement
!jump(4) Unconditional jump
!nmacro(4) Ignore command or macro status
!repeat(4) Conditional loop (post testing)
!return(4) Exit macro with a TRUE status
!tgoto(4) Conditional labeled jump
!tjump(4) Unconditional relative branch
!until(4) Test a conditional loop
!while(4) Conditional loop
$INFOPATH(5) GNU info files base directory
$LOGNAME(5) System user name (UNIX)
$MEBACKUPPATH(5) Backup file location
$MEBACKUPSUB(5) Backup file name modifier
$MENAME(5) MicroEmacs user name
$MEPATH(5) MicroEmacs search path
$ME_ISHELL(5) Windows ishell command.com
$ME_PIPE_STDERR(5) Command line diversion to stderr symbol
$auto−time(5) Automatic buffer save time
$box−chars(5) Characters used to draw lines
$buffer−backup(5) Buffer backup file name
$buffer−bhook(5) Buffer macro hook command name (buffer current)
$buffer−bname(5) Name of the current buffer
$buffer−dhook(5) Buffer macro hook command name (buffer deletion)
$buffer−ehook(5) Buffer macro hook command name (buffer swapped)
$buffer−fhook(5) Buffer macro hook command name (buffer creation)
$buffer−fmod(5) Buffer file modes (or attributes)
$buffer−fname(5) Name of the current buffer's file name
$buffer−hilight(5) Define current buffer hilighting scheme
$buffer−indent(5) Current buffer indentation scheme
$buffer−input(5) Divert buffer input through macro

Global Glossary 861

$buffer−ipipe(5) Divert buffer incremental pipe input through macro
$buffer−mask(5) Current buffer word class mask
$buffer−mode−line(5) Buffer mode line string
$buffer−names(5) Filtered buffer name list
$buffer−scheme(5) Buffer color scheme
$c−brace(5) C−mode; brace indentation
$c−case(5) C−mode; case indentation
$c−contcomm(5) C−mode; comment continuation string
$c−continue(5) C−mode; line continuation indent
$c−contmax(5) C−mode; line continuation maximum indent
$c−margin(5) C−mode; trailing comment margin
$c−statement(5) C−mode; statement indentation
$c−switch(5) C−mode; switch indentation
$command−names(5) Filtered command name list
$cursor−blink(5) Cursor blink rate
$cursor−color(5) Cursor foreground color
$cursor−x(5) Mouse X (horizontal) position
$cursor−y(5) Mouse Y (vertical) position
$debug(5) Macro debugging flag
$delay−time(5) Mouse time event delay time
$file−ignore(5) File extensions to ignore
$file−names(5) Filtered file name list
$file−template(5) Regular expression file search string
$fill−bullet(5) Paragraph filling bullet character set
$fill−bullet−len(5) Paragraph filling bullet search depth
$fill−col(5) Paragraph Mode; right fill column
$fill−eos(5) Paragraph filling; end of sentence fill characters
$fill−eos−len(5) Paragraph filling; end of sentence padding length
$fill−ignore(5) Ignore paragraph filling character(s)
$fill−mode(5) Paragraph mode; justification method
$find−words(5) Filtered word list
$fmatchdelay(5) Fence matching delay time
$frame−depth(5) Number of lines on the current frame canvas
$frame−width(5) Number of columns on the current frame canvas
$global−fmod(5) Global file modes (or attributes)
$global−scheme(5) Global buffer color scheme
$home(5) Users `home' directory location
$idle−time(5) System idle event delay time
$kept−versions(5) Number of backups to be kept
$line−scheme(5) Set the current line color scheme
$line−template(5) Command line regular expression search string
$ml−scheme(5) Message line color scheme
$mode−line(5) Mode line format
$mode−line−scheme(5) Mode line color scheme
$mode−names(5) Filtered mode name list
$mouse(5) Mouse configuration variable
$mouse−pos(5) Mouse position information
$mouse−x(5) Mouse X (horizontal) position
$mouse−y(5) Mouse Y (vertical) position

MicroEmacs '02

Global Glossary 862

$osd−scheme(5) OSD color scheme
$platform(5) MicroEmacs host platform identifier
$progname(5) Program file name
$random(5) Generate a random number
$rcs−ci−com(5) RCS (and SCCS) check in command
$rcs−cif−com(5) RCS (and SCCS) check in first command
$rcs−co−com(5) RCS (and SCCS) check out command
$rcs−cou−com(5) RCS (and SCCS) check out unlock command
$rcs−file(5) RCS (and SCCS) file name
$rcs−ue−com(5) RCS (and SCCS) unedit file command
$recent−keys(5) Recent key history
$repeat−time(5) Mouse time event repeat time
$result(5) Various command return values
$screen−depth(5) Number of character lines on the screen canvas
$screen−width(5) Number of character columns on the screen canvas
$scroll(5) Screen scroll control
$scroll−bar(5) Scroll bar configuration
$scroll−bar−scheme(5) Scroll bar color scheme
$search−path(5) MicroEmacs search path
$show−modes(5) Select buffer modes to display
$show−region(5) Enable the hilighting of regions
$status(5) Macro command execution status
$system(5) System configuration variable
$tabsize(5) Tab character width
$tabwidth(5) Tab character interval
$temp−name(5) Temporary file name
$time(5) The current system time
$timestamp(5) Time stamp string
$trunc−scheme(5) Truncation color scheme
$variable−names(5) Filtered variable name list
$version(5) MicroEmacs version date−code
$window−acol(5) Window cursor actual column
$window−aline(5) Window cursor actual line
$window−chars(5) Character set used to render the windows
$window−col(5) Window cursor column (no expansion)
$window−depth(5) Number of text lines in a window
$window−flags(5) Current window setup flags
$window−line(5) Window cursor line
$window−mode−line(5) Window mode line position
$window−scroll−bar(5) Window scroll bar (or separator) position
$window−wcol(5) Window cursor column (historic)
$window−width(5) Number of character columns in a window
$window−wline(5) Window cursor line (historic)
$window−x−scroll(5) Current window X scroll
$window−xcl−scroll(5) Current window current line X scroll
$window−y−scroll(5) Current window Y scroll
%company−name(5) Name of company for template
%compile−com(5) Default system compile command line
%cygnus−bin−path(5) Cygwin BASH directory

MicroEmacs '02

Global Glossary 863

%cygnus−hilight(5) Cygwin shell hilight enable flag
%cygnus−prompt(5) Cygwin shell prompt
%diff−com(5) Diff command line
%ftp−flags(5) Configure the FTP console
%gdiff−com(5) Gdiff command line
%grep−com(5) Grep command line
%http−flags(5) Configure the HTTP console
%http−proxy−addr(5) Set HTTP proxy server address
%http−proxy−port(5) Set HTTP proxy server port
%tag−file(5) Tag file name
%tag−option(5) Tag file search option
%tag−template(5) Tag file search string
&abs(4) Absolute value of a number
&add(4) Add two numbers
&and(4) Logical AND operator
&atoi(4) ASCII to integer conversion
&band(4) Bitwise AND operator
&bmode(4) Determine buffer mode
&bnot(4) Bitwise NOT operator
&bor(4) Bitwise OR operator
&bxor(4) Bitwise XOR operator
&cat(4) Concatenate two strings together
&cbind(4) Return the command a key is bound to
&cond(4) Conditional expression operator
&dec(4) Pre−decrement variable
÷(4) Division of two numbers
&equal(4) Numerical equivalence operator
&exist(4) Test if a variable or command exists
&find(4) Find a file on the search path
&gmode(4) Determine global mode
&great(4) Numerical greater than operator
&inc(4) Pre−increment variable
&indirect(4) Evaluate a string as a variable
&inword(4) Test for a word character
&irep(4) Case insensitive replace string in string
&isequal(4) Case insensitive String equivalence operator
&isin(4) Case insensitive test for string in string
&itoa(4) Integer to ASCII conversion
&kbind(4) Return the key a command is bound to
&ldel(4) Delete list item
&left(4) Return the left most characters from a string
&len(4) Return the length of a string
&less(4) Numerical less than operator
&lfind(4) Find list item
&lget(4) Get list item
&linsert(4) Insert list item
&lset(4) Set list item
&mid(4) Return a portion (middle) of a string
&mod(4) Modulus of two numbers

MicroEmacs '02

Global Glossary 864

&multiply(4) Multiply two numbers
&nbind(4) Return the numerial argument of a binding
&nbmode(4) Determine named buffer mode
&negate(4) Negation of two numbers
¬(4) Logical NOT operator
&opt(4) MicroEmacs optional feature test
&or(4) Logical OR operator
&pdec(4) Post−decrement variable
&pinc(4) Post−increment variable
®(4) Retrieve a registry value (with default)
&rep(4) Replace string in string
&right(4) Return the right most characters from a string
&risin(4) Recursive case insensitive test for string in string
&rsin(4) Recursively test for string in string
&sequal(4) String equivalence operator
&set(4) In−line macro variable assignment
&sgreat(4) String greater than operator
&sin(4) Test for string in string
&sless(4) String less than operator
&slower(4) Return the string converted to lower case
&sprintf(4) Formatted string construction
&stat(4) Retrieve a file statistic
&sub(4) Subtract two numbers
&supper(4) Return the string converted to upper case
&trboth(4) Return string trimmed of white chars on both sides
&trleft(4) Return string trimmed of white chars on left side
&trright(4) Return string trimmed of white chars on right side
&which(4) Find a program on the path
&xirep(4) Regex case insensitive Replace string in string
&xisequal(4) Case insensitive regex String equivalence operator
&xrep(4) Regex replace string in string
&xsequal(4) Regex string equivalence operator
.calc.result(5) Last calc calculation result
.which.result(5) Program path
0−9(9) UNIX t/nroff file
@0(4) Macro arguments (macro name)
@1(4) Macro arguments (first argument)
@2(4) Macro arguments (second argument)
@?(4) Macro arguments (numeric argument given)
@cc(4) Current command name
@cck(4) Current command key
@cg(4) Get a command name from the user
@cgk(4) Get a key from the user
@cl(4) Last command name
@clk(4) Last command key
@cq(4) Get a quoted command name from the user
@cqk(4) Get a quoted key from the user
@fs(4) Frame store variable
@hash(4) Macro arguments (numeric argument value)

MicroEmacs '02

Global Glossary 865

@mc(4) Message line character input request
@ml(4) Message line input request
@mn(4) Message line input as normal request
@mna(4) All input from Message line as normal
@mx(4) Message line input by executing command
@mxa(4) All input from Message line by executing command
@p(4) Macro arguments (calling macro name)
@s0(4) Last search's whole match string
@s1(4) Last search's first group value
@s2(4) Last search's second group value
@wc(4) Extract character from the current buffer
@wl(4) Extract a line from the current buffer
@y(4) Yank buffer variable
abort−command(2) (C−g) Abort command
about(2) Information About MicroEmacs
add−color(2) Create a new color
add−color−scheme(2) Create a new color scheme
add−dictionary(2) Declare existence of a spelling dictionary
add−file−hook(2) Declare file name context dependent configuration
add−global−mode(3) Set a global buffer mode
add−mode(3) Set a local buffer mode
add−next−line(2) Define the searching behavior of command output
add−spell−rule(2) Add a new spelling rule to the dictionary
alarm(3) Set an alarm
aman(3) Compile an nroff file into a buffer (UNIX)
append−buffer(2) Write contents of buffer to end of named file
ascii−time(3) Return the current time as a string
asm(9) Assembler File
asn.1(9) ASN.1 file
auto(2m) Automatic source file line type detection
auto−spell(3) Auto−spell support
auto−spell−buffer(3) Auto−spell whole buffer
auto−spell−ignore(3) Auto−spell ignore current word
auto−spell−reset(3) Auto−spell hilight reset
autosv(2m) Automatic file save
awk(9) AWK File
Bindings(2) Default Key Bindings
BufferVariables(4) Buffer variables
Build(2) Build
backup(2m) Automatic file backup of last edit
backward−char(2) (C−b) Move the cursor left
backward−delete−char(2) (backspace) Delete the previous character at the cursor position
backward−delete−tab(2) (S−tab) Delete white space to previous tab−stop
backward−kill−word(2) (esc backspace) Delete the previous word at the cursor position
backward−line(2) (C−p) Move the cursor to the previous line
backward−paragraph(2) (esc p) Move the cursor to the previous paragraph
backward−word(2) (esc b) Move the cursor to the previous word
bas(9) Visual Basic
bat(9) MS−DOS Batch File

MicroEmacs '02

Global Glossary 866

beginning−of−buffer(2) (esc <) Move to beginning of buffer/file
beginning−of−line(2) (C−a) Move to beginning of line
benchmrk(3f) Benchmark MicroEmacs macro processor speed
binary(2m) Binary editor mode
bnf(9) Backus−Naur Form
btm(9) 4−DOS Batch File
buffer−abbrev−file(2) Set buffers' abbreviation file
buffer−bind−key(2) Create local key binding for current buffer
buffer−help(3) Displays help page for current buffer
buffer−info(2) (C−x =) Status information on current buffer position
buffer−mode(2) (C−x m) Change a local buffer mode
buffer−setup(3) Configures the current buffer settings
buffer−unbind−key(2) Remove local key binding for current buffer
Client−Server(2) Client−Server Model
CmdVariables(4) Command variables
CommandVariables(4) Last, current and get a command key/name
CompanyProfiles(2) Defining a company profile
Compatibility(2) Compatibility with the original MicroEmacs
CurrentBufferVariables(4) Extract information from the current buffer
c(9) C programming language
c−hash−del(3) Remove C/C++ #define evaluation
c−hash−eval(3) Evaluate C/C++ #defines
c−hash−set−define(3) Set a C/C++ #define
c−hash−unset−define(3) Unset a C/C++ #define
calc(3) Integer calculator
capitalize−word(2) (esc c) Capitalize word
cbl(9) Cobol (85) File
cc(9) C++ programming language
change−buffer−name(2) (esc C−n) Change name of current buffer
change−directory(2) [C−x C−d] Change the current working directory
change−file−name(2) (C−x n) Change the file name of the current buffer
change−font(2) Change the screen font
change−frame−depth(2) Change the number of lines on the current frame
change−frame−width(2) Change the number of columns on the current frame
change−screen−depth(2) Change the number of lines on the screen
change−screen−width(2) Change the number of columns on the screen
change−window−depth(2) Change the depth of the current window
change−window−width(2) Change the width of the current window
charset−change(3) Convert buffer between two character sets
charset−iso−to−user(3) Convert buffer from ISO standard to user character set
charset−user−to−iso(3) Convert buffer from user to ISO standard character set
check−line−length(3) Check the length of text lines are valid
clean(3) Remove redundant white spaces from the current buffer
cls(9) Visual Basic
cmode(2m) C Programming language mode
command−apropos(2) (C−h a) List commands involving a concept
command−wait(2) Conditional wait command
comment−end(3) End the current comment
comment−line(3) Comment out the current line

MicroEmacs '02

Global Glossary 867

comment−restyle(3) Reformat the current comment
comment−start(3) Start a new comment
comment−to−end−of−line(3) Extend comment to end of line
compare−windows(2) Compare buffer windows, ignore whitespace
compare−windows−exact(3) Compare buffer windows, with whitespace
compile(3) Start a compilation process
copy−region(2) (esc w) Copy a region of the buffer
count−words(2) (esc C−c) Count the number of words in a region
cpp(9) C++ programming language
create−callback(2) Create a timer callback
create−frame(2) Create a new frame
crlf(2m) File's line feed style
crypt(2m) Encrypted file mode
csh(9) C−Shell file
ctags(3f) Generate a C tags file
ctrlz(2m) File's termination style
cvs(3) MicroEmacs CVS interface
cvs−add(3) MicroEmacs CVS interface − add file
cvs−checkout(3) MicroEmacs CVS interface − checkout files
cvs−commit(3) MicroEmacs CVS interface − commit changes
cvs−diff(3) MicroEmacs CVS interface − diff changes
cvs−gdiff(3) MicroEmacs CVS interface − graphical diff changes
cvs−log(3) MicroEmacs CVS interface − log changes
cvs−remove(3) MicroEmacs CVS interface − remove file
cvs−resolve−conflicts(3) MicroEmacs CVS interface − resolve conflicts
cvs−state(3) MicroEmacs CVS interface − list state of directory files
cvs−update(3) MicroEmacs CVS interface − update directory files
cygnus(3) Open a Cygwin BASH window
dbx(3) UNIX Debugger
def(9) C or C++ definition file
define−help(2) Define help information
define−macro(2) Define a new macro
define−macro−file(2) Define macro file location
del(2m) Flag buffer to be deleted
delete−blank−lines(2) (C−x C−o) Delete blank lines about cursor
delete−buffer(2) (C−x k) Delete a buffer
delete−dictionary(2) Remove a spelling dictionary from memory
delete−frame(2) Delete the current frame
delete−global−mode(3) Remove a global buffer mode
delete−indentation(3) Join 2 lines deleting white spaces
delete−mode(3) Remove a local buffer mode
delete−other−windows(2) (C−x 1) Delete other windows
delete−registry(2) Delete a registry tree
delete−some−buffers(2) Delete buffers with query
delete−window(2) (C−x 0) Delete current window
describe−bindings(2) (C−h b) Show current command/key binding
describe−key(2) (C−x ?) Report keyboard key name and binding
describe−variable(2) (C−h v) Describe current setting of a variable
describe−word(3) Display a dictionary definition of a word

MicroEmacs '02

Global Glossary 868

diff(3) Difference files or directories
diff−changes(3) Find the differences from a previous edit session
dir(2m) Buffer is a directory listing
directory−tree(2) Draw the file directory tree
display−matching−fence(3) Display the matching bracket
display−white−chars(3) Toggle the displaying of white characters
doc(9) ASCII plain text document file
dos2unix(3f) Convert DOS format files to UNIX format files
draw(3) Simple line drawing utility
eaf(8) MicroEmacs abbreviation file format
edf(8) MicroEmacs spelling dictionary file
edit(2m) Buffer has be changed
edit−dictionary(3) Insert a dictionary in a buffer
ehf(8) MicroEmacs help file
ehf(9) MicroEmacs '02 help file
ehftools(3f) Generate a MicroEmacs help file
emf(8) MicroEmacs macro file
emf(9) MicroEmacs '02 Macro File
emftags(3f) Generate a MicroEmacs macro tags file
end−kbd−macro(2) (C−x)) Stop recording keyboard macro
end−of−buffer(2) (esc >) Move to end of buffer/file
end−of−line(2) (C−e) Move to end of line
erf(8) MicroEmacs registry file
erf(9) MicroEmacs '02 registry file
etf(8) MicroEmacs template file format
etfinsrt(3) Insert template file into current buffer
exact(2m) Searching and sorting case sensitivity
exchange−point−and−mark(2) (C−x C−x) Exchange the cursor and marked position
execute−buffer(2) Execute script lines from a buffer
execute−file(2) (esc /) Execute script lines from a file
execute−kbd−macro(2) (C−x e) Execute a keyboard macro
execute−line(2) Execute a typed in script line
execute−named−command(2) [esc x] Execute a named command
execute−string(2) Execute a string as a command
execute−tool(3) Execute a user defined shell tool
exit−emacs(2) Exit MicroEmacs
expand−abbrev(2) Expand an abbreviation
expand−abbrev−handle(3) (esc esc) Expand an abbreviation handler
expand−iso−accents(3) Expand an ISO accent
expand−look−back(3) Complete a word by looking back for a similar word
expand−word(3) Complete a word by invocation of the speller
f(9) Fortran File
f77(9) Fortran 77 File
f90(9) Fortran 90 File
fence(2m) Auto fence matching mode
file−attrib(3) Set the current buffers system file attributes
file−browser(3) (f10) Browse the file system
file−browser−close(3) Close the file−browser
file−browser−swap−buffers(3) Swap between file−browser windows

MicroEmacs '02

Global Glossary 869

file−op(2) File system operations command
fileHooks(2) File Hooks
fill−paragraph(2) (esc o) Format a paragraph
filter−buffer(2) (C−x #) Filter the current buffer through an O/S command
find−bfile(3) (C−x 9) Load a file as binary data
find−buffer(2) (C−x b) Switch to a named buffer
find−cfile(3) Load a crypted file
find−file(2) (C−x C−f) Load a file
find−registry(2) Index search of a registry sub−tree
find−tag(2) (esc t) Find tag, auto−load file and move to tag position
find−word(3) Find a using spelling dictionaries
find−zfile(3) Compressed file support
fold−all(3) (f3) (Un)Fold all regions in the current buffer
fold−current(3) (f2) (un)Fold a region in the current buffer
forward−char(2) (C−f) Move the cursor right
forward−delete−char(2) (C−d) Delete the next character at the cursor position
forward−kill−word(2) (esc d) Delete the next word at the cursor position
forward−line(2) (C−n) Move the cursor to the next line
forward−paragraph(2) (esc n) Move the cursor to the next paragraph
forward−word(2) (esc f) Move the cursor to the next word
ftp(3) Initiate an FTP connection
fvwm(9) FVWM configuration file
fvwmrc(9) FVWM configuration file
gawk(9) GNU AWK File
gdb(3) GNU Debugger
gdiff(3) Graphical file difference
gdiff(3f) Command line graphical file difference
generate−tags−file(3) Generate a tags file
get−next−line(2) (C−x `) Find the next command line
get−registry(2) Retrieve a node value from the registry
global−abbrev−file(2) Set global abbreviation file
global−bind−key(2) (esc k) Bind a key to a named command or macro
global−mode(2) (esc m) Change a global buffer mode
global−unbind−key(2) (esc C−k) Unbind a key from a named command or macro
goto−alpha−mark(2) (C−x a) Move the cursor to a alpha marked location
goto−line(2) (esc g) Move the cursor to specified line
goto−matching−fence(2) (esc C−f) Move the cursor to matching fence
goto−position(2) Restore a stored position
goto−window(2) Restore a saved window to the current window (historic)
grep(3) Execute grep command
grow−window−horizontally(2) Enlarge current window horizontally (relative)
grow−window−vertically(2) Enlarge the current window (relative change)
h(9) C programming language header
help(2) (esc ?) Help; high level introduction to help
help−command(2) (C−h C−c) Help; command information
help−item(2) (C−h C−i) Help; item information
help−variable(2) (C−h C−v) Help; variable information
hide(2m) Hide buffer
hilight(2) Manage the buffer hilighting schemes

MicroEmacs '02

Global Glossary 870

hpj(9) MS−Windows Help Project File
htm(9) HyperText Markup Language File
html(9) HyperText Markup Language File
hunt−backward(2) (C−x C−h) Resume previous search in backward direction
hunt−forward(2) (C−x h) Resume previous search in forward direction
Installation(1) Installation details for MicroEmacs
Interfacing(2) Interfacing to external components
i(9) C/C++ preprocessor outpuit file
ifill−paragraph(3) (esc q) Format a paragraph
imakefile(9) Make file
indent(2) Manage the auto−indentation methods
indent(2m) Automatic indentation
info(3) Display a GNU Info database
info(9) GNU Info file
info−goto−link(3) Display Info on a given link
info−on(3) Display Info on a given topic
ini(9) MS−Windows Initialization File
insert−file(2) (C−x C−i) Insert file into current buffer
insert−file−name(2) (C−x C−y) Insert filename into current buffer
insert−macro(2) Insert keyboard macro into buffer
insert−newline(2) (C−o) Insert new line at cursor position
insert−space(2) Insert space(s) into current buffer
insert−string(2) Insert character string into current buffer
insert−tab(2) (C−i) Insert tab(s) into current buffer
ipipe−kill(2) Kill a incremental pipe
ipipe−shell−command(2) (esc backslash) Incremental pipe (non−suspending system call)
ipipe−write(2) Write a string to an incremental pipe
isearch−backward(2) (C−r) Search backwards incrementally (interactive)
isearch−forward(2) (C−s) Search forward incrementally (interactive)
ishell(3) Open a Cygwin BASH window
iso−accents−mode(3) ISO accent expansion short−cut mode
item−list(3) (F7) Abbreviated search and list buffer contents
item−list−close(3) (esc F7) Close the item list
item−list−find(3) Find the selected item in the item list
jav(9) Java programming language
java(9) Java programming language
javatags(3f) Generate a C tags file from Java sources
justify(2m) Justification Mode
kbd−macro−query(2) (C−x q) Query termination of keyboard macro
keyNames(2) Key Binding Names
kill−line(2) (C−k) Delete all characters to the end of the line
kill−paragraph(2) Delete a paragraph
kill−rectangle(2) (esc C−w) Delete a column of text
kill−region(2) (C−w) Delete all characters in the marked region
ksh(9) Korn shell file
l(9) LEX programming language
languageTemplates(2) File Language Templates
latex(9) TeX Documentation
letter(2m) Letter kill policy

MicroEmacs '02

Global Glossary 871

line(2m) Line kill policy
line−scheme−search(3) Search and annotate the current buffer
list−buffers(2) (C−x C−b) List all buffers and show their status
list−commands(2) (C−h c) List available commands
list−registry(2) Display the registry in a buffer
list−variables(2) (C−h v) List defined variables
localeSupport(2) Locale Support
lock(2m) Pipe cursor position lock
login(9) Shell user login file
lower−case−region(2) (C−x C−l) Lowercase a region (downcase)
lower−case−word(2) (esc l) Lowercase word (downcase)
MacroArguments(4) Arguments to macros
MacroNumericArguments(4) Numeric arguments to macros
Mahjongg(3) MicroEmacs '02 version of the solitaire Mah Jongg game
MainMenu(3) The top main menu
Match−It(3) MicroEmacs '02 version of the Match−It game
MessageLineVaraibles(4) Prompt the user for input on message line
MetaFont(9) MetaFont/MetaPost File
Metris(3) MicroEmacs '02 version of the falling blocks game
m4(9) M4 Macro Processor
magic(2m) Regular expression search
mail(3) Compose and send an email
mail−check(3) Check for new email
makefile(9) Make file
man(3) UNIX manual page viewer
man(9) UNIX Manual Page
man−clean(3) Clean UNIX manual page
mark−registry(2) Modify the operating mode of a registry node
me(1) MicroEmacs '02 text editor
me32.ini(8) Microsoft Window's Initialization (ini) File
memsdev(1) Microsoft Developer Studio Add−in for MicroEmacs '02
mf(9) MetaFont File
ml−bind−key(2) Create key binding for message line
ml−clear(2) Clear the message line
ml−unbind−key(2) Remove key binding from message line
ml−write(2) Write message on message line
mp(9) MetaPost File
nact(2m) Buffer not active
name−kbd−macro(2) Assign a name to the last keyboard macro
named−buffer−mode(2) Change a named buffer mode
narrow(2m) Buffer contains a narrow
narrow−buffer(2) Hide buffer lines
nawk(9) New AWK File
newline(2) (return) Insert a new line
next−buffer(2) (C−x x) Switch to the next buffer
next−frame(2) Change the focus to the next frame
next−window(2) (C−x o) Move the cursor to the next window
next−window−find−buffer(2) [] Split the current window and show new buffer
next−window−find−file(2) (C−x 4) Split the current window and find file

MicroEmacs '02

Global Glossary 872

normal−tab(3) Insert a normal tab
nroff(9) UNIX nroff file
ntags(3f) Generate a nroff tags file
occur(3) Regular expression search for occurrences
organizer(3) Calendar and address organizer
osd(2) Manage the On−Screen Display
osd−bind−key(2) Create key binding for OSD dialog
osd−dialog(3) OSD dialog box
osd−entry(3) OSD entry dialog box
osd−help(3) GUI based on−line help
osd−unbind−key(2) Remove key binding from OSD dialog
osd−xdialog(3) OSD Extended dialog box
over(2m) Over−strike Mode
Patience(3) MicroEmacs '02 version of Patience (or Solitaire)
p(9) Pascal File
paragraph−to−line(3) Convert a paragraph to a single line
pas(9) Pascal File
perl(9) Practical Extraction and Report Language File
perldb(3) Perl Debugger
pipe(2m) Incremental Pipe running
pipe−shell−command(2) (esc @) Execute a single operating system command
pl(9) Practical Extraction and Report Language File
pm(9) Practical Extraction and Report Language File
popup−window(2) Pop−up a window on the screen
prefix(2) Key prefix command
previous−window(2) (C−x p) Move the cursor to the previous window
print−buffer(2) Print buffer, with formatting
print−color(2) Create a new printer color
print−region(2) Print region, with formatting
print−scheme(2) Create a new printer color and font scheme
print−setup(3) Configure (*mS's printer interface
printall(3f) Formatted print job
profile(9) Shell user profile
py(9) Python Language File
python(9) Python Language File
query−replace−all−string(3) Query replace string in a list of files
query−replace−string(2) (esc C−r) Search and replace a string − with query
quick−exit(2) (esc z) Exit the editor writing changes
quiet(2m) Quiet mode
quote−char(2) (C−q) Insert literal character
RegisterVariables(4) Register variables
RegularExpressions(2) Regular Expressions
rbin(2m) Reduced binary editor mode
rc(9) Microsoft Developer resource file
rcs−file(2) (C−x C−q) Handle Revision Control System (RCS) files
read−file(2) (C−x C−r) Find and load file replacing current buffer
read−history(2) Read in session history information
read−registry(2) Read in a registry definition file
recenter(2) (C−l) Recenter the window (refresh the screen)

MicroEmacs '02

Global Glossary 873

reg(9) Registry file
regex−backward(3) Search for a magic string in the backward direction
regex−forward(3) Search for a magic string in the forward direction
replace−all−pairs(3) Replace string pairs in a list of files
replace−all−string(3) Replace string with new string in a list of files
replace−string(2) (esc r) Replace string with new string
reread−file(3) Reload the current buffer's file
resize−all−windows(2) Resize all windows (automatic change)
resize−window−horizontally(2) Resize current window horizontally (absolute)
resize−window−vertically(2) Resize the current window (absolute change)
restore−dictionary(3) Save dictionary user changes
restyle−buffer(3) Automatically reformat a buffer's indentation
restyle−region(3) Automatically reformat a regions indentation
reyank(2) (esc y) Restore next yank buffer
rgrep(3) Execute recursive grep command
rgy(9) Registry file
rul(9) Install Shield Rules
SearchGroups(4) Last search group values
s(9) Assembler File
save(2m) Flag buffer to be saved
save−all(3) Save all modified files (with query)
save−buffer(2) (C−x C−s) Save contents of changed buffer to file
save−buffers−exit−emacs(2) (esc z) Exit the editor prompt user to write changes
save−dictionary(2) Save changed spelling dictionaries
save−history(2) Write history information to history file
save−registry(2) Write a registry definition file
save−some−buffers(2) Save contents of all changed buffers to file (with query)
sch(9) Scheme File
scheme(9) Scheme File
scheme−editor(3) Color Scheme Editor
scm(9) Scheme File
screen−poke(2) Immediate write string to the screen
screen−update(2) (redraw) Force screen update
scroll−down(2) (C−n) Move the window down (scrolling)
scroll−left(2) (C−x <) Move the window left (scrolling)
scroll−next−window−down(2) (esc C−v) Scroll next window down
scroll−next−window−up(2) (esc C−z) Scroll next window up
scroll−right(2) (C−x >) Move the window right (scrolling)
scroll−up(2) (C−p) Move the window up (scrolling)
search−backward(2) (C−x r) Search for a string in the backward direction
search−forward(2) (C−x s) Search for a string in the forward direction
set−alpha−mark(2) (C−x C−a) Place an alphabetic marker in the buffer
set−char−mask(2) Set character word mask
set−cursor−to−mouse(2) Move the cursor to the current mouse position
set−encryption−key(2) (esc e) Define the encryption key
set−mark(2) (esc space) Set starting point of region
set−position(2) Store the current position
set−registry(2) Modify a node value in the registry
set−scroll−with−mouse(2) Scroll the window with the mouse

MicroEmacs '02

Global Glossary 874

set−variable(2) (C−x v) Assign a new value to a variable
set−window(2) Save the current window for restore (historic)
sh(9) Bourne shell file
shell(2) [C−x c] Create a new command processor or shell
shell−command(2) Perform an operating system command
show−cursor(2) Change the visibility of the cursor
show−region(2) Show the current copy region
shrink−window−horizontally(2) Shrink current window horizontally (relative)
shrink−window−vertically(2) Shrink the current window (relative change)
shut−down(3) Editor exit callback command
so(9) UNIX t/nroff include file
sort−lines(2) Alphabetically sort lines
sort−lines−ignore−case(3) Alphabetically sort lines ignoring case
spell(2) Spell checker service provider
spell−add−word(3) Add a word to the main dictionary
spell−buffer(3) Spell check the current buffer
spell−edit−word(3) Edits a spell word entry
spell−word(3) (esc $) Spell check a single word
split−window−horizontally(2) (C−x 5) Split current window into two (horizontally)
split−window−vertically(2) (C−x 2) Split the current window into two
sql(9) SQL File
start−kbd−macro(2) (C−x () Start recording keyboard macro
start−up(3) Editor startup callback command
stop−mail−check(3) Disable the check for new email
suspend−emacs(2) Suspend editor and place in background
symbol(3) Insert an ASCII character
Triangle(3) MicroEmacs '02 version of Triangle patience game
tab(2) (tab) Handle the tab key
tab(2m) Tabulation mode
tabs−to−spaces(3) Converts all tabs to spaces
tcl(9) TCL programming language
tcltags(3f) Generate a Tcl/Tk tags file
tcshrc(9) T−Shell start up file
tex(9) TeX Documentation
tex2nr(3) Convert a Latex file into nroff
texi(9) GNU Texinfo documentation file
texinfo(9) GNU Texinfo documentation file
textags(3f) Generate a LaTeX/BibTeX tags file
time(2m) File time stamping
time(3) Command time evaluator
tk(9) TK programming language
tni(9) UNIX t/nroff include file
translate−key(2) Translate key
transpose−chars(2) (C−t) Exchange (swap) adjacent characters
transpose−lines(2) (C−x C−t) Exchange (swap) adjacent lines
troff(9) UNIX troff file
txt(9) ASCII plain text file
UserProfiles(2) Defining a user profile
uncomment−line(3) Uncomment current line

MicroEmacs '02

Global Glossary 875

undo(2) (C−x u) Undo the last edit
undo(2m) Retain edit modifications
uniq(3) Make lines in a sorted list unique
universal−argument(2) (C−u) Set the command argument count
unmark−buffer(3) Remove buffer edited flag
unset−variable(2) Delete a variable
upper−case−region(2) (C−x C−u) Uppercase a region (upcase)
upper−case−word(2) (esc u) Uppercase word (upcase)
user−setup(3) Configure MicroEmacs for a specific user
usr(2m) User buffer modes
Variables(4) User defined macro variables
vb(9) Visual Basic
vhdl(9) VHDL hardware simulation File
view(2m) Read only
view−file(2) (C−x C−v) Load a file read only
vm(3) Email viewer
void(2) Null command
vrml(9) VRML File
which(3) Program finder
wish(9) TCL shell file
wrap(2m) Line wrap entered text
wrap−word(2) Wrap word onto next line
write−buffer(2) (C−x C−w) Write contents of buffer to named (new) file
x86(9) Intel .x86 Assembler File
y(9) YACC programming language
yank(2) (C−y) Paste (copy) kill buffer contents into buffer
yank−rectangle(2) (esc C−y) Insert a column of text
zfile−setup(3) Compressed file support setup
zsh(9) Z−Shell file

MicroEmacs '02

Global Glossary 876

!return(4)

NAME

!return, !abort − Exit macro

SYNOPSIS

!return [n]
!abort [n]

DESCRIPTION

The !return directive causes the current macro to exit with a TRUE status, either returning to the
caller (if any) or to interactive mode. If an argument n is specified then the return status is determined
by the value of n.

!abort has the same effect as !return only always returning a FALSE status to halt the execution of
any calling macro. If an argument n is given to !abort the bell is also rung, the valid values of n are
the same as for the !bell(4) directive.

EXAMPLE

The following example checks the current language and warns if it has not be set, i.e. Default.

; Check the current language

!if ¬ &seq %language "Default"
 !return
!endif
ml−write "Warning − you have not setup the Language − use user−setup"

The following example is shows the logic of the !return directive:−

; !return example
define−macro i−will−return
 ml−write "you will see me"
 !return
 ml−write "you wont see me"
!emacro

define−macro test−return
 ml−write "you will see me"
 i−will−return
 ml−write "you will see me"
!emacro

MicroEmacs '02

!return(4) 877

Similarly, for the !abort directive

; !abort example
define−macro i−will−abort
 ml−write "you will see me"
 !abort
 ml−write "you wont see me"
!emacro

define−macro test−abort
 ml−write "you will see me"
 i−will−abort
 ml−write "you wont see me"
!emacro

For the last two examples above, all the "will"s are displayed and none of the "wont"s are.

SEE ALSO

define−macro(2), !bell(4), !if(4), !goto(4).

MicroEmacs '02

!return(4) 878

!bell(4)

NAME

!bell − Sound audio alarm

SYNOPSIS

!bell [n]

DESCRIPTION

!bell gives a warning (audible or visual) to alert the user of a problem. !bell honors the quiet(2m)
mode, as such if quiet mode is disabled an audible warning is given, otherwise a visual warning is
given to the user (usually the message "[BELL]" in the bottom left hand corner).

The optional numerical argument n can be used to over−ride the current setting of the quite, a value
of 0 specifies a quite bell, 2 an audible one, when omitted the default is 1 for honoring the quite
mode.

!bell is generally used in conjunction with !abort, the !bell function warning the user and the !abort
function to quit the macro.

EXAMPLE

The following example checks for incoming mail and is taken from mail.emf. If any mail has arrived
an audible warning is assured by toggling the quiet mode.

;
; Mail checker
define−macro mail−check
 !if &seq &set %vm−mail−src ® "/history" &cat $platform "/mail−src" "" ""
 ml−write "[Incoming mail file not setup! Use Help/User setup]"
 !abort
 !endif
 600000 create−callback mail−check
 ml−write &spr "Checking for mail in %s..." %vm−mail−src
 set−variable #l0 &cond &gre &stat "s" %vm−mail−src 0 "M" "−"
 !if ¬ &seq &mid $mode−line 2 1 #l0
 set−variable #l1 &rig $mode−line &cond &seq &mid $mode−line 2 1 "%" 4 3
 set−variable $mode−line &cat &cat &lef $mode−line 2 #l0 #l1
 screen−update
 !if &seq #l0 "M"
 ; use no argument to the global−mode so it toggles it back to its original state
 !bell
 global−mode "quiet"
 !bell
 global−mode "quiet"

MicroEmacs '02

!bell(4) 879

 !endif
 !endif
 ml−clear
!emacro

SEE ALSO

!abort(4), abort−command(2), quiet(2m).

MicroEmacs '02

!bell(4) 880

!while(4)

NAME

!while, !continue, !done − Conditional loop

SYNOPSIS

!while condition

... loop body ...
[!continue]
!done DESCRIPTION

The !while directive allows statements only to be executed if a condition specified in the directive is
met. Every line following the !while directive, until the first !done directive, is only executed if the
expression following the !while directive evaluates to a TRUE value.

A !continue may be used in the loop, this immediately returns control to the !while statement and
skips the rest of the section.

!while statement may not be nested. That is, only one !while statement may be outstanding at a
time, a !repeat(4) statement may be used within the !while to create an inner loop if required.
Alternatively the !goto(4) used in conjunction with the !if(4) statement may be used to construct
loops.

EXAMPLE

For example, the following macro segment fills to the fill column with spaces.

!while &less $curcol $fill−col
 insert−string " "
 !if &equal %example "1" ; Silly to show continue
 !continue ; Goto !while
 !endif
 ml−write "You wont see me if %example = 1"
!done

SEE ALSO

!if(4), !goto(4), !repeat(4).

MicroEmacs '02

!while(4) 881

!emacro(4)

NAME

!emacro − Terminate a macro definition
!ehelp − Terminate a help definition

SYNOPSIS

define−macro macro−name

... macro body ...

!emacro
define−help item−name

... help body ...

!ehelp

DESCRIPTION

!emacro terminates the storage of an open macro, (opened with define−macro(2)). Only the lines
between define−macro and the !emacro directive comprise the new macro macro−name.

Similarly !ehelp terminates the storage of an open help definition, (opened with define−help(2)). Only
the lines between define−help and the !ehelp directive comprise the new help text for item
item−name.

!emacro and !ehelp may not be used in any other context.

EXAMPLE

For example if a file is being executed contains the text:

;
; Read in a file in view mode, and make the window red
;
define−macro view−a−file
 find−file @ml"File to view: "
 1 buffer−mode "view"
 set−variable $buffer−bcol %red
!emacro

define−help view−a−file
 This is the help text for the macro view−a−file.
!ehelp

MicroEmacs '02

!emacro(4) 882

ml−write "[view−a−file macro has been loaded]"

then only the lines between the define−macro command and the !emacro directive are stored in
macro view−a−file and the lines between the define−help command and the !ehelp directive are
stored as help for view−a−file. The ml−write line is executed when the file is loaded, and the message
will appear on the message line, this does not however form part of the macro or help.

SEE ALSO

Operating Modes, define−macro(2), define−help(2).

MicroEmacs '02

!emacro(4) 883

!if(4)

NAME

!if, !elif, !else, !endif − Conditional statements

SYNOPSIS

!if condition

... condition body ...
[!elif condition

... condition body ...
]
[!else

... condition body ...
]
!endif DESCRIPTION

The conditional directives allow statements to be executed only if a condition specified in the
directive is met, as follows:−

Every line following the !if directive, until the first !elif, !else or !endif directive, is only
executed if the expression following the !if directive evaluates to a TRUE value (non−zero).

♦

If the !if evaluates to FALSE and a !elif directive is next then the expression following the !if
is evaluated and following statements are executed if TRUE.

♦

If no !if or !elif is found to be TRUE and a !else is found then the statements following it are
executed.

♦

The condition may be any logical condition as evaluated by the variable functions (e.g. &equal(4))
returning TRUE or FALSE. An integer value, non−zero evaluates TRUE, zero evaluates to FALSE. A
non−numerical argument, such as a string is always FALSE.

The conditional body may be any MicroEmacs '02 function, macro or directive with the exception of
define−macro and !emacro. All directives that alter the execution of the macro are handled correctly
within the !if statement (e.g. !goto, !return etc.

EXAMPLE

The following macro segment creates the portion of a text file automatically. (yes believe me, this will
be easier to understand then that last explanation....)

!if &sequal %curplace "timespace vortex"

MicroEmacs '02

!if(4) 884

 insert−string "First, rematerialize\n"
!endif
!if &sequal %planet "earth" ;If we have landed on earth...
 !if &sequal %time "late 20th century" ;and we are then
 ml−write "Contact U.N.I.T."
 !elif &sequal %time "pre 20th century"
 ml−write "start praying for a miracle"
 !else
 insert−string "Investigate the situation....\n"
 insert−string "(SAY 'stay here Sara')\n"
 !endif
!else
 set−variable %conditions @ml"Atmosphere conditions outside? "
 !if &sequal %conditions "safe"
 insert−string &cat "Go outside......" "\n"
 insert−string "lock the door\n"
 !else
 insert−string "Dematerialize..try somewhere else"
 newline
 !endif
!endif

SEE ALSO

Variable Fuctions, !goto(4), &equal(4), !return(4), $status(5).

MicroEmacs '02

!if(4) 885

!force(4)

NAME

!force − Ignore command or macro status

SYNOPSIS

!force [n] command

DESCRIPTION

!force ignores the return status of a command while executing a macro. When MicroEmacs '02
executes a macro, if any command fails, the macro is terminated at that point. If a line is preceded by
a !force directive, execution continues whether the command succeeds or not. $status(5) may be used
following !force to determine if the command failed or not.

A double !force can be used to catch a user termination (via the abort−command(2) bound to C−g). A
macro command aborted by the user will be terminated even with a single !force directive, but not
with two. See the example below.

When specifying a numerical argument with a command, it is placed after the !force directive and
before the command i.e.

!force 1 forward−char

EXAMPLE

The following example shows how !force is used in conjunction with $status.

; Merge the top two windows

push−position ;remember where we are
1 next−window ;go to the top window
delete−window ;merge it with the second window
!force pop−position ;This will continue regardless
!if $status
 ml−write "Call PASSED"
!else
 ml−write "Call FAILED"
!endif

The following example creates an infinite loop that can only be broken out of by a user abort. The
calling macro catches this by using a double !force and continues. This concept is used by commands
which take a considerable amount of time yet cannot be simply aborted by the user such as the
spell−checker's best guess list generator.

MicroEmacs '02

!force(4) 886

define−macro infinite−loop
 set−variable #l0 1
 !while 1
 ml−write &cat "In loop, C−g to exit: " &pinc #l0 1
 !done
!emacro

define−macro catch−abort
 !force !force infinite−loop
 ml−write "You will see this"
!emacro

SEE ALSO

$status(5).

MicroEmacs '02

!force(4) 887

!goto(4)

NAME

!goto − Unconditional labeled jump
!tgoto − Conditional labeled jump

SYNOPSIS

!goto label

...
*label

!tgoto conditionlabel

...
*label DESCRIPTION

Flow can be controlled within a MicroEmacs '02 macro using the !goto directive. It takes as an
argument a label. A label consists of a line starting with an asterisk (*) and then an alphanumeric
label. Only labels in the currently executing macro can be jumped to, trying to jump to a non−existing
label terminates execution of a macro. labels may be located at any position within the macro
(forwards or backwards from the !goto).

A conditional jump may be implemented with a !tgoto, this takes an additional argument condition,
which may be a literal numeric value, a variable or an evaluated expression (see Variable Functions).
If the condition evaluates to TRUE (or non−zero) then the branch is taken and control continues from
the label.

!tgoto is an ideal replacement for !while(4) and !repeat(4) where nested loops are required.

EXAMPLE

For example, create a block of DATA statements for a BASIC program:

 insert−string "1000 DATA "
 set−variable %linenum 1000
*nxtin
 screen−update ;make sure we see the changes
 set−variable %data @ml"Next number: "
 !if &equal %data 0
 !goto finish
 !endif
 !if &greater $curcol 60
 2 backward−delete−char

MicroEmacs '02

!goto(4) 888

 newline
 set−variable %linenum &add %linenum 10
 insert−string &cat %linenum " DATA "
 !endif
 insert−string &cat %data ", "
 !goto nxtin
*finish
 2 backward−delete−char
 newline

Not that any of us are writing basic programs these days !!

NOTES

!goto and !tgoto are expensive operations because a symbolic name lookup is performed in the macro
file. For time critical macros then the !jump(4) and !tjump(4) directives should be used as these do not
perform a symbolic name search. The jump equivalents are source sensitive since a line displacement
rather than a label is used − this makes them a little dangerous to use.

SEE ALSO

Variable Functions, !if(4), !jump(4), !repeat(4), !return(4), !tjump(4), !while(4).

MicroEmacs '02

!goto(4) 889

!jump(4)

NAME

!jump − Unconditional relative branch
!tjump − conditional relative branch

SYNOPSIS

!jump offset
!tjump conditionoffset

DESCRIPTION

Flow can be controlled within a MicroEmacs '02 macro using the !jump directive. It takes as a
numerical argument offset. The offset is a signed relative displacement, it may be a literal numeric
value, a variable or an evaluated expression (see Variable Functions). The displacement to jump starts
from the current !jump line. (i.e. 0 goto) would loop forever as it jumps to itself). Negative offset
branches backwards, positive offset forwards.

A conditional relative branch, with a numerical displacement is specified using !tjump. This has an
additional argument condition which is evaluated and if TRUE (Non−zero) then the branch is taken.
The condition may be a variable or an evaluated expression.

!jump and !tjump are fast equivalents of !goto(4) and !tgoto(4), respectively. !jump should be used
with care as these calls are source sensitive and unexpected results may be obtained if the offset's are
specified incorrectly.

WARNING

Comments are not counted as valid lines within the relative displacement, these are stripped out when
the macro is loaded. When using a relative branch ensure that ONLY the code lines are counted.

EXAMPLE

For some seriously dirty macro tricks then the !jump directive becomes very useful. The following
example is taken from the Metris macro (which is packed with goodies if you can find time to work
out what it does !!). The following example uses the random number generator $random(5) to
generate a random number which scaled and used as a !jump offset, thereby creating a switch type
statement.

0 define−macro met−select−piece
 !jump &mul 5 &add 1 &div &mod $random 71 10
 set−variable :met−np1 " X " ; 1st 3 lines are dummies to get offset right

MicroEmacs '02

!jump(4) 890

 set−variable :met−np1 " X "
 set−variable :met−np1 " X "
 set−variable :met−np1 " X "
 set−variable :met−np1 " X "
 set−variable :met−np2 "XX "
 set−variable :met−np3 " X "
 set−variable :met−ncol %lyellow
 !return
 set−variable :met−np1 "XX "
 set−variable :met−np2 "XX "
 set−variable :met−np3 " "
 set−variable :met−ncol %yellow
 !return
 set−variable :met−np1 "X "
 set−variable :met−np2 "XX "
 set−variable :met−np3 " X "
 set−variable :met−ncol %lmagenta
 !return
 set−variable :met−np1 " X"
 set−variable :met−np2 " XX"
 set−variable :met−np3 " X "
 set−variable :met−ncol %lgreen
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 " XX"
 set−variable :met−ncol %magenta
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 "XX "
 set−variable :met−ncol %green
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 " X "
 set−variable :met−ncol %lblue
 !return
 set−variable :met−np1 " X "
 set−variable :met−np2 " X "
 set−variable :met−np3 "X X"
 set−variable :met−ncol %lred
!emacro

SEE ALSO

Variable Fuctions, !goto(4), !if(4), !repeat(4), !return(4), !tgoto(4), !while(4).

MicroEmacs '02

!jump(4) 891

!nmacro(4)

NAME

!nmacro − Execute line as if not in a macro

SYNOPSIS

!nmacro command

DESCRIPTION

!nmacro causes command to be executed as if it were initiated from the command line by the user,
rather than from the macro context. When MicroEmacs '02 executes a macro, by default any input the
command requires is expected on the same line immediately following the command. If a line is
preceded by a !nmacro (or !nma) directive, the command is executed as if it was invoked from the
command line by the user, as such, the rest of the line is ignored and all input is obtained directly
from the user, as per normal command interaction.

EXAMPLE

The following example is taken from macro file meme3_8.emf and shows how to add a buffer
mode.

; Add a buffer mode
define−macro add−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 buffer−mode @1
 !if ¬ $status
 ; No − use 1 buffer−mode to add a mode
 !nma 1 buffer−mode
 !endif
!emacro

The first line checks that the mode to add has not already been given as a macro argument, e.g. by
executing the following line

buffer−add−mode "view"

If this line fails then the argument was not specified and must be obtained from the user as normal.

NOTES

Individual arguments may be obtained from the user using the @mn(4) interactive macro variables.

MicroEmacs '02

!nmacro(4) 892

SEE ALSO

@mn(4).

MicroEmacs '02

!nmacro(4) 893

!repeat(4)

NAME

!repeat, !until − Conditional loop (post testing)

SYNOPSIS

!repeat

... loop body ...
!until condition DESCRIPTION

Th !repeat command operates in a similar fashion to !while/!done except the condition is tested at the
end. Control finishes if the condition is met. As with the !while(4) there is no nesting of multiple
!repeat statements.

EXAMPLE

For example, the following macro segment fills to the fill column with spaces.

!repeat
 insert−string " "
!until &equal $curcol $fill−col

SEE ALSO

!if(4), !goto(4), !repeat(4).

MicroEmacs '02

!repeat(4) 894

info(3)

NAME

info − Display a GNU Info database
info−on − Display Info on a given topic
info−goto−link − Display Info on a given link
$INFOPATH − GNU info files base directory
.info.path − Cached info search path

SYNOPSIS

info

info−on topic−str

info−goto−link link−str

$INFOPATH string

.info.path string

DESCRIPTION

info interprets the GNU info pages, and presents the info file information within a buffer window
called *info XXXXX, where XXXXX is the name of the info file. The root of the info page is
displayed and may be traversed by selecting the links with the mouse, or by using the standard info
traversal keys.

The root of the info tree is, by default, a file called dir, which points to the other information sources.
The default search paths for the info directories are:−

c:/info − MS−DOS and MS−Windows (all).
/usr/local/info − All UNIX platforms.

The root directory may also be specified with the $INFOPATH environment variable. This is a colon
(:) or semi−colon (;) separated list of directory paths which specify the locations of the info files, for
UNIX and Microsoft DOS/Windows environment's, respectively.

info−on gets info on a user specified top level topic, e.g. "gcc", the info file "topic−str.info" must
be found in the info search path.

info−goto−link gets and displays info on a user specified link or subject. The link may be within the
currently displayed topic (the link−str need only specify the subject node name) or a subject within
another topic (in which case the link−str takes the following form "(topic) subject").

MicroEmacs '02

info(3) 895

NOTES

info is a macro implemented in file info.emf.

When an info command is run for the first time, the info search path is constructed and stored locally
in the command variable .info.path. This variable must be directly changed by the user if changes to
the info search path are required.

SEE ALSO

info(9).

MicroEmacs '02

info(3) 896

$MENAME(5)

NAME

$MENAME − MicroEmacs user name
$LOGNAME − System user name (UNIX)

SYNOPSIS

$MENAME string; Default is guest

$LOGNAME string

DESCRIPTION

$MENAME is an environment variable used to initialize the MicroEmacs '02 environment for a
given user. At start−up, if $MENAME is defined then the user's configuration and history file
"name.erf" is located and read, where name is the variable value.

If at start−up $MENAME is not defined then $MENAME is assigned the value of $LOGNAME, if
$LOGNAME is not defined the file default.emf is located and executed. This macro file is
created by user−setup(3) to set $MENAME to the default user. If this fails then $MENAME defaults
to guest and a default configuration is used.

The user configuration and history file has many uses, see user−setup(3) and read−history(2) for more
information.

Microsoft Windows Environments

Within Microsoft Windows environments, if login is enabled then the users login name is
automatically used as the first choice login name. No environment variables need to be set. If login is
not enabled then one of the aforementioned methods should be used.

UNIX

In UNIX environments, $LOGNAME is typically defined.

NOTES

The three variables must be defined before start−up for them to have any effect.

$LOGNAME is often defined by the system and should not be altered. If a different user name is

MicroEmacs '02

$MENAME(5) 897

required, setting of $MENAME is preferable.

SEE ALSO

user−setup(3), read−history(2), $MEPATH(5).

MicroEmacs '02

$MENAME(5) 898

$buffer−backup(5)

NAME

$buffer−backup − Buffer backup file name

SYNOPSIS

$buffer−backup FileName

DESCRIPTION

$buffer−backup is automatically set to the file name the current buffer's file would be backed up to if
required. If the current buffer has no file name the variable will be set to "".

The value depends on whether DOS compliant file names are being used (see $system(5)), whether
multiple backups are being kept (see $kept−versions(5)) and the setting of the environment variables
$MEBACKUPPATH and $MEBACKUPSUB. The variable does not take into consideration the
current setting of the buffer's backup(2m) mode which determine whether a backup will be made.

The environment variable $MEBACKUPPATH can be used to change the location of the backup
files, it can also be used to prepend the backup filename with a string. $MEBACKUPPATH can
specify an absolute path (e.g. "c:/temp/mebackup/") or a relative path (e.g. "mebackup/"
which will move all backup files into a sub−directory automatically in the files directory).

The trailing '/' is important as the file name is simple appended, i.e. is creating a backup for
"c:/foo/bar.txt" and $MEBACKUPPATH is set the "backup" the backup file name will be
"c:/foo/backupbar.txt".

The environment variable $MEBACKUPSUB can be used to substitute strings within the backup
filename for another. The format of the value is a list of sed(1) string substitutions, i.e.

$MEBACKUPSUB="s/from1/to1/ s/from2/to2/ s/fr..."

The 3 divide characters do not have to be '/'s, they can be any character as long as they are the same,
e.g. "sXfrom1Xto1X". When define MicroEmacs performs a simple search for string "from1" (i.e.
no regex support) and replaces any match with the string "to1" etc.

EXAMPLE

The following example compares the differences between the current version and the bucked up
version using the diff(3) macro. The diff−changes macro is defined in tools.emf.

define−macro diff−changes
 !if &seq $buffer−fname ""

MicroEmacs '02

$buffer−backup(5) 899

 ml−write "[Current buffer has no file name]"
 !abort
 !endif
 !if &bmod "edit"
 !if &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 !endif
 !endif
 ; get the real file name − this only has effect on unix, copes with symbolic links
 set−variable #l0 &stat "a" $buffer−fname
 ; get the backup name
 set−variable #l1 $buffer−backup
 diff #l1 #l0
!emacro

NOTES

The variable $buffer−backup can not be set, any attempt to set it will result in an error.

On Windows and DOS platforms if the $MEBACKUPPATH and $MEBACKUPSUB variables are
used all remaining ':' characters are changed to '/'s as these are illegal in the middle of a filename.

SEE ALSO

backup(2m), $system(5), $kept−versions(5).

MicroEmacs '02

$buffer−backup(5) 900

$search−path(5)

NAME

$search−path − MicroEmacs search path $MEPATH − MicroEmacs search path

SYNOPSIS

$search−path string

[Microsoft Windows/MS−DOS]
MEPATH= <path1>;<path2>;....;<pathn>

[UNIX]
MEPATH= <path1>:<path2>:....:<pathn>

DESCRIPTION

$search−path is initialized to the environment variable $MEPATH, and identifies the search paths
which are searched to locate editor specific files. Multiple search paths may be specified, separated by
the platform path separator (semi−colon (';') on Microsoft Windows or MS−DOS environments and a
colon (':') on UNIX environments). Where multiple search paths are defined then they are search left
to right.

The search paths are generally ordered from highest priority to lowest priority and might be arranged
such as:−

MEPATH=<user>:<company>:<me>

where <user> represents the users path; <company> is the company file path (e.g. template files) and
<me> are the standard MicroEmacs '02 files.

This would correspond to a directory installation, of user foo such as:−

/usr/foo/microemacs − User files.
/usr/group/microemacs − Company wide files
/usr/local/microemacs − MicroEmacs installation directory

and a $MEPATH such as:−

MEPATH=/usr/foo/microemacs:/usr/group/microemacs:/usr/local/microemacs

USAGE

The current working directory is checked first for the location of a file.

MicroEmacs '02

$search−path(5) 901

$search−path is used to locate all macro files, and other files located with operators such as
&find(4).

NOTES

If $MEPATH is not set then $search−path is initialized to the environment variable $PATH.

On UNIX systems the path /usr/local/microemacs is automatically added to the end of $MEPATH,
or if not defined, to the beginning of $PATH.

SEE ALSO

Variable Functions, execute−file(2), $MENAME(5), &find(4).

MicroEmacs '02

$search−path(5) 902

ishell(3)

NAME

ishell − Open a interactive shell window
$ME_ISHELL − Windows ishell command comspec

PLATFORM

Windows '95/'98/NT − win32
Unix − All variants.

SYNOPSIS

ishell

[Windows Only]
$ME_ISHELL = <comspec>

DESCRIPTION

ishell creates an interactive shell window within the a MicroEmacs buffer window, providing access
to the native operating systems command shell. Within the window commands may be entered and
executed, the results are shown in the window.

On running ishell a new buffer is created called *shell* which contains the shell. Executing the
command again creates a new shell window called *shell1*, and so on. If a *shell* window is
killed off then the available window is used next time the command is run.

Additional controls are available within the shell window to control the editors interaction with the
window. The operating mode is shown as a digit on the buffer mode line, this should typically show
"3", which corresponds to F3. The operating modes are mapped to keys as follows:−

F2

Locks the window and allows local editing to be performed. All commands entered into the window
are interpreted by the editors. F2 mode is typically entered to cut and paste from the window, search
for text strings etc. In mode 2, a 2 is shown on the mode line.

F3

The normal operating mode, text typed into the window is presented to the shell window. Translation
of MicroEmacs commands (i.e. beginning−of−word) are translated and passed to the shell. For
interactive use this is the default mode. In mode 3, a 3 is shown on the mode line.

MicroEmacs '02

ishell(3) 903

F4

All input is passed to the shell, no MicroEmacs commands are interpreted and keys are passed straight
to the shell window. This mode is used where none of the keys to be entered are to be interpreted by
MicroEmacs. Note that you have to un−toggle the F4 mode before you can swap buffers as this
effectively locks the editor into the window.

F5

Clears the buffer contents. This simply erases all of the historical information in the buffer. The
operation of the shell is unaffected.

To exit the shell then end the shell session using the normal exit command i.e. "exit" or "C−d" as
normal and then close the buffer. A short cut "C−c C−k" is available to kill off the pipe. However, it
is not recommended that this method is used as it effectively performs a hard kill of the buffer and
attached process

UNIX

The UNIX environment uses the native pty support of the operating system. The shell that is opened
is determined by the conventional $SHELL environment variable.

The shell window assumes that the user is running some sort of Emacs emulation on the command
line (i.e. VISUAL=emacs for ksh(1), zsh(1), bash(1), tsch(1)) and passes Emacs controls for
command line editing.

The shell window understands re−size operations and provides a limited decoding of the termio
characters for a VT100 screen. From within the shell window it is possible to run the likes of top(1)
correctly. It is even possible to run another MicroEmacs terminal session !!

WINDOWS

The Windows environment provides a very poor command shell facility, this is more of a
fundamental problem with the operating system than anything else. Unfortunately NT is no better
than Windows '95/'98, stemming from the fact that the Windows is not actually an O/S but a huge
window manager, hindered by legacy issues of MS−DOS.

For those familiar with the UNIX command shell then it is strongly recommended that the cygnus(3)
BASH shell is used as an alternative. This is a far more responsive shell window and provides the
familiar Emacs editing of the command line.

The command shell under Windows is slow and very unresponsive, this would appear to be a problem
with the command.com as the same problems are not apparent with the cygwin environment.
However, the shell window is good for kicking off command line utilities (such as make), or any
command line processes that generate output on stdout as all of the output is captured in the buffer
window which can be scrolled backwards for post analysis. For this very reason it is more preferable
to the standard MS−DOS box.

MicroEmacs '02

ishell(3) 904

It is not possible to run any utilities that use embedded screen control characters as these are not
interpreted by the editor.

Changing the Shell

The default shell that is executed is defined by the environment variable $COMSPEC. Where the
user is using a different command shell (i.e. 4−DOS), then problems may arise if this is an old 16−bit
executable. The shell that MicroEmacs executes may be overridden by setting the environment
variable $ME_ISHELL. This is typically set in the me32.ini(8) file i.e.

[username]
ME_ISHELL=c:\windows\command.com

Bugs

WinOldAp

Winoldap is created by the Microsoft environment whenever a shell is created. On occasions where
processes have terminated badly the user may be prompted to kill these off; this is the normal
behaviour of Windows. It is strongly advised that the shell is always exited correctly (i.e. exit)
before leaving the editor. The Windows operating system for '95/'98 is not particularly resilient to
erroneous processes can bring the whole system down. I believe that NT does not suffer from these
problems (much).

Locked Input

There are occasions after killing a process the editor appears to lock up. This is typically a case that the old
application has not shut down correctly. Kill off the erroneous task (Alt−Ctrl−Del − End Task) then bring
the editor under control using a few C−g abort−command(2) sequences. NOTES

The ishell command uses the ipipe−shell−command(2) to manage the pipe between the editor and the
shell. The window is controlled by the macro file hkipipe.emf which controls the interaction with
the shell.

SEE ALSO

ipipe−shell−command(2), cygnus(3), me32.ini(8).

MicroEmacs '02

ishell(3) 905

pipe−shell−command(2)

NAME

pipe−shell−command − Execute a single operating system command
$ME_PIPE_STDERR − Command line diversion to stderr symbol

SYNOPSIS

n pipe−shell−command "command" ["buffer−name"] (esc @)

[MS−DOS and Win32s Only]
$ME_PIPE_STDERR "string"; Default is undefined.

DESCRIPTION

pipe−shell−command executes one operating system command command and pipes the resulting
output into a buffer with the name of *command*.

The argument n can be used to change the default behavior of pipe−shell−command described above,
n is a bit based flag where:−

0x01

Enables the use of the default buffer name *command* (default). If this bit is clear the user must
supply a buffer name. This enables another command to be started without effecting any other
command buffer.

0x02

Hides the output buffer, default action pops up a window and displays the output buffer in the new
window.

0x04

Disable the use of the command−line processor to launch the program (win32 versions only).
By default the "command" is launched by executing the command:

 %COMSPEC% /c command

Where %COMSPEC% is typically command.com. If this bit is set, the "command" is launched
directly.

0x08

MicroEmacs '02

pipe−shell−command(2) 906

Detach the launched process from MicroEmacs (win32 versions only). By default the command is
launched as a child process of MicroEmacs with a new console. With this bit set the process is
completely detached from MicroEmacs instead.

0x10

Disable the command name mangling (win32 versions only). By default any '/' characters found in the
command name (the first argument only) are converted to '\' characters to make it Windows compliant.
NOTES

On MS−DOS and Win32s the standard shell command.com(1) does not support the piping of stderr
to a file. Other shells, such as 4Dos.com(1), do, using the command−line argument ">&". If the
environment variable "ME_PIPE_STDERR" is defined (the value is not used) then MicroEmacs
assumes that the current shell supports piping of stderr.

SEE ALSO

ipipe−shell−command(2), shell−command(2).

MicroEmacs '02

pipe−shell−command(2) 907

$auto−time(5)

NAME

$auto−time − Automatic buffer save time

SYNOPSIS

$auto−time seconds; Default is 300 seconds

0 <= seconds <= t

DESCRIPTION

Sets the number of seconds to wait until an edited buffer is auto−saved to temporary file to t seconds.
A setting of 0 disables the auto−saving command. Auto−saving can be enabled and disabled on a per
buffer basis using buffer mode autosv(2m).

The auto−save file naming convention is the same as the backup name only using hash ('#') instead of
tilde ('~') and is automatically removed on saving a buffer.

On unlimited length file name systems (UNIX), the following file naming conventions are used for
file xxxxx:

xxxxx −> xxxxx#

On systems with an xxxxxxxx.yyy file name (DOS etc), the following file naming conventions are
used:

xxxxxxxx −> xxxxxxxx.###
xxxxxxxx.y −> xxxxxxxx.y##
xxxxxxxx.yy −> xxxxxxxx.yy#
xxxxxxxx.yyy −> xxxxxxxx.yy#

NOTES

The user is warned to be extra careful if files ending in '~' or '#'s are used, it is advisable to disable
backup creation (see global−mode(2)) and auto−saving ($auto−time = 0). The author denies all
responsibility (yet again) for any loss of data! Please be careful.

Auto−save files of URL files (i.e. "ftp://..." and "http://...") are written to the system's
temporary directory. This avoids potentially slow auto−saves. This can however lead to recovery
problems as the buffer name must be used to avoid auto−saving conflict with other buffers with the
same base file name but different paths.

MicroEmacs '02

$auto−time(5) 908

SEE ALSO

autosv(2m), backup(2m), buffer−mode(2) find−file(2), ftp(3).

MicroEmacs '02

$auto−time(5) 909

$box−chars(5)

NAME

$box−chars − Characters used to draw lines

SYNOPSIS

$box−chars "string"; Default is "|+++++++++−"

DESCRIPTION

$box−chars is a fixed length string that defines the set of characters used to render lines to the screen.
Osd(2), directory−tree(2), list−registry(2) and many macros use these characters as a platform
independent method of drawing lines. The characters have fixed indices defined as follows:−

Index 0

Line joining north to south (vertical line).

Index 1

Line joining south to east.

Index 2

Line joining south to west.

Index 3

Line joining north to east.

Index 4

Line joining north to west.

Index 5

Line joining east to south to west.

Index 6

Line joining north to east to south.

Index 7

MicroEmacs '02

$box−chars(5) 910

Line joining north to east to south to west.

Index 8

Line joining north to south to west.

Index 9

Line joining north to east to south.

Index 10

Line joining east to west. EXAMPLE

The $box−chars is typically platform dependent, it's setting is determined by the characters available
in character set of the hosting platform. MS−DOS and Microsoft Windows environments might use a
string such as:−

"\xB3\xDA\xBF\xC0\xD9\xC2\xC3\xC5\xB4\xC1\xC4"

X−Windows environments might use a string such as:−

"\x19\x0D\x0C\x0E\x0B\x18\x15\x0F\x16\x17\x12"

Both utilize platform specific characters.

SEE ALSO

Osd(2), directory−tree(2), list−registry(2) $window−chars(5).

MicroEmacs '02

$box−chars(5) 911

$buffer−fhook(5)

NAME

$buffer−fhook − Buffer macro hook command name (buffer creation)
$buffer−dhook − Buffer macro hook command name (buffer deletion)
$buffer−bhook − Buffer macro hook command name (buffer current)
$buffer−ehook − Buffer macro hook command name (buffer swapped)

SYNOPSIS

$buffer−fhook FunctionName
$buffer−dhook FunctionName
$buffer−bhook FunctionName
$buffer−ehook FunctionName

DESCRIPTION

Sets the buffer create, delete, begin and end hook command which are executed:

buffer−fhook

When the buffer is created.

buffer−dhook

When the buffer is deleted.

buffer−bhook

When the buffer becomes the current buffer.

buffer−ehook

When the buffer is swapped out from being the current buffer.

The variable $buffer−fhook is largely redundant as the file hook is executed only once and before it
can be sent. Its main use is within macros which wish to ascertain what type of buffer it is executing
on, i.e. if a command was to be executed only on c file then the follow ensures that this is the case:

!if ¬ &seq $buffer−fhook "fhook−cmode"
 !abort
!endif

Where the command fhook−cmode is the c file hook.

MicroEmacs '02

$buffer−fhook(5) 912

dhooks are executed when a buffer is deleted, but before the contents of the buffer are lost. Note that
dhooks will not be called if the buffer never becomes active, or if MicroEmacs '02 quits due to the
receipt of a panic signal.

bhooks and ehooks are usually used to set and restore global variables which require different setting
in the current buffer.

The order of The default settings of these variable are determined by the command add−file−hook(2).

SEE ALSO

add−file−hook(2).

MicroEmacs '02

$buffer−fhook(5) 913

$buffer−bname(5)

NAME

$buffer−bname − Name of the current buffer
$buffer−fname − Name of the current buffer's file name

SYNOPSIS

$buffer−bname BufferName
$buffer−fname FileName

DESCRIPTION

$buffer−bname the string name of the current buffer. Buffer names are unrestricted in length, but
must be unique. By default the buffer name is derived from the buffer's file name without the path.
But this can lead to conflicts, caused by identical file names but different paths. In these situations a
counter is appended to the end of the buffer name and is incremented until a unique buffer name is
created. For example:

File Name Buffer Name

/etc/file.c file.c
/tmp/file.c file.c<1>
/usr/file.c file.c<2>

$buffer−fname contains the name of the current buffer's file name complete with path.

SEE ALSO

change−buffer−name(2).

MicroEmacs '02

$buffer−bname(5) 914

$buffer−fmod(5)

NAME

$buffer−fmod − Buffer file modes (or attributes)
$global−fmod − Global file modes (or attributes)

SYNOPSIS

$buffer−fmod FileMode
$global−fmod FileMode

DESCRIPTION

$buffer−fmod is bit based variable setting the buffers file system modes or attributes. If the buffer
was loaded from an existing file then the value of $buffer−fmod is taken directly from the file. But if
the buffer was created then the buffer inherits the default file modes, $global−fmod, which is
determined from the users umask on UNIX or a default on others.

The definition of the file mode bits are platform specific and are considered independently, as
follows:

UNIX

The file modes of Unix are the standard read, write and execute permissions for user, group and
global. See chmod(1) for a full description of their use and effect.

The variable is displayed in octal.

Microsoft Windows and DOS

On Microsoft platforms each file attribute (see attrib(1)) is assigned a bit, on windows 95 and NT the
new file attributes such as compressed are also represented. The bits are assigned as follows

Bit Attrib Flag Attribute
0x001 R Read Only
0x002 H Hidden
0x004 S System
0x010 Directory
0x020 A Archive
0x080 Normal
0x100 Temporary
0x800 Compressed

MicroEmacs '02

$buffer−fmod(5) 915

EXAMPLE

The following example changes the $buffer−fmod so that the file will be executable (UNIX only),
useful when writing a shell script.

set−variable $buffer−fmod 0775

SEE ALSO

crlf(2m), ctrlz(2m), auto(2m).

MicroEmacs '02

$buffer−fmod(5) 916

$buffer−hilight(5)

NAME

$buffer−hilight − Define current buffer hilighting scheme.

SYNOPSIS

$buffer−hilight hilightNum; Default is 0

0 <= hilightNum <= 255

DESCRIPTION

$buffer−hilight Sets the current buffer's hi−lighting scheme (see hilight(2) for a full description of
hi−lighting). The default setting is 0 which specifies no hi−lighting, when set to a non−zero, the
hi−light scheme of that number MUST already be defined.

Terminals that cannot display color directly may still be able to take benefit from hi−lighting. A
terminal that has fonts can use them in the same way using the add−color−scheme(2) command. The
hi−light scheme is also used in printing (see print−buffer(2)). If, however, your terminal cannot
display color in any way, it is recommended that hi−lighting is disabled (except when printing) as it
does take CPU time.

SEE ALSO

hilight(2), print−buffer(2), $buffer−scheme(5), $buffer−indent(5).

MicroEmacs '02

$buffer−hilight(5) 917

$buffer−indent(5)

NAME

$buffer−indent − Current buffer indentation scheme.

SYNOPSIS

$buffer−indent indentNum; Default is 0

0 <= indentNum <= 255

DESCRIPTION

$buffer−indent sets the current buffers indentation scheme. indentNum is the identity of the
indentation scheme, as defined by indent(2), which is typically the same value as the buffers
hilighting scheme number (see $buffer−hilight(5)).

The default setting is 0 which specifies no indentation scheme is present (with the exception of
cmode(2m)). When non−zero, the value identifies the indentation scheme.

A buffer assigned an indentation method, MicroEmacs performs automatic line re−styling, by moving
the left indentation, according to the defined indentation method. The tab key is typically disabled.
This behavior can be altered using bit 0x1000 of the $system(5) variable, which can be changed
using user−setup(3).

The use of tab characters to create the required indentation is determined by the setting of the buffers
tab(2m) mode. If the mode is disabled tab characters are used wherever possible, otherwise spaces are
always used.

NOTES

The commands restyle−region(3) and restyle−buffer(3) use the indentation method when defined.

The buffer indentation scheme is typically assigned in the fhook macro, see Language Templates.

EXAMPLE

The following example sets up an indentation scheme for a buffer within the fhook macro.

!if &sequal .hilight.foo "ERROR"
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

MicroEmacs '02

$buffer−indent(5) 918

....

; Define the indentation scheme
0 indent .hilight.foo 2 10
indent .hilight.foo n "then" 4
indent .hilight.foo s "else" −4
indent .hilight.foo o "endif" −4

....

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

This provides an indentation of the form:−

if condition
then
 XXXX
else
 if condition
 then
 XXXX
 endif
endif

SEE ALSO

indent(2), tab(2m), $system(5), user−setup(3), restyle−buffer(3), restyle−region(3),
$buffer−hilight(5).

MicroEmacs '02

$buffer−indent(5) 919

$buffer−input(5)

NAME

$buffer−input − Divert buffer input through macro.

SYNOPSIS

$buffer−input commandName

DESCRIPTION

$buffer−input allows the buffer input mechanism to be diverted through a command macro defined
by commandName. If this variable is set to a valid command, which may be a user defined macro, this
command will be called instead. The command can access the actual key−code typed by the user via
the command variable @cc(4), e.g. the following macro prints out the name of the command that the
user presses until the abort−command(2) is executed.

define−macro test−input
 ml−write &spr "Current command: %s" @cc
 !if &seq @cc "abort−command"
 set−variable $buffer−input ""
 !endif
!emacro

set−variable $buffer−input test−input

WARNING

Caution is advised when using this, if there is no way of reseting the variable then MicroEmacs '02
must be killed.

SEE ALSO

abort−command(2), @cc(4).

MicroEmacs '02

$buffer−input(5) 920

$buffer−ipipe(5)

NAME

$buffer−input − Divert buffer incremental pipe input through macro.

SYNOPSIS

$buffer−ipipe commandName

DESCRIPTION

$buffer−ipipe allows the buffer incremental pipe input mechanism to be diverted through a command
macro defined by commandName. On a buffer running an ipipe−shell−command(2) the command, set
by this variable, will be called whenever new text has been inserted by the executing process. Two
alpha−marks will be set in the buffer, 'i' denotes the start of the newly inserted text and 'I' denotes
the end.

SEE ALSO

goto−alpha−mark(2), ipipe−shell−command(2).

MicroEmacs '02

$buffer−ipipe(5) 921

$buffer−mask(5)

NAME

$buffer−mask − Current buffer word class mask.

SYNOPSIS

$buffer−mask string; Default is luh

DESCRIPTION

$buffer−mask sets the current buffer word class mask. MicroEmacs '02 has an internal word lookup
table which defines whether a given letter is considered to be part of a word. This functionality is used
in many areas such as forward−word(2), forward−kill−word(2) hilighting etc. The mask is composed
with any combination of the following flags, the order in which the flags are specified is not
important:

l

All lower case letters.

u

All upper case letters.

h

All hexadecimal characters (used to include numerical digits).

s

Spell extended characters, typically set to accent ('), hyphen (−) and period (.).

1

User set 1, usually set to just underscore (_) for many system and programming files such as 'C'.

2

User set 2, usually set to '−', '$', '&', '#', '!', '%', ':' and '@' for MicroEmacs files.

3

User set 3, not usually defined.

MicroEmacs '02

$buffer−mask(5) 922

4

User set 4, not usually defined.

The character sets may be modified using the set−char−mask(2) command.

SEE ALSO

set−char−mask(2), forward−word(2).

MicroEmacs '02

$buffer−mask(5) 923

$buffer−mode−line(5)

NAME

$buffer−mode−line − Buffer mode line string

SYNOPSIS

$buffer−mode−line "string"

DESCRIPTION

Sets the buffer mode line, unique to this buffer, see $mode−line(5) use, description and syntax. If this
variable is NOT set for a buffer and $mode−line is changed, then the buffer's mode line will also
change to the new value. If this variable is set, then then buffer's mode line will be unaffected by any
setting of $mode−line.

SEE ALSO

$mode−line(5).

MicroEmacs '02

$buffer−mode−line(5) 924

$buffer−names(5)

NAME

$buffer−names − Filtered buffer name list

SYNOPSIS

$buffer−names BufferName

DESCRIPTION

$buffer−names must first be set to the required filter string, if the variable is evaluated before it is
initialized the value will be set to "ABORT" and the command will fail. The filter takes the form of a
regex.

Once initialized, evaluating $buffer−names returns the name of the next buffer which matches the
filter until no more buffers are found, in which case an empty string is returned.

EXAMPLE

The following example prints out the name of all buffers to the massage line one at a time. Note that
&set(4) is used on the !while(4) statement to avoid evaluating $buffer−names twice per loop.

set−variable $buffer−names ".*"
!while ¬ &seq &set #l0 $buffer−names ""
 100 ml−write &cat "buffer: " #l0
!done

The following example is the same except it lists only the buffers which are not directory listings

set−variable $buffer−names ".*[^/]"
!while ¬ &seq &set #l0 $buffer−names ""
 100 ml−write &cat "buffer: " #l0
!done

NOTES

The list of buffers is evaluated when the variable is initialized, buffers created after the initialization
will not be included in the list.

Deleting buffers which are in the list, before they are evaluated, will have undefined effects.

SEE ALSO

MicroEmacs '02

$buffer−names(5) 925

list−buffers(2), $buffer−bname(5), $file−names(5), $command−names(5), $mode−names(5), Regular
Expressions.

MicroEmacs '02

$buffer−names(5) 926

$buffer−scheme(5)

NAME

$buffer−scheme − Buffer color scheme.

SYNOPSIS

$buffer−scheme schemeNum; Default is 0

DESCRIPTION

$buffer−scheme sets the current buffer's color scheme to schemeNum, where schemeNum is a color
scheme defined with add−color−scheme(2), which identifies the foreground and background color
schemes of the buffer. The color scheme is initialized to the global color scheme settings (see
$global−scheme(5)) when the buffer is created.

SEE ALSO

$buffer−hilight(5), $cursor−color(5), $trunc−scheme(5), $global−scheme(5), $ml−scheme(5),
$mode−line−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$buffer−scheme(5) 927

$c−brace(5)

NAME

$c−brace − C−mode; brace indentation

SYNOPSIS

$c−brace integer; Default is −4

−n <= integer <= n

DESCRIPTION

$c−brace is part of the cmode(2m) environment for C programmers.

Sets the indent of a '{' and a '}' on a new line, from the current indent. For example, using the default
settings, if the current indent was 20 then a line starting with a '{' or a '}' would be indented to 16, i.e.

 xxxxxxxxxxx
 xxxxxxxxxxx
 { xxxxxxxxxxx
 xxxxxxxxxxx
 } xxxxxxxxxxx
 xxxxxxxxxxx

This may seem strange, but the current indent is the indent of the last '{' (or "if", "else" etc.) plus
$c−statement(5) which is 4, so this brings it back into line with '{''s, "if"'s and "else"'s etc., e.g.

 if(xxxxxx)
 {
 xxxxxxxxxx
 xxxxxxxxxx
 }

With a setting of −2, this would become:−

 if(xxxxxx)
 {
 xxxxxxxxxx
 xxxxxxxxxx
 }

This works in conjunction with $c−statement(5), a change to $c−statement will change the position
of '{'s.

SEE ALSO

MicroEmacs '02

$c−brace(5) 928

cmode(2m), $c−statement(5).

MicroEmacs '02

$c−brace(5) 929

$c−case(5)

NAME

$c−case − C−mode; case indentation
$c−switch − C−mode; switch indentation

SYNOPSIS

$c−case integer; Default is −4
−n <= integer <= n

$c−switch integer; Default is 0
−n <= integer <= n

DESCRIPTION

$c−case and $c−switch are part of the cmode(2m) environment for C programmers.

$c−switch sets the offset of a "case" entry statement from the opening brace left margin position.
The default value is zero. e.g.

 switch(xxxxxxxxx)
 {
 case 1:
 xxxxxxxxxx
 xxxxxxxxxx
 case 2:
 xxxxxxxxxx
 }

Setting the value to 4, increases the leading space on the "case" statement, e.g.

 switch(xxxxxxxxx)
 {
 case 1:
 xxxxxxxxxx
 xxxxxxxxxx
 case 2:
 xxxxxxxxxx
 }

$c−case sets the offset of the lines following a "case" statement, from the current indent. For
example, using the default settings, if the current indent was 20 then a line starting with a "case"
would be indented to 16, i.e.

 xxxxxxxxxx
 case xxxxxxxxxx
 xxxxxxxxxx

MicroEmacs '02

$c−case(5) 930

This is used inside "switch" statements, the default setting give the following lay−out:−

 switch(xxxxxxxxxx)
 {
 case 1:
 xxxxxxxxxx
 xxxxxxxxxx
 case 2:

This works in conjunction with the $c−statement(5), a change to $c−statement will change the
position of '{'s.

SEE ALSO

cmode(2m), $c−statement(5).

MicroEmacs '02

$c−case(5) 931

$c−contcomm(5)

NAME

$c−case − C−mode; comment continuation string

SYNOPSIS

$c−contcomm "string"

DESCRIPTION

$c−contcomm is part of the cmode(2m) environment for C programmers.

This defines the string which is inserted when a new line is started while in a comment. The string is
only inserted if the cursor is at the end of the line when the newline(2) command is given. For
example, for the default settings, if a newline was entered at the end of the first line, the second line
would initialize to:−

 /* xxxxxxxxxx
 @

where '@' is the current cursor position. With a setting of " * ", then:−

 /* xxxxxxxxxx
 * @

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−contcomm(5) 932

$c−continue(5)

NAME

$c−continue − C−mode; line continuation indent
$c−contmax − C−mode; line continuation maximum indent

SYNOPSIS

$c−continue integer; Default is 10
−n <= integer <= n

$c−contmax integer; Default is 16
−n <= integer <= n

DESCRIPTION

$c−continue and $c−contmax are part of the cmode(2m) environment for C programmers.

$c−continue sets the indent to be added to a split line, i.e. for an indent of 20, a continued statement
would be indented to 30. A continued statement is a single c statement which is spread over 2 or more
lines, the 2nd and any following lines would be indented to 30. For example

 thisIsAVeryLongVariableWhichMeansAssignmentsAreSplit =
 ThisIsTheFirstContinuedStatementLine +
 ThisIsTheSecondContinuedStatementLine + etc ;

The indent is changed if there is an open bracket, continued statements are indented to the depth of
the open bracket plus one, e.g.

 func(firstFuncArg,
 secondFuncArg,
 anotherBracketForFun(firstAnotherBracketForFunArg,
 secondAnotherBracketForFunArg),
 thirdFuncArg) ;

$c−contmax sets an upper limit of the indentation where an open bracket is encountered, in the case
where the leading indent of the function name and open bracket exceeds $c−contmax, then the
continuation is reduced to the continuation indent.

The effect of $c−contmax is described as follows; if $c−contmax is set to a large value then the
default open brace offset appearence is:−

longVariable = LongFunctionNameWhichMeans(isSoFar,
 OverAndYouRunOutOfRoom) ;

Setting $c−contmax to 16 gives:

MicroEmacs '02

$c−continue(5) 933

longVariable = LongFunctionNameWhichMeans(isSoFar,
 overAndYouRunOutOfRoom) ;

Where by the second argument indent has been artificially reduced because of it's length.

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−continue(5) 934

$c−margin(5)

NAME

$c−margin − C−mode; trailing comment margin

SYNOPSIS

$c−margin integer; Default is −1

−1 <= integer <= n

DESCRIPTION

$c−margin is part of the cmode(2m) environment for C programmers.

If inserting a comment at the end of a C line, it is tedious typing x number of spaces to the comment
column (by default tab doesn't insert a tab when cmode(2m) is enabled, it reformats the indentation of
the line regardless of the cursor position). This variable sets the indent column of these comments. So
with the default settings and the following line,

 xxxxxx ;/

when a '*' is type the line becomes

 xxxxxx ; /*

The indenting of the "/*" occurs only if there is text on the line before it, and none after it. If the
current column is already past $c−margin then it is indented to the next tab stop.

A value of −1 disables this feature.

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−margin(5) 935

$c−statement(5)

NAME

$c−statement − C−mode; statement indentation

SYNOPSIS

$c−statement integer; Default is 4

−n <= integer <= n

DESCRIPTION

$c−statement is part of the cmode(2m) environment for C programmers.

The indent of the current line is derived from $c−statement plus the indent of the last c token (if, else,
while etc.) or the last '{' (which ever was found first). i.e. if the last '{' was found at column 16 then
the current line will be indented to 20:−

 {
 xxxxxxxxxx
 xxxxxxxxxx

or

 if(xxxxx)
 xxxxxxxxxx

C tokens are only used to indent the next line, whereas '{' are used in indenting every line to it's
partnering '}'.

SEE ALSO

cmode(2m).

MicroEmacs '02

$c−statement(5) 936

$command−names(5)

NAME

$command−names − Filtered command name list

SYNOPSIS

$command−names CommandName

DESCRIPTION

$command−names must first be initialized to the required filter string, if the variable is evaluated
before it is initialized the value will be set to "ABORT" and the command will fail. The filter takes the
form of a regex.

Once initialized, evaluating $command−names returns the name of the next command which
matches the filter until no more commands are found, in which case an empty string is returned.

EXAMPLE

The following example prints out the name of all commands to the massage line one at a time. Note
that &set(4) is used on the !while(4) statement to avoid evaluating $command−names twice per loop.

set−variable $command−names ".*"
!while ¬ &seq &set #l0 $command−names ""
 100 ml−write &cat "command: " #l0
!done

The following example is an alternative implementation of command−apropos(2).

define−macro alt−commad−apropos
 set−variable #l1 @ml "Apropos string"
 set−variable $command−names &cat &cat ".*" #l1 ".*"
 !force 0 delete−buffer "*commands*"
 1 popup−window "*commands*"
 !while ¬ &seq &set #l0 $command−names ""
 insert−string &spr " %s\n" #l0
 !done
 beginning−of−buffer
 −1 buffer−mode "edit"
 1 buffer−mode "view"
!emacro

NOTES

MicroEmacs '02

$command−names(5) 937

$command−names does not differentiate between built in commands and macros.

The list of commands is evaluated when the variable is initialized, macros created after the
initialization will not be included in the list.

SEE ALSO

list−commands(2), command−apropos(2), $buffer−names(5), $file−names(5), $mode−names(5),
$variable−names(5), Regular Expressions.

MicroEmacs '02

$command−names(5) 938

$cursor−blink(5)

NAME

$cursor−blink − Cursor blink rate $cursor−color − Cursor foreground color

SYNOPSIS

$cursor−blink integer; Default is 0

$cursor−color colorNum; Default is 0

0 <= colorNum <= n

DESCRIPTION

$cursor−blink sets the cursor's flash rate, i.e. the period in which the cursor is drawn, hidden and
then redrawn. The default setting of 0 disables cursor blinking. When set to a none zero value the
variable is split into two componants, the first 16 bits, or lower short, sets the cursor visible time in
milliseconds, and the higher short sets the hidden time. If the hidden time is set to 0 then the cursor
will be hidden for the same length of time it is visible.

The cursor blink rate can be setup in the platform section of user−setup(3).

$cursor−color sets the cursor's fore−ground color, and can greatly improve cursor visibility.
colorNum is a integer palette number created using add−color(2), the default is 0.

PLATFORM

UNIX termcap interface does not support $cursor−color.

EXAMPLE

The following example sets the cursor visible time to 600 ms (0x258) and a hidden time to 200 ms
(0xc8):

set−variable $cusror−blink 0x00c80258

SEE ALSO

user−setup(3), add−color(2), $global−scheme(5), $ml−scheme(5), $mode−line−scheme(5),
$system(5).

MicroEmacs '02

$cursor−blink(5) 939

$cursor−x(5)

NAME

$cursor−x − Cursor X (horizontal) position
$cursor−y − Cursor Y (vertical) position

SYNOPSIS

$cursor−x integer

0 <= integer <= $frame−width − 1

$cursor−y integer

0 <= integer <= $frame−depth − 1

DESCRIPTION

$cursor−x and $cursor−y are automatically set to the position of the cursor at the last screen update
(i.e. the variables are not updated between screen updates). The top left character of the screen is
coordinate 0,0 bottom right is $frame−width, $frame−depth.

NOTES

These variables can not be set. Any attempt to set them will result in an error.

SEE ALSO

$mouse−x(5), $frame−depth(5), $frame−width(5).

MicroEmacs '02

$cursor−x(5) 940

$debug(5)

NAME

$debug − Macro debugging flag

SYNOPSIS

$debug debugLevel; Default is 0

−2 <= debugLevel <= 2

DESCRIPTION

$debug is a flag to trigger macro debugging. A setting of 1 or 2 enables debugging, 0 disables
debugging (default). A $debug setting of 2 debugs all macro lines encountered, whereas a setting of 1
debugs only the lines executed, i.e. if a false !if was encountered the lines within the !if would not be
printed. Problems arise with !elif and !else and a debugLevel setting of 1 as the !elif and !else lines are
never printed.

A −ve setting disables debugging and has no immediate effect. However as soon as the bell is rung
the value is inverted (−1 to 1, −2 to 2) enabling debugging. This can be invaluable when tracing
problems, for example the following macro code will loop infinitely:−

!repeat
 beginning−of−line
 backward−char
 !force forward−line
!until ¬ $status

This is a fairly obvious bug, but if buried in a thousand lines of macro code it could be very difficult
to spot and to find it during execution would be very tedious if not impossible. But by setting $debug
to −1 the macro can be executed as normal and as soon as the macro is stuck the user can simply press
"C−g" (abort−command) which rings the bell and starts macro debugging at the current execution
point.

SEE ALSO

execute−file(2).

MicroEmacs '02

$debug(5) 941

$delay−time(5)

NAME

$delay−time − Mouse time event delay time
$repeat−time − Mouse time event repeat time

SYNOPSIS

$delay−time milliseconds; Default is 500
$repeat−time milliseconds; Default is 25

10 <= milliseconds <= t

DESCRIPTION

$delay−time sets the time waited between the user picking a mouse button and the generation of a
mouse−time−? key event.

When user presses the left button (say) a mouse−pick−1 key event is generated, If this key is
bound then the command it is bound to is executed. If the user then holds down the button for
$delay−time or more milliseconds then MicroEmacs checks the binding of the special
mouse−time−1 key, if this pseudo key is bound then the command it is bound to will be executed.

If the user continues to hold down the button for a further $repeat−time milliseconds another
mouse−time−1 key event will be generated. A mouse−time−1 key event will be generated after
every $repeat−time milliseconds until the user releases the button, at which point a mouse−drop−1
key event is generated.

EXAMPLE

The following example implements the vertical scroll−bar up and down scrolling arrows for a buffer
window:−

define−macro mouse−pick−command
 set−cursor−to−mouse
 !if &equ &band $mouse−pos 15 5
 ml−write "Mouse on up−arrow"
 1 scroll−up
 1 global−bind−key scroll−up "mouse−time−1"
 !elif &equ &band $mouse−pos 15 9
 ml−write "Mouse on down−arrow"
 1 scroll−down
 1 global−bind−key scroll−down "mouse−time−1"
 !endif
!emacro

MicroEmacs '02

$delay−time(5) 942

define−macro mouse−drop−command
 !force global−unbind−key "mouse−time−1"
!emacro

global−bind−key mouse−pick−command "mouse−pick−1"
global−bind−key mouse−drop−command "mouse−drop−1"

SEE ALSO

$idle−time(5), set−cursor−to−mouse(2), $mouse−pos(5).

MicroEmacs '02

$delay−time(5) 943

$file−ignore(5)

NAME

$file−ignore − File extensions to ignore

SYNOPSIS

$file−ignore "string"; Default is ""

DESCRIPTION

$file−ignore specifies a space separated list of file endings which the file completion is to ignore.
This is used by any function which prompts the user for a file name, such as find−file(2). A file
ending in this case is NOT the extension but the last n characters where n is the number of characters
in the specified ignore file.

EXAMPLE

To ignore all files which have the extension "o", using:

set−variable $file−ignore "o"

would not only ignore "foo.o", but also "foo.oo", "foo.po" and "foo" as well as any file that
ends in an "o". What is really required is

set−variable $file−ignore ".o"

It is useful to ignore the "./" and "../" directories so that a directory containing one file will
auto−complete to that one file. This is achieved by using:

set−variable $file−ignore "./"

To ignore MicroEmacs '02 backup files ("~"), C object files (".o"), "./" and "../" directories try
using:

set−variable $file−ignore "~ .o ./"

NOTES

The file completion only completes further than the first non−unique point in the current list of
possibles if and only if it can ignore all but one file, so if the current directory contains:

./ ../ foo foo.c foo.c~ foo.o

MicroEmacs '02

$file−ignore(5) 944

using the above ignore list, completing with "" has no effect as "foo" and "foo.c" cannot be
ignored; completing with "foo." will however complete to "foo.c".

SEE ALSO

find−file(2).

MicroEmacs '02

$file−ignore(5) 945

$file−names(5)

NAME

$file−names − Filtered file name list

SYNOPSIS

$file−names FileName

DESCRIPTION

$file−names must first be initialized to the required filter string, if the variable is evaluated before it
is initialized the value will be set to "ABORT" and the command will fail.

The filter takes the form of a regex. The filter string should also contain the path to the required
directory, the path many not contain wild−cards. If no path is specified the the path of the current
buffers file name is taken, if the current buffer has no file name then the current working directory is
used.

On initialization, $result(5) is set to the absolute path of the directory being evaluated.

Once initialized, evaluating $file−names returns the name of the next buffer which matches the filter
until no more buffers are found, in which case an empty string is returned.

EXAMPLE

The following example creates a list of all files in the current directory to a fixed buffer "*files*".
Note that &set(4) is used on the !while(4) statement to avoid evaluating $file−names twice per loop.

set−variable $file−names ".*"
!force 0 delete−buffer "*files*"
1 popup−window "*files*"
insert−string &spr "Directory listing of %s\n\n" $result
!while ¬ &seq &set #l0 $file−names ""
 insert−string &spr " %s\n" #l0
!done
beginning−of−buffer
−1 buffer−mode "edit"
1 buffer−mode "view"

NOTES

Unlike MS−DOS and Windows systems, to match every file a filter of just "*" is required. A filter of
"*.*" only matches file names with a '.' in them.

MicroEmacs '02

$file−names(5) 946

The list of files is evaluated when the variable is initialized, files created after the initialization will
not be included in the list.

SEE ALSO

$result(5), find−file(2), $buffer−fname(5), $buffer−names(5), $command−names(5),
$mode−names(5), Regular Expressions.

MicroEmacs '02

$file−names(5) 947

$file−template(5)

NAME

$file−template − Regular expression file search string

SYNOPSIS

$file−template "string"; Default is ""

DESCRIPTION

$file−template defines a regular expression search string used to identify a file in the grep(3) and
compile(3) buffers. The format of the string is the same as magic mode search strings (see
search−forward(2)).

EXAMPLE

A UNIX file name may be considered to contain any ASCII character except a space or a ':' (used as
a divider in many programs). Thus $file−template should be:

set−variable $file−template "[!−9;−z]+"

This will correctly identify "foo.c" in the following example.

foo.c: 45: printf("hello world\n") ;

SEE ALSO

$line−template(5), compile(3), get−next−line(2), grep(3), search−forward(2).

MicroEmacs '02

$file−template(5) 948

$fill−bullet(5)

NAME

$fill−bullet − Paragraph filling bullet character set
$fill−bullet−len − Paragraph filling bullet search depth

SYNOPSIS

$fill−bullet "string"; Default is "*)].−"
$fill−bullet−len length; Default is 5

0 <= length <= $fill−col

DESCRIPTION

$fill−bullet contains the set of characters which are classified as bullet markers for fill−paragraph(2).
If these characters are encountered in the first $fill−bullet−len characters of the paragraph AND the
character is followed by a SPACE or a tab character then the user is given the option to indent to the
right of the bullet.

$fill−bullet−len determines the maximum depth into the paragraph (in characters) the filling routines
should search for a bullet character. The default value is 15. Note that the paragraph starts at the first
non−white space character. e.g. to detect "xviii) " as a bullet then the bullet length must be set to
at least 6 to detect the bullet character ")".

EXAMPLE

Examples of filled bullet paragraphs are shown as follows, based on the default $fill−bullet character
set.

a) This is an example of a fill−paragraph. The closing
 bracket is classified as a bullet character and filling
 optionally takes place to the right of the bullet.

a] Another paragraph

* A bullet paragraph

1. A numbered paragraph.

item − A dashed bullet.

SEE ALSO

MicroEmacs '02

$fill−bullet(5) 949

$fill−col(5), $fill−ignore(5), $fill−mode(5), fill−paragraph(2), justify(2m).

MicroEmacs '02

$fill−bullet(5) 950

$fill−col(5)

NAME

$fill−col − Paragraph Mode; right fill column

SYNOPSIS

$fill−col columnNumber; Default is 78

−1 <= columnNumber <= 32767

DESCRIPTION

$fill−col defines the current fill column number. columnNumber defaults to 78 when undefined. This
value is used in conjunction with justify(2m) and wrap(2m) modes.

SEE ALSO

buffer−mode(2), fill−paragraph(2), justify(2m), wrap(2m).

MicroEmacs '02

$fill−col(5) 951

$fill−eos(5)

NAME

$fill−eos − Paragraph filling; end of sentence fill characters
$fill−eos−len − Paragraph filling; end of sentence padding length

SYNOPSIS

$fill−eos "string"; Default is ".!?"

$fill−eos−len integer; Default is 1
0 <= integer <= n

DESCRIPTION

$fill−eos defines the end of sentence character set. Sentences ending in these characters are padded
with additional end−of−sentence spaces, as defined by $fill−eos−len.

$fill−eos−len sets the number of spaces inserted after a full stop during paragraph filling. The default
is 1 space.

SEE ALSO

fill−paragraph(2).

MicroEmacs '02

$fill−eos(5) 952

$fill−ignore(5)

NAME

$fill−ignore − Ignore paragraph filling character(s)

SYNOPSIS

$fill−ignore "string"; Default is ">_@"

DESCRIPTION

$fill−ignore describes a set of characters used by fill−paragraph(2) which disable paragraph filling
when they appear at the start of a paragraph. An obvious example is an inserted mail message which
is usually quoted with ">" characters. Any attempt to fill the paragraph causes fill−paragraph to skip
to the end of it.

EXAMPLE

This is an example of an ignored paragraph when encountered by fill−paragraph with the default
ignore character set.

> This is an example of a paragraph that
> is ignored.

SEE ALSO

$fill−col(5), $fill−bullet(5), $fill−mode(5), fill−paragraph(2), justify(2m).

MicroEmacs '02

$fill−ignore(5) 953

$fill−mode(5)

NAME

$fill−mode − Paragraph mode; justification method

SYNOPSIS

$fill−mode justification; Default is N

justificationb | c | l | n | o | r | B | C | L | N | R

DESCRIPTION

$fill−mode defines the justification mode i.e. left/right/both/... The default value is none automatic
(N). The modes available are:−

b Both

Enables left and right margin justification.

c Center

Enables center justification.

l Left

Enables left justification.

n None

No filling is performed, adjacent lines are not merged into a single line. This subtly different from left
justification which fills lines to the $fill−col(5).

o One Line

Enables the filling of the paragraph to a single line. Typically used to prepare a file for transfer to a
word processing package.

r Right

Enables right justification.

B Both (automatic)

MicroEmacs '02

$fill−mode(5) 954

Automatically determines the mode, defaulting to left and right (both) justification.

C Center (automatic)

Automatically determines the mode, defaulting to center justification.

L Left (automatic)

Automatically determines the mode, defaulting to left justification.

N None (automatic)

Automatically determines the mode, defaults to both and not none.

R Right (automatic)

Automatically determines the mode, defaulting to right justification.

The lines are automatically justified only when the justification mode justify(2m) is enabled.
Justification is performed between the left and right margins, defined as 0 and $fill−col(5)
respectively.

Automatic Filling

Automatic filling is performed when the mode $fill−mode is specified in upper case. The format of
the line (and adjacent lines) is interrogated and an informed guess is made as to the expected
formating which is then adopted. The criteria for automatic formatting is defined as follows:−

center

If the left and right margins contain approximately the same amount of white space +/−1 character
then the paragraph is centered.

right

If the text commences past half of the $fill−col(5) (i.e. first half of the line comprises white space)
AND the line extends to, or past, the $fill−col then the paragraph is assumed to be right justified.

none

If the text commences in column 0 and occupies less than half of the line then the paragraph is
assumed to be not justified. (i.e. left justified, but consecutive lines of the paragraph are not filled)

default

If none of the above criteria are met then the default mode is adopted, as determined by the lower−case value
of the $fill−mode value. SEE ALSO

MicroEmacs '02

$fill−mode(5) 955

$fill−col(5), buffer−mode(2), fill−paragraph(2), justify(2m).

MicroEmacs '02

$fill−mode(5) 956

$find−words(5)

NAME

$find−words − Filtered word list

SYNOPSIS

$find−words word

DESCRIPTION

$find−words must first be initialized to the required filter string, if the variable is evaluated before it
is initialized the value will be set to "ABORT" and the command will fail.

The filter string can contain wild−card characters compatible with most file systems, namely:−

?

Match any character.

[abc]

Match character only if it is a, b or c.

[a−d]

Match character only if it is a, b, c or d.

[^abc]

Match character only if it is not a, b or c.

*

Match any number of characters.

Note that these are not the same characters used by exact(2m) mode.

Once initialized, evaluating $find−words returns the next word found in the main spell dictionaries
which matches the filter until no more words are found, in which case an empty string is returned.

EXAMPLE

MicroEmacs '02

$find−words(5) 957

The following example finds all the words with "foo" in it (e.g. "footnote"), printing them to the
massage line one at a time. Note that &set(4) is used on the !while(4) statement to avoid evaluating
$find−words twice per loop.

set−variable $find−words "*foo*"
!while ¬ &seq &set #l0 $find−words ""
 100 ml−write &cat "Word: " #l0
!done

NOTES

The order of the words is undefined.

Due to the way words are derived, it is possible to have two or more copies of a word in the
dictionary. If this is a matching word $find−words will return the word two or more times.

SEE ALSO

spell(2).

MicroEmacs '02

$find−words(5) 958

$fmatchdelay(5)

NAME

$fmatchdelay− Fence matching delay time

SYNOPSIS

$fmatchdelay delayTime; Default is 2000

0 <= delayTime <= n

DESCRIPTION

The number of milliseconds to wait in a fence match operation. When a closing fence ')' ']' or '}' is
added the opening fence is searched for, scrolling the screen up where necessary, this is the time that
the opening fence is displayed, interruptible by typing any key.

When cmode(2m) is enable the search algorithm used is 'C' aware and if a matching fence is not
found then the bell is rung as a warning. The automatic matching of fences can be enabled/disabled
via the fence(2m) mode.

A cursor can be moved to the matching fence using the goto−matching−fence(2) command.

SEE ALSO

fence(2m), cmode(2m), goto−matching−fence(2).

MicroEmacs '02

$fmatchdelay(5) 959

$frame−depth(5)

NAME

$frame−depth − Number of lines on the current frame canvas
$frame−width − Number of columns on the current frame canvas

SYNOPSIS

$frame−depth integer

3 <= integer <= 400

$frame−width integer

8 <= integer <= 400

DESCRIPTION

These variables allow the viewable size of the current frame canvas to be determined.

$frame−depth identifies depth of the current frame given as the number of character lines. This is the
whole frame width, not just what is currently visible. The value returned is in the range 3 − n, n is
system dependent but no greater than 400.

$frame−width identifies the width of the current frame as the number of character columns. The
value returned is in the range 8 − n, n is system dependent but no greater than 400.

NOTES

The name of these variables changed from $screen−depth and $screen−width due to the support for
multiple frames introduced in April 2002.

SEE ALSO

change−frame−depth(2), change−frame−width(2).

MicroEmacs '02

$frame−depth(5) 960

$global−scheme(5)

NAME

$global−scheme − Default global buffer color scheme.

SYNOPSIS

$global−scheme schemeNum; Default is 0

DESCRIPTION

$global−scheme defines the default buffer color scheme to schemeNum, a color scheme defined by
add−color−scheme(2).

SEE ALSO

add−color(2), add−color−scheme(2), $buffer−hilight(5), $buffer−scheme(5), $cursor−color(5),
$trunc−scheme(5), $ml−scheme(5), $osd−scheme(5), $mode−line−scheme(5),
$scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$global−scheme(5) 961

$home(5)

NAME

$home − Users `home' directory location

SYNOPSIS

$home directory

DESCRIPTION

The file naming convention utilizes tilde ('~') to identify the users home directory ($HOME). When
entering a file name:

~/xxx −> $home/xxx
~yyy/xxx −> $home/../yyy/xxx

On most systems this is automatically set to the environment variable "HOME" if it is defined or may
be defined explicitly in the start−up file. '~' may be used in the me.emf files but must be specified as
'~'. It may be picked up in command files as $home.

MicroEmacs '02

$home(5) 962

$idle−time(5)

NAME

$idle−time − System idle event delay time

SYNOPSIS

$idle−time milliseconds; Default is 1000

10 <= milliseconds <= t

DESCRIPTION

$idle−time sets the time waited between the last user event and the generation of a idle−pick key
event. When user input stops for $idle−time milliseconds MicroEmacs checks the binding of the
special idle−pick key, if this pseudo key is bound then the command it is bound to will be
executed. MicroEmacs will then cycle, generating a idle−pick every $idle−time milliseconds until
user activity starts. At this point a idle−drop key event is generated, if this pseudo key is bound
then the command it is bound to will be executed.

This system is useful for things which can be done in the background.

EXAMPLE

The following example is taken from ssaver.emf and implements a simple screen saver:−

set−variable %screen−saver 0
define−macro screen−saver
 !if ¬ &pinc %screen−saver 1
 !if &seq @cck "idle−pick"
 ; default is to switch on in 5 minutes time
 &cond @? @# 300000 create−callback screen−saver
 !else
 !if &seq @cck "callback"
 @# create−callback screen−saver
 !elif @?
 ; user has suppled argument, install or remove
 !if &gre @# 0
 &mul @# 60000 global−bind−key screen−saver "idle−pick"
 !else
 !force global−unbind−key "idle−pick"
 !endif
 set−variable %screen−saver &sub %screen−saver 1
 !return
 !endif
 set−variable @# $frame−depth
 !while &dec @# 1

MicroEmacs '02

$idle−time(5) 963

 2 screen−poke @# 0 $global−scheme &spr "%n" $frame−width " "
 !done
 0 screen−poke 0 0 $global−scheme &spr "%n" $frame−width " "
 −1 show−cursor
 ; must set this to stop recursion when waiting for a key!
 set−variable %screen−saver 0
 set−variable @# @cg
 set−variable %screen−saver 1
 1 show−cursor
 screen−update
 ml−clear
 !endif
 !endif
 set−variable %screen−saver &sub %screen−saver 1
!emacro

NOTES

Care must be taken to ensure that a recursive loop is not created, consider the following example:−

define−macro bored
 !if &iseq @mc1 "Are you bored (y/n)? " "nNyY" "y"
 ml−write "Play a silly game!"
 !endif
!emacro
global−bind−key bored idle−pick

If this was executed MicroEmacs would very quickly crash! As soon as a second past bored would
execute, which will prompt the user and wait for input. If a second passes without input bored will be
executed again and again and again until stack memory runs out! To avoid this idle−pick should
be unbound before waiting for user input, i.e.:−

define−macro bored
 global−unbind−key idle−pick
 !if &iseq @mc1 "Are you bored (y/n)? " "nNyY" "y"
 ml−write "Play a silly game!"
 !endif
 global−bind−key bored idle−pick
!emacro
global−bind−key bored idle−pick

SEE ALSO

$delay−time(5).

MicroEmacs '02

$idle−time(5) 964

$kept−versions(5)

NAME

$kept−versions − Number of backups to be kept

SYNOPSIS

$kept−versions integer; Default is 0

0 <= integer <= n

DESCRIPTION

$kept−versions allows the user to specify the number of backup versions that are required for each
file. For file "XXXX", each backup version is renamed to "XXXX.~?~", where ? is the backup
number. If $kept−versions is set to 0 this feature is disabled and the default single backup file is
created.

The most recent backup will always be .~0~ and the last version will be .~n~ where n is
$kept−versions − 1. when the file is next saved the .~0~ backup file is moved to .~1~, .~1~ to
.~2~ etc, backup .~n~ is removed. Evidently if $kept−versions it set to a large number this can
effect performance.

RESTRICTIONS

$kept−versions may only be used when DOS file name restrictions are not enabled. This means that
some systems (such as DOS) cannot use this functionality, see $system(5) for more information.
Backup files are only created when buffer mode backup(2m) is enabled.

NOTES

This feature is not supported when writing ftp files, a single backup file is created when backup files
are enabled.

SEE ALSO

$system(5), autosv(2m), backup(2m), ftp(3), save−buffer(2).

MicroEmacs '02

$kept−versions(5) 965

$line−scheme(5)

NAME

$line−scheme − Set the current line color scheme

SYNOPSIS

$line−scheme schemeNum; Default is −1

DESCRIPTION

$line−scheme sets the color scheme to be used for the current line of the current window. The given
schemeNum can be any scheme number previously defined by the function add−color−scheme(2).

A line's $line−scheme setting is removed by setting the variable to −1.

A $line−scheme setting takes precedence over the buffer's color scheme ($buffer−scheme(5)) and the
buffer's hilighting scheme ($buffer−hilight(5)).

EXAMPLE

c−hash−eval(3) greys out lines of text by doing:

set−variable $line−scheme %lblack

The lines are rest by doing

set−variable $line−scheme −1

The gdb(3) interface hilights the current line of source by doing:

set−variable $line−scheme %yellow−lblack

NOTES

Due to line storage restrictions, only 15 different color schemes can be used in a buffer at any one
time. When the 16th color scheme is used it replaces the first color scheme, all lines using the first
color scheme will be colored using the new color scheme.

SEE ALSO

MicroEmacs '02

$line−scheme(5) 966

add−color−scheme(2), c−hash−eval(3), $buffer−scheme(5), $buffer−hilight(5),
$mode−line−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$line−scheme(5) 967

$line−template(5)

NAME

$line−template − Command line regular expression search string

SYNOPSIS

$line−template "string"; Default is ""

DESCRIPTION

$line−template defines a regular expression search string used to identify a line number in the
grep(3) and compile(3) buffers. The format of the string is the same as magic mode search strings (see
search−forward(2)).

EXAMPLE

The line number may be considered to contain any numeric number, thus $line−template is defined
as:

set−variable $line−template "[0−9]+"

This correctly identifies "45" in the following *grep* output example:

foo.c: 45: printf("hello world\n") ;

SEE ALSO

$file−template(5), compile(3), get−next−line(2), grep(3), search−forward(2).

MicroEmacs '02

$line−template(5) 968

$ml−scheme(5)

NAME

$ml−scheme − Message line color scheme

SYNOPSIS

$ml−scheme schemeNum; Default is 0

DESCRIPTION

$ml−scheme defines the color scheme to be used on the message line, the color scheme schemeNum
identifies the foreground and background color and is defined by an invocation to
add−color−scheme(2).

The background color is always defined by $global−scheme(5).

SEE ALSO

$global−scheme(5), $osd−scheme(5), $mode−line−scheme(5), $scroll−bar−scheme(5), $system(5),
add−color−scheme(2).

MicroEmacs '02

$ml−scheme(5) 969

$mode−line(5)

NAME

$mode−line − Mode line format

SYNOPSIS

$mode−line "string"; Default is "%s%r%u me (%e) − %l %b (%f) "

DESCRIPTION

$mode−line defines the format of the mode line printed for every window, where the character
following a percent ('%') has the following effect:−

D Prints the current day.
M Prints the current month.
Y Prints the current year (2 digits).
y Prints the current year (4 digits).
b Prints the current buffer's name.
c Prints the current buffer's column number.
e Prints the current buffer's editing modes.
f Prints the current buffer's file name.
h Prints the current hour of the day.
k Prints the current keyboard macro status.
l Prints the current buffer's line number.
m Prints the current minute of the hour.
n Prints the current buffer's total number of lines.
r Prints the current root user status (UNIX only).
s Prints the horizontal window split character.
u Prints the current buffer's (un)changed or view mode flag.
% Prints a percentage escape character.
− Prints a literal minus character ('−') − see NOTES.
* All other characters are printed literally.

NOTES

Refer to $window−chars(5) for the characters utilized in the mode line. Typically a the '−'
character is changed to a '=' if it is the current window. If a '−' is always required, use "%−".

♦

A buffer can have its own mode−line, and be uneffected be the global mode line, see
$buffer−mode−line(5).

♦

SEE ALSO

MicroEmacs '02

$mode−line(5) 970

$buffer−mode−line(5), $mode−line−scheme(5), $window−chars(5).

MicroEmacs '02

$mode−line(5) 971

$mode−line−scheme(5)

NAME

$mode−line−scheme − Mode line color scheme

SYNOPSIS

$mode−line−scheme schemeNum; Default is 1

DESCRIPTION

Sets the window mode−line color scheme, defining the foreground and background colors. The
schemeNum is defined by a previous invocation to add−color−scheme(2).

SEE ALSO

add−color−scheme(2), $global−scheme(5), $ml−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$mode−line−scheme(5) 972

$mode−names(5)

NAME

$mode−names − Filtered mode name list

SYNOPSIS

$mode−names ModeName

DESCRIPTION

$mode−names must first be initialized to the required filter string, if the variable is evaluated before
it is initialized the value will be set to "ABORT" and the command will fail. The filter takes the form
of a regex.

Once initialized, evaluating $mode−names returns the name of the next mode which matches the
filter until no more modes are found, in which case an empty string is returned.

EXAMPLE

The following example prints out the name of all modes to the massage line one at a time. Note that
&set(4) is used on the !while(4) statement to avoid evaluating $mode−names twice per loop.

set−variable $mode−names "*"
!while ¬ &seq &set #l0 $mode−names ""
 100 ml−write &cat "mode: " #l0
!done

SEE ALSO

buffer−mode(2), &bmode(4), $buffer−names(5), $command−names(5), Regular Expressions.

MicroEmacs '02

$mode−names(5) 973

$mouse(5)

NAME

$mouse − Mouse configuration variable

SYNOPSIS

$mouse bitmask; Default is system dependent

DESCRIPTION

The $mouse is used to define and configure the MicroEmacs mouse support, it is a bit based flag
where:−

0x00f

Defines the number of button the mouse has, only values 1, 2 & 3 are useful. By default MicroEmacs
uses the system information to determine the number of buttons on the mouse, this is not fool proof so
the user can set these bits to the appropriate number if the initial value is incorrect.

0x010

If set the mouse is enabled, if clear the mouse will not function. On systems which do not support
mice (such as UNIX Termcap) this bit will be clear and can not be altered.

0x020

If set the buttons are reversed, i.e. the left button becomes the right and vice versa. By default this bit
is clear.

0xf0000

Defines the current mouse icon to used, valid values are as follows:

0x00000 − Set mouse to default icon.
0x10000 − Set mouse to arrow icon.
0x20000 − Set mouse to text I−beam icon.
0x30000 − Set mouse to crosshair icon.
0x40000 − Set mouse to the grab icon.
0x50000 − Set mouse to the wait icon.
0x60000 − Set mouse to the stop icon.

This feature is not supported on some systems and on others some icons are not obvious due
to platform limitations.

MicroEmacs '02

$mouse(5) 974

EXAMPLE

The following example checks that the mouse is currently available, if not, it aborts.

!if ¬ &band $mouse 0x10
 ml−write "[Mouse support is not currently available]"
 !abort
!endif

NOTES

The mouse can be easily configured using user−setup(3).

SEE ALSO

user−setup(3), $system(5), $platform(5).

MicroEmacs '02

$mouse(5) 975

$mouse−pos(5)

NAME

$mouse−pos − Mouse position information

SYNOPSIS

$mouse−pos integer

DESCRIPTION

$mouse−pos is generated by invocation of the command set−cursor−to−mouse(2). The variable is set
to a value that indicates the position of the mouse within a window. The values to the mouse
intersection are interpreted as follows:−

0 − Text area

Intersection with the window text area.

1 − Message Line

Intersection with the message line.

2 − Mode Line

Intersection with the mode line.

3 − Horizontal Separator

Intersection with the horizontal window separator. This value is only set if a scroll bar is not present.

4 − Up Arrow

Intersection with the scroll bar up−arrow character.

5 − Upper Shaft

Intersection with the scroll bar upper shaft (above the scroll box).

6 − Scroll Box

Intersection with the scroll bar scroll box.

7 − Lower Shaft

MicroEmacs '02

$mouse−pos(5) 976

Intersection with the scroll bar lower shaft (below the scroll box).

8 − Down Arrow

Intersection with the scroll bar down−arrow character.

9 − Corner

Intersection with the window corner, that is the character at the intersection of the scroll bar (or
separator) and the mode line.

10 − Menu Line

Intersection with the menu line.

255 − Error

The position of the mouse could not be determined. This value should not arise, if it does then it is an
indication that the window structure is probably corrupted. A delete−other−windows(2) is suggested
or rapid exit from the editor after a save−some−buffers(2) command to save any edits (latter option is
preferred).

Bit 4 − 2nd Column

Bit 4 (16) is set if 2 character column scroll bar or vertical window separator is in effect and the cursor exists
in the second column This value is bitwise OR'ed with the aforementioned intersection values. EXAMPLE

The following macro can be used to print out the current position of the mouse, try binding the macro
to the "mouse−move" key:

define−macro print−mouse−position
 !force set−cursor−to−mouse
 set−variable #l0 &band $mouse−pos 15
 !if &equ #l0 0
 ml−write "Mouse in text window"
 !elif &equ #l0 1
 ml−write "Mouse on message line"
 !elif &equ #l0 2
 ml−write "Mouse on Mode line"
 !elif &and &gre #l0 2 &les #l0 10
 ml−write "Mouse on scroll bar"
 !elif &equ #l0 10
 ml−write "Mouse on corner"
 !elif &equ #l0 11
 ml−write "Mouse on menu line"
 !endif
!emacro

global−bind−key print−mouse−position mouse−move

$mouse−pos is utilized by the mouse picking code, found in macro file mouse.emf.

MicroEmacs '02

$mouse−pos(5) 977

SEE ALSO

$mouse−x(5), $mouse−y(5), set−cursor−to−mouse(2), set−scroll−with−mouse(2).

MicroEmacs '02

$mouse−pos(5) 978

$mouse−x(5)

NAME

$mouse−x − Mouse X (horizontal) position
$mouse−y − Mouse Y (vertical) position

SYNOPSIS

$mouse−x integer

0 <= integer <= $frame−width − 1

$mouse−y integer

0 <= integer <= $frame−depth − 1

DESCRIPTION

$mouse−x and $mouse−y are automatically set to the position of the mouse at the last mouse event,
where an event is a button press or release. Initialized to 0,0. The top left character of the screen is
coordinate 0,0 bottom right is $frame−width, $frame−depth.

NOTES

These variables can not be set. Any attempt to set them will result in an error.

SEE ALSO

set−cursor−to−mouse(2), $mouse−pos(5), $cursor−x(5), $frame−depth(5), $frame−width(5).

MicroEmacs '02

$mouse−x(5) 979

$osd−scheme(5)

NAME

$osd−scheme − OSD color scheme

SYNOPSIS

$osd−scheme schemeNum; Default is 1

DESCRIPTION

$ml−scheme defines the color scheme by default on an osd(2) dialog, the color scheme schemeNum
identifies the foreground and background color and is defined by an invocation to
add−color−scheme(2). Every osd dialog can over−ride this value by using the 'S' flag.

SEE ALSO

osd(2), add−color−scheme(2), $global−scheme(5), $ml−scheme(5), $mode−line−scheme(5),
$scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$osd−scheme(5) 980

$platform(5)

NAME

$platform − MicroEmacs host platform identifier
%platform − MicroEmacs host platform type identifier

SYNOPSIS

$platform "string"; Default is platform specific
%platform "string"; Default is platform specific

DESCRIPTION

The $platform variable is a fixed ASCII string used to identify the current working platform,
attempts to set this variable result in an error returned from set−variable(2).

Possible values are:

"aix"

All IBM AIX O/S.

"dos"

All IBM−PCs and compatibles running MS−DOS.

"freebsd"

All FreeBSD O/S.

"hpux"

All Hewlett Packard's with HP−UX O/S.

"irix"

All Silicon Graphics (SGI) IRIX platforms 4.x, 5.x, 6.x.

"linux"

All LINUX O/S.

"sunos"

MicroEmacs '02

$platform(5) 981

All Sun's with SUNOS O/S.

"unixwr1"

PC based UNIX platform (Consensus and Unixware).

"win32"

Microsoft Windows based systems including Windows 3.x (with Win32s), Windows '95 and NT.

$platform is often used in .emf files to allow portability of macro files across platforms, allowing
macro files to perform platform specific operations. $system(5) is also often used for this purpose as
its value is easier to assess.

%platform is created at start−up when me.emf is executed, its value is identical to $platform
except when the platform is a console in which case a 'c' is appended to the $platform value, e.g. for
MicroEmacs running a termcap version on LINUX the value will be "linuxc". The variable is used
when the console and window based versions need to be distinguish, e.g. some of the user−setup
settings.

EXAMPLE

The following example is taken from the me.emf file which uses the $platform variable to load the
platform specific initialization files.

;
; load in the platform specific stuff
execute−file $platform

This could be more explicitly done by:

;
; load in the platform specific stuff
!if &seq $platform "dos" ; is it an IBM−PC running dos ?
 execute−file "dos"
!elif &seq $platform "irix" ; is it an sgi ?
 execute−file "irix"
!elif &seq $platform "hpux" ; is it an hp ?
 execute−file "hpux"
 .
 .
!endif

NOTES

The $platform variable can not be set. Any attempt to set it will result in an error.

SEE ALSO

MicroEmacs '02

$platform(5) 982

$system(5), set−variable(2).

MicroEmacs '02

$platform(5) 983

$progname(5)

NAME

$progname − Program file name

SYNOPSIS

$progname string

DESCRIPTION

$progname is set the the MicroEmacs '02 program file name currently being run. This can be used by
macros for many purposes, from spawning another MicroEmacs '02 session to working out where
MicroEmacs '02 is running from.

EXAMPLE

The following example is used to spawn of another MicroEmacs '02 command to create a C tags
file:−

shell−command &cat $progname " \"@ctags\" *.c *.h"

SEE ALSO

me(1).

MicroEmacs '02

$progname(5) 984

$random(5)

NAME

$random − Generate a random number

SYNOPSIS

$random integer

0 <= integer <= 65535

DESCRIPTION

The $random variable returns a unique random number in the range 0 − n on reference to the
variable.

The random number is derived from the system's random number generator (the quality of which is
often dubious so try to avoid using the bottom bits). Setting this variable with any value resets the
random sequence using the system time as the seed.

The range of the random number generator is system dependent. The value is typically capped using
the &mod(4) arithmetic operator.

EXAMPLE

The variable may be assigned to generate a new seed as follows:−

set−variable $random 0 ; Set it so we get a new seed

The returned value is used with the &mod operator to limit the value to a desired range:−

set−variable %random0to9 &mod $random 10

SEE ALSO

&mod(4).

MicroEmacs '02

$random(5) 985

$rcs−file(5)

NAME

$rcs−file − RCS (and SCCS) file name
$rcs−ci−com − RCS (and SCCS) check in command
$rcs−cif−com − RCS (and SCCS) check in first command
$rcs−co−com − RCS (and SCCS) check out command
$rcs−cou−com − RCS (and SCCS) check out unlock command
$rcs−ue−com − RCS (and SCCS) unedit file command

SYNOPSIS

$rcs−file "string"; Default is ""
$rcs−ci−com "string"; Default is ""
$rcs−cif−com "string"; Default is ""
$rcs−co−com "string"; Default is ""
$rcs−cou−com "string"; Default is ""
$rcs−ue−com "string"; Default is ""

DESCRIPTION

RCS (Revision Control System) and SCCS (Source Code Control System) are programmers source
code history data−bases. RCS introduces a system in which only one programmer can edit a source
file at any one time, enforcing some form of stability in the global environment. The fact that this
interface was developed for the RCS system is irrelevant, and should be usable under any other
control systems such as SCCS.

When using RCS, finding a file (see find−file(2)) checks for the existence of the actual file. If this is
not found then it checks for the existence of an RCS $rcs−file variable, and if present then it
constructs the RCS file name and checks for its existence. If this file does not exist then it really is a
new file and an new buffer is created. If the file does exist then the file is checked out using the
$rcs−co−com which executes to create a file with the original file name, ready for loading.

$rcs−file is the name of the file when it is fully check in, as opposed to when it is ready to be viewed
or edited. In RCS, this is usually in the RCS directory with an appended ",v", i.e. for the file foo.c
in the /test directory, when fully checked in, the file will not be found at "/test/foo.c", but at
"/test/RCS/foo.c,v". When testing for an RCS file, the file name is split into two parts, the
path name and the file name, the path is always inserted at the start, and the file name can inserted in
the rcs string by using the special "%f" token, thus if $rcs−file is set to "RCS/%f,v", the RCS file
name is constructed from "/test/" + "RCS/" + "foo.c" + ",v".

If the RCS file is found then the $rcs−co−com (RCS Check Out COMmand) which is a simple
system command line with the exception for %f which is replaced by the file name, is executed. This
is expected to create the file (with the correct file name) ready for viewing.

MicroEmacs '02

$rcs−file(5) 986

Once a file is loaded, then the rcs−file(2) command has one of two effects:−

If the file is in view mode then the $rcs−cou−com (RCS Check Out Unlock COMmand) is
executed (system command line using the "%f" as the file name). If the RCS file does not
exist then is simply toggles the view mode, allowing editing.

If the file is not in view mode MicroEmacs attempts to check the file back into RCS using
either $rcs−ci−com (if the RCS file already exists) or the the $rcs−cif−com (RCS Check In
First COMmand). The "%f" is again used for the file name, the "%m" can also be used to get a
comment from the user at check in time which will be inserted (without quotes) into the
$rcs−ci−com command line. For example, one possible $rcs−ci−com setting is "ci
−m\"%m\" %f" which uses the ci(1) program with the −m option to give a check in
message.

If rcs−file is given a −ve argument instead of checking in or out the current buffer's file it executes the
command specified by $rcs−ue−com to unedit or abort any changes made to the file. After the
command has been executed the file is reloaded.

NOTES

The RCS variables are by default undefined and must be explicitly enabled in the start−up files.

EXAMPLE

The following are typical variable definitions for the RCS interface:−

set−variable $rcs−file "RCS/%f,v"
set−variable $rcs−co−com "co %f"
set−variable $rcs−cou−com "co −l %f"
set−variable $rcs−ci−com "ci −u −m\"%m\" %f"

Note that the $rcs−cif−com variable is usually left unassigned and $rcs−ci−com is used by default.

The following are typical variable definitions for the SCCS interface:−

set−variable $rcs−file "SCCS/s.%f"
set−variable $rcs−co−com "sccs get %f"
set−variable $rcs−cou−com "sccs edit %f"
set−variable $rcs−ci−com "sccs delget −y\"%m\" %f"
set−variable $rcs−ci−com "sccs create %f"
set−variable $rcs−ue−com "sccs unedit %f"

The following variable definitions can be used for MicroSoft's Visual Source Safe:−

set−variable $rcs−file "%f"
set−variable $rcs−cou−com "ss.exe checkout %f"
set−variable $rcs−co−com "ss.exe checkout %f"
set−variable $rcs−ci−com "ss.exe checkin %f \"−c%m\""

MicroEmacs '02

$rcs−file(5) 987

The above definitions can check a file out for edit and commit changes back.

SEE ALSO

find−file(2), rcs−file(2).

MicroEmacs '02

$rcs−file(5) 988

$recent−keys(5)

NAME

$recent−keys − Recent key history.

SYNOPSIS

$recent−keys string

DESCRIPTION

$recent−keys is a system variable that displays the last 100 keys entered into the system in reverse
order. This variable is typically used to solve keyboard mapping problems when keys are not bound
etc. allowing a visual inspection of the input into the editor.

SEE ALSO

buffer−bind−key(2), global−bind−key(2), translate−key(2).

MicroEmacs '02

$recent−keys(5) 989

$result(5)

NAME

$result − Various command return values

SYNOPSIS

$result returnValue

DESCRIPTION

$result is used to return the results of several commands:

buffer−info(2) $result is set to the same output string as printed to the message−line by this
command.

change−font(2)

$result is used to return the user select font when hte windows font selection dialog is used (Windows
systems only).

count−words(2)

$result is set to the same output string as printed to the message−line by this command.

find−registry(2)

$result is used to return the name of a registry child node given the parent and index from the user.

get−registry(2)

$result is used to return the current value of a user supplied registry entry.

mark−registry(2)

$result is used to return the full name of the given registry node.

osd(2)

$result is used to give and return information to osd item commands, information depends on
the type of osd item.

osd−dialog(3)

MicroEmacs '02

$result(5) 990

osd−xdialog(3)

$result is used to return the button pressed by the user.

shell−command(2)

$result is set to the exit status of the system call. The combination of shell−command calls
and return value checking can be used in a variety of ways, for example, to test the existence
of a file:

set−variable %filename @ml"Enter file name"
shell−command &cat "test −f " %filename
!if &equ $result 0
 ml−write "file exists"
!else
 ml−write "file does not exists"
!endif

show−region(2)

$result is set to the current status of the region when an argument of 0 is given to
show−region.

spell(2)

$result is used to return information on the current word, the information depends on the
argument given to spell.

$file−names(5)

$result is set to the absolute path of the $file−names query directory when the variable is set.

For more information see the help pages on referenced commands and variables.

NOTES

The current value of $result is lost on the next command call which uses it. As a call to
create−callback(2) can cause the execution of a macro to interrupt another which is waiting for user
input, the value of $result should be copied before getting user input.

SEE ALSO

buffer−info(2), change−font(2), count−words(2), find−registry(2), get−registry(2), mark−registry(2),
osd(2), shell−command(2), show−region(2), spell(2), $file−names(5). create−callback(2), $status(5).

MicroEmacs '02

$result(5) 991

$scroll(5)

NAME

$scroll − Screen scroll control

SYNOPSIS

$scroll scrollNum; Default is 1

0 <= scrollNum <= n

DESCRIPTION

$scroll controls the horizontal and vertical scrolling method used to display long lines and buffers.
The variable is split into two componants, the first nibble (0x0f) sets the horizontal scroll, and the
second nibble (0xf0) sets the vertical. For the purpose of documentation these parts are kept
separate, but when setting the variable a single combined value must be given.

The horizontal settings are defined as follows:

0x00

Scroll method 0 will only scroll the current line, this is the fastest method in execution time.

0x01

Scroll method 1 (the default) will scroll the whole page horizontally when the scroll−left(2) and
scroll−right(2) commands are used. However, when the current line must be scrolled to display the
cursor due to a forward−char(2) type cursor movement, only the current line is scrolled and the rest
are reset.

0x02

Scroll method 2 always scrolls the whole page horizontally, keeping the cursor in the current column
range. If the cursor moves out of this range then all the page is scrolled to the new position. This is
particularly useful when editing long lined tables.

0x03

Scroll method 3 fixes the scroll column using the scroll−left and scroll−right functions. If the current
cursor position is not visible in the column range then only the current line is scrolled to the new
position.

The vertical settings are defined as follows:

MicroEmacs '02

$scroll(5) 992

0x00

Scroll method 0 (the default) will scroll the current line to the middle of the current window whenver
it is moved off screen, this is the fastest method in execution time.

0x10

Scroll method 1 will scroll the current line to the the top of the window whenver the current line is moved off
the screen using backward−line(2) and to the bottom of the window when forward−line(2) is used. This
creates the effect of a smooth scroll. EXAMPLE

The following example sets the scrolling method to be the default horizontally (0x01) and smooth
method (0x10) vertically :

set−variable $scroll 0x11

SEE ALSO

scroll−left(2), forward−line(2), $window−x−scroll(5), $window−y−scroll(5).

MicroEmacs '02

$scroll(5) 993

$scroll−bar(5)

NAME

$scroll−bar − Scroll bar configuration

SYNOPSIS

$scroll−bar "bitmask"; Default is platform specific

DESCRIPTION

$scroll−bar defines the configuration of the scroll bar and/or the horizontal window separator for
both main text windows and osd(2) dialogs. The variable is interpreted as a bit mask and defines
which components of the scroll bar (or separator) should be rendered in a window. The characters
used to render the scroll bar or separator are defined by $window−chars(5). The bit mask is defined as
follows:−

0x001 − Vertical Scroll Bar Width

Bit 0 controls the width of the vertical scroll bar (or separator). A value of 0 corresponds to a single
column width, a value of 1 is a double column width.

0x002 − Upper end cap

Bit 1 set indicates that the scroll bar has an upper end cap. This is the up arrow character at the top of
a scroll bar.

0x004 − Lower end cap

Bit 2 set indicates that the scroll bar has a lower end cap. This is the down arrow character at the
bottom of a scroll bar.

0x008 − Corner

Bit 3 set indicates that separate corner character is used at the intersection of the mode line and the
separator.

0x010 − Scroll Box Enable

Bit 4 determines if the scroll bar has a scrolling box, when the bit is set each scroll bar will have a
scroll box. When clear, scroll bars are rendered according to bits 0−3 & 7 only and the main area of
the bar is left empty.

0x020 − Reverse Video Box

MicroEmacs '02

$scroll−bar(5) 994

Bit 5 when set enables the scroll box to be rendered in reverse video, that is the background and
foreground/hilight scroll colors are interchanged. This bit is typically set on X−Window platforms
allowing the scroll box to comprise of SPACE characters allowing a solid box to be rendered in the
foreground color.

Bit 5 is only enacted if scroll boxes are enabled.

0x040 − Horizontal Scroll Bar Width

Bit 6 controls the width of the horizontal scroll bar, used only by osd(2). A value of 0 corresponds to a
single column width, a value of 1 is a double column width.

0x080 − Splitter

Bit 7 set indicates that the scroll bar has a splitter. This is the split bar character at the top of a scroll
bar.

0x100 − Enable window Scroll Bars

When Bit 8 is clear, scroll bars are not present on windows. If a horizontal split has been performed
then the window separator is rendered plain. This is useful when performance is important, as scroll
bars require constant up−date.

0x200 − Horizontal Scroll Bar Width

Bit 9 enables scroll bars, when the bit is set each window is assigned a scroll bar in the right−hand column(s)
of the window with a scroll box. SEE ALSO

$mouse−pos(5), $scroll−bar−scheme(5), set−scroll−with−mouse(2), $window−chars(5).

MicroEmacs '02

$scroll−bar(5) 995

$scroll−bar−scheme(5)

NAME

$scroll−bar−scheme − Scroll bar color scheme

SYNOPSIS

$scroll−bar−scheme schemeNum; Default is 1

DESCRIPTION

Sets the horizontal window scroll bar color scheme, assigning the foreground, background and
selection colors which are used to render the vertical separator / scroll bars (see
add−color−scheme(2). The separator is rendered in reverse video, i.e. the foreground color of the
color scheme is used as the background color, and vice versa.

The separator is rendered in the standard colors when the associated buffer is not active, and in the
current color when the buffer is active.

The scroll−bar is the window separator constructed by split−window−horizontally(2) or when the
scroll bars are enabled via $scroll−bar(5).

SEE ALSO

$global−scheme(5), $ml−scheme(5), $mode−line−scheme(5), $scroll−bar(5), $system(5),
$window−chars(5), split−window−horizontally(2).

MicroEmacs '02

$scroll−bar−scheme(5) 996

$show−modes(5)

NAME

$mode−line − Select buffer modes to display

SYNOPSIS

$show−modes "bit−string"; Default is ""

DESCRIPTION

$show−modes defines which buffer modes are displayed on the mode−line.

SEE ALSO

$user−setup(3), $mode−line(5).

MicroEmacs '02

$show−modes(5) 997

$show−region(5)

NAME

$show−region − Enable the hilighting of regions

SYNOPSIS

$show−region flag; Default is 1

DESCRIPTION

$show−region enables or disables the current region hilighting, normally associated with mouse
interaction in a buffer. Region hilighting occurs between the mark (see set−mark(2)) and point
(current cursor) positions within the current buffer. An argument n of 0 disables region hilighting, an
argument of 1 enables region hilighting between the two positions. If it is set to 3 then region
hilighting will be enabled and a defined region (created using copy−region(2)or yank(2)) will
continue to be hilighted until the region is changed.

A defined region can be redisplayed (if still valid) using the command show−region(2). The color of
the region hilighting is defined by add−color−scheme(2) and is determined by $buffer−scheme(5),
$global−scheme(5) or $buffer−hilight(5).

SEE ALSO

show−region(2), $buffer−hilight(5), $buffer−scheme(5), $global−scheme(5), $buffer−scheme(5),
add−color−scheme(2), set−mark(2).

MicroEmacs '02

$show−region(5) 998

$status(5)

NAME

$status − Macro command execution status

SYNOPSIS

$status boolean

booleanTRUE (1) | FALSE (0)

DESCRIPTION

$status contains the return status of the last command executed (TRUE or FALSE). $status is
generally used with the !force directives in macros.

NOTES

This variable can not be set, any attempt to set it will result in an error.

EXAMPLE

The following example shows how the variable is used within a macro construct, it converts all tab
characters to their SPACE equivalent.

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 ; Remember line
 set−variable #l0 $window−line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 set−variable #l1 $window−acol
 backward−delete−char
 &sub #l1 $window−acol insert−space
 !force search−forward "\t"
 !done
 goto−line #l0
 screen−update
 ml−write "[Converted tabs]"
!emacro

In this case $status monitors the search−forward command which is searching for a tab character. The

MicroEmacs '02

$status(5) 999

command returns a status value of TRUE if a tab is found, otherwise FALSE.

The !force statement prevents the macro from terminating when a FALSE condition is detected, if
omitted the macro would terminate with an error as soon as the FALSE status is encountered. The
definition of tabs−to−spaces(3) can be found in format.emf.

SEE ALSO

execute−file(2), !force(4), $result(5), tabs−to−spaces(3).

MicroEmacs '02

$status(5) 1000

$system(5)

NAME

$system − System configuration variable

SYNOPSIS

$system bitmask; Default is system dependent

DESCRIPTION

The $system is used to define and configure the MicroEmacs environment, it is a bit based flag
where:−

0x001

This bit is set if MicroEmacs is running in Console mode. On UNIX systems the default is to use X
whenever possible, in which case this bit will be clear. If X is not used then a TERMCAP base
interface is used instead and this bit will be set (see notes below on how to set which interface to use).
On all other systems this bit will be clear.

0x002

If this bit is set then the current system supports definable RGB colors allowing any color to be
created and used in a color scheme. This bit cannot be set, typically Windows and UNIX X−Windows
systems support this.

0x004

If this bit is set then the current system supports ANSI colors (8 colors, black, red, green, yellow,
blue, magenta, cyan & white), bits 0x002 and 0x004 are mutually exclusive. On UNIX systems if the
TERMCAP interface is being used then this bit can be changed to (de)select the used of color. Many
unix terminals do not support color so this should be set appropriately. On all other systems this bit
cannot be changed and MS−DOS is currently the only other system to use ANSI colors.

0x008

If this bit is set then the current system supports Extended ANSI colors, brighter versions of the 8
ANSI colors doubling the number of colors available to 16. On UNIX systems if the TERMCAP
interface is being used then this bit can be changed to (de)select the used of bold with color to create
this extended color set for foreground colors. But many UNIX terminals do not support this use of
color with the bold font so this should be set appropriately. On all other systems this bit cannot be
changed and MS−DOS is currently the only other system to support this.

MicroEmacs '02

$system(5) 1001

0x010

If this bit is set then the current system supports the use of fonts (bold, italic, light and underline).
Whether these fonts can be successfully utilized depends upon the platform and the system font being
used, for UNIX TERMCAP systems it will also depend on the terminal being used. This option is not
supported on MS_DOS.

0x080

This bit is set if the current system is a UNIX based system such as LINUX or HPUX. This bit cannot
be altered, its use is within macros.

0x100

This bit is set if the current system is a Microsoft based system such as DOS or Windows '95. This bit
cannot be altered, its use is within macros.

0x200

If this bit is set then the current system uses the concept of drives (i.e. c:/ on DOS systems). This bit
cannot be altered, its use is within macros.

0x400

If this bit is set then a DOS style 8.3 file naming system should be used (i.e. "BBBBBBBB.XXX"),
otherwise an unlimited file name length is used. This effects the backup and auto−save file names
generated by MicroEmacs, the bit can be altered on systems that support unlimited file name length.

0x800

If this bit is set then the current system supports and uses ipipe−shell−command(2) when required.
For systems such as DOS which cannot support ipipes, this bit will be clear and cannot be altered. For
systems which do support ipipes, this bit can be cleared to disable their use.

0x1000

If this bit set, the then execution of the tab(2) command (bound to tab) always checks and adjusts the
indentation of the current line when the current buffer is in cmode(2m) or has an indentation method.
If the bit is clear then the tab may only checks the indentation when the cursor is in column zero
depending on the setting of bit 0x200000.

0x2000

If this bit is set the main menu Alt hot−key bindings are enabled. These are dynamic bindings
automatically generated from the main menu. Typically the first item in the main menu is "File"
with a hot key of 'F', with this bit set 'A−f' will open this menu item. Note that global and local key
bindings override these. Also see bit 0x4000.

0x4000

MicroEmacs '02

$system(5) 1002

If this bit is set the Alt key acts as a prefix 1 modifier key. By default 'A−n' is not bound, with this bit
set the key is inferred to 'esc n' which is bound to forward−paragraph. Note that global, local and
menu hot−key bindings override these. Also see bit 0x2000.

0x8000

If this bit is set the undo history is kept after a save allowing the undo(2) command to back−up
changes beyond the last save. When clear the undo history is discarded after the buffer is saved.

0x10000

Enable box character rendering fix, supported on Win32 and XTerm interfaces only.
Windows ANSI fonts and many XTerm ISO−8859−1 fonts do not have well formed box
characters which are used by osd(2) and other commands to create a better looking interface.
When this bit is enabled MicroEmacs traps the printing of characters with an ASCII value of
less than 32 and renders them directly. Following is a table of supported characters, other
characters in the range of 0x00 to 0x1f not listed are rendered as a space:

0x08

Special Character; Backspace

0x09

Special Character; Tab

0x0b

Box Character; Bottom right

0x0c

Box Character; Top right

0x0d

Box Character; Top left

0x0e

Box Character; Bottom left

0x0f

Box Character; Center cross

0x10

Arrows; Right

MicroEmacs '02

$system(5) 1003

0x11

Arrows; Left

0x12

Box Character; Horizontal line

0x15

Box Character; Left Tee

0x16

Box Character; Right Tee

0x17

Box Character; Bottom Tee

0x18

Box Character; Top Tee

0x19

Box Character; Vertical Line

0x1e

Arrows; Up

0x1f

Arrows; Down

0x20000

Enables the client server, default is disabled (UNIX and Win32 NT or Win95+ platforms only). When
enabled a hidden "*server*" buffer is created which monitors commands written to the server, the
socket "/tmp/mesrvuid" on UNIX systems and the command input file
"$TEMP/me$MENAME.cmd" on Win32 systems. Commands can be written out using the
command ipipe−write(2) while in the "*server*" buffer, the command is written to the same socket on
UNIX systems and to the response file and response file "$TEMP/me$MENAME.rsp" on Win32
systems. This functionality is used by the −m and −o command−line options and by the MicroSoft
DevStudio interface.

0x40000

MicroEmacs '02

$system(5) 1004

Enables the capture of the Alt space key ("A−space"), default is enabled (Win32 platform only). In
the Windows environment the Alt Space key is used to activate the main window's pull down menu at
the top left. if this bit is set MicroEmacs captures this key and executes it as normal, thereby disabling
this standard windows binding.

0x80000

Enables the drawing of visible white spaces, i.e. space, tab and new−line characters. When disabled
(default) white spaces are drawn using spaces (' ') which means the user cannot distinguish between a
tab and spaces or determine the last character of the line by merely looking at the display. When
enabled MicroEmacs uses visible characters to draw the white spaces, the characters used are set with
the variable $window−chars(5).

0x100000

Enables hiding MicroEmacs generated backup files. On Windows and Dos platforms the Hidden file
attribute is used to hide the file, whereas on UNIX the backup file name is prepended with a '.'.

0x200000

If this bit set, the then execution of the tab(2) command (bound to tab) checks and adjusts the
indentation of the current line when the cursor is in column zero and current buffer is in cmode(2m)
or has an indentation method. The setting of this bit has no effect if bit 0x1000 is set. If this and bit
0x1000 are clear then the tab will not check the indentation.

0x400000

When this bit is set the external clipboard (Windows & XTerm platforms) will never be set to empty,
if the current yank buffer is the empty string the cut buffer will be set to a space (i.e. " "). This feature
has been added to avoid problems with other software (e.g. exceed(1) which can crash if given an
empty cut buffer).

0x800000

When this bit is set all use of the external clipboard (Windows & XTerm platforms) is disabled, this means
that MicroEmacs will not attempt to retrieve or set the content of the system clipboard. EXAMPLE

The follow example works out the current buffer's backup file name using $system to determine the
naming system being used by MicroEmacs:−

set−variable #l0 &stat "a" $buffer−fname
; Is an 8.3 dos style naming system being used?
!if &band $system 0x400
 !if ¬ &set #l1 &sin "." #l0
 set−variable #l1 &cat #l0 ".~~~"
 !elif &gre &set #l1 &sub &len #l0 #l1 2
 set−variable #l1 &cat &lef #l0 &sub &len #l0 1 "~"
 !else
 set−variable #l1 &spr "%s%n" #l0 &sub 3 #l1 "~"
 !endif

MicroEmacs '02

$system(5) 1005

!elif $kept−versions
 set−variable #l1 &cat #l0 ".~0~"
!else
 set−variable #l1 &cat #l0 "~"
!endif

The following macro can be used to toggle the visible drawing of white spaces:

define−macro toggle−visible−white−spaces
 set−variable $system &bxor $system 0x80000
 screen−update
!emacro

NOTES

Most of the $system functionality can be set using the $user−setup(3) dialog.

UNIX X verses Termcap

By default, on X supporting systems MicroEmacs creates a new X window. This feature may be
disabled in one of two ways:

The environment variable $TERM is set to "vt...", in this case it is assumed that the
machine is a server, and the host cannot support X.

♦

The −n option is used on the command line (see me(1)) to disable the windowing interface.♦

If X is disabled then the termcap interface is used instead, still allowing the use of colors through the
ANSI standard, or the use of fonts (see bits 0x004 and 0x008).

X provides the following features over and above a termcap based version of MicroEmacs '02:

R,G,B style color creator giving access to up to 256 different colors for the ultimate hilighting
schemes (see bit 0x002 and add−color(2)).

♦

Full mouse support, allowing user definable bindings to every mouse event (see
global−bind−key(2)).

♦

Copy from and pasting to X's selection buffer (see yank(2)).♦

SEE ALSO

user−setup(3), $mouse(5), $platform(5), add−color(2), add−color−scheme(2),
ipipe−shell−command(2), $global−scheme(5).

MicroEmacs '02

$system(5) 1006

$tabsize(5)

NAME

$tabsize − Tab character width

SYNOPSIS

$tabsize integer; Default is 4

−0 < integer <= n

DESCRIPTION

$tabsize defines the width of a tab character.

Setting tabs to arbitrary widths is possible in MicroEmacs '02 but you must be aware of a subtle
difference that it makes to your file and hence to your editing. When you start MicroEmacs '02, the
tab width is set to the default (usually every 8th column) for the tab character (CTRL−I). As long as
you stay with the default, every time you insert the tab character, a CTRL−I get inserted. Hence, you
logically have a single character which might appear to be several spaces on the screen (or the output)
depending upon the column location of the tab character. This means that to remove the spacing you
have to delete a single character −− the tab character.

On the other hand, the moment you explicitly set the tab interval (even if it is to the default value),
MicroEmacs '02 handles the tab character by expanding the character into the required number of
spaces to move you to the appropriate column. In this case, to remove the spacing you have to delete
the appropriate number of spaces inserted by M−e to get you to the right column.

The operating mode of the tab expansion is controlled by the tab(2m)mode.

SEE ALSO

buffer−mode(2) tab(2m), $tabwidth(5).

MicroEmacs '02

$tabsize(5) 1007

$tabwidth(5)

NAME

$tabwidth − Tab character interval

SYNOPSIS

$tabwidth integer; Default is 8

−0 < integer <= n

DESCRIPTION

$tabwidth defines the interval of a tab character.

The tab interval is set to the given numeric argument. As always, the numeric argument precedes the
command. Hence to get tabs every 4 spaces you would set the $tabwidth to 4.

SEE ALSO

buffer−mode(2) tab(2m), $tabsize(5). tabs−to−spaces(3).

MicroEmacs '02

$tabwidth(5) 1008

$temp−name(5)

NAME

$temp−name − Temporary file name

SYNOPSIS

$temp−name FileName

DESCRIPTION

$temp−names is automatically set to a nonexistent file name in the systems temporary file directory.
On UNIX systems the temporary directory is fixed to "/tmp/", on other systems the temporary
directory is set by the $TEMP environment variable.

EXAMPLE

The following example uuencodes a given file into a temporary file and then inserts this file into the
current buffer.

set−variable #l0 @ml04 "Uuencode and insert file"
set−variable #l1 $temp−name
!force shell−command &spr "uuencode %s < %s > %s" #l0 #l0 #l1
insert−file #l1
!force shell−command &cat "rm " #l1

NOTES

This variable can not be set, any attempt to set it will result in an error.

The returned file name is not guaranteed to be unique between calls, only that the file does not
currently exist.

SEE ALSO

shell−command(2), file−op(2).

MicroEmacs '02

$temp−name(5) 1009

$time(5)

NAME

$time − The current system time

SYNOPSIS

$time "string"

DESCRIPTION

$time is a constantly changing variable which is set to the current system time. The format of $time is
"YYYYCCCMMDDWhhmmssSSS", where:−

YYYY

The current year (full 4 digits so should be millennium bug free).

CCC

Day of the year (0−366).

MM

The month of the year (1−12).

DD

The day of the month (1−31).

W

The day of the week (0−6 Sunday=0).

hh

The hour (0−23).

mm

The minute (0−59).

ss

MicroEmacs '02

$time(5) 1010

The second (0−59).

SSS

The millisecond (0−999).

$time can be set to an integer value which is a time offset in seconds, for example if the following
was executed;−

set−variable $time "3600"
ml−write &cat "$time is " $time
set−variable $time "0"

The written time would one hour ahead of the system time.

EXAMPLE

The following macro times the time taken to execute a user command:−

define−macro time
 !force set−variable #l2 @1
 !if ¬ $status
 set−variable #l2 @ml00 "Time command"
 !endif
 set−variable #l0 $time
 !force execute−line #l2
 set−variable #l1 $time
 set−variable #l2 &add &mid #l0 16 2 &mul 60 &add &mid #l0 14 2 &mul 60 &mid #l0 12 2
 set−variable #l3 &add &mid #l1 16 2 &mul 60 &add &mid #l1 14 2 &mul 60 &mid #l1 12 2
 !if &les &set #l4 &sub &rig #l1 18 &rig #l0 18 0
 set−variable #l2 &add #l2 1
 set−variable #l4 &add 1000 #l4
 !endif
 ml−write &spr "Command took %d sec %d msec" &sub #l3 #l2 #l4
!emacro

time(3) is a macro defined in misc.emf.

organizer(3) uses $time to work out the current month.

SEE ALSO

time(3), organizer(3).

MicroEmacs '02

$time(5) 1011

$timestamp(5)

NAME

$timestamp − Time stamp string

SYNOPSIS

$timestamp "string"; Default is "<%Y%M%D.%h%m>"

DESCRIPTION

$timestamp defines the file time−stamping string. MicroEmacs '02 searches for, and modifies, the
string to the current time and date whenever the file is saved (written to disk) and time(2m) mode is
enabled.

Time stamp string is defined, by default, as "<%Y%M%D.%h%m>". The first occurrence of the string in
the file is up−dated with the time and date information when the buffer is written. The $timestamp
string may contain any text, and includes the following, magic characters escaped by a percentage
(`%') character:−

D − Day.
M − Month.
Y − Year.
h − Hour.
m − Minute.
s − Second.

The format string may be redefined into any format. The '%' character has to be delimited by another
'%' if it is to be used in the text (i.e. "%%").

The year component (%Y) may be a 2 or 4 digit string, depending whether it includes the century.
When the time stamping searches for the %Y component it searches for either variant and replaces
appropriately.

EXAMPLE

The startup file may define the time stamp required as follows:−

set−variable $timestamp "Last Modified : %Y/%M/%D %h:%m:%s"

Time stamping is performed on the string :−

Last Modified : 90/11/23 10:12:01

MicroEmacs '02

$timestamp(5) 1012

Where the time stamp is modified according to the file (buffer) type then the time stamp string may be
modified within the buffer hooks. This allows different files to utilize different time stamping strings.
The following example shows how the entry and exit buffer hooks are defined to modify the string:

0 define−macro bhook−nroff
 set−variable .timestamp $timestamp
 ; Buffer specific time stamp string.
 set−variable $timestamp "[%Y/%M/%D %h:%m:%s]"
!emacro
0 define−macro ehook−nroff
 ; Restore the existing time stamp.
 set−variable $timestamp .bhook−nroff.timestamp
!emacro

On entry to the buffer (buffer becomes current) the buffer hook bhook−nroff is executed which stores
the current setting and then modifies the time stamp string. On exit from the buffer the buffer hook
ehook−nroff is executed restoring the time stamp string.

SEE ALSO

buffer−mode(2) time(2m).

MicroEmacs '02

$timestamp(5) 1013

$trunc−scheme(5)

NAME

$trunc−scheme − Truncation color scheme.

SYNOPSIS

$trunc−scheme schemeNum; Default is 0

DESCRIPTION

$trunc−scheme sets the color scheme used when drawing a line truncation indicator. The left
truncation character (usually a '$' char) drawn at the start of the line indicates that the line has been
scrolled to the right and therefore the start of the line has been truncated. A right truncation char (also
usually a '$') drawn at the end of the line indicates the remainder of the line is too long to fit onto the
width of the window so the end has been truncated and the indicator drawn.

The schemeNum selected must be a color scheme defined with add−color−scheme(2), which identifies
the foreground and background color schemes. A hilight scheme can define its own truncation color
scheme, see hilight(2) for more information.

NOTES

The truncation characters used are set by the $window−chars(5) variable.

SEE ALSO

$buffer−scheme(5), $global−scheme(5), add−color−scheme(2), hilight(2), $window−chars(5).

MicroEmacs '02

$trunc−scheme(5) 1014

$variable−names(5)

NAME

$variable−names − Filtered variable name list

SYNOPSIS

$variable−names VariableName

DESCRIPTION

$variable−names must first be initialized to the required filter string, if the variable is evaluated
before it is initialized the value will be set to "ABORT" and the command will fail.

The filter string can contain wild−card characters compatible with most file systems, namely:−

?

Match any character.

[abc]

Match character only if it is a, b or c.

[a−d]

Match character only if it is a, b, c or d.

[^abc]

Match character only if it is not a, b or c.

*

Match any number of characters.

Note that these are not the same characters used by exact(2m) mode.

Once initialized, evaluating $variable−names returns the name of the next variable which matches
the filter until no more variables are found, in which case an empty string is returned.

EXAMPLE

MicroEmacs '02

$variable−names(5) 1015

The following example prints out the name of all variables to the massage line one at a time. Note that
&set(4) is used on the !while(4) statement to avoid evaluating $variable−names twice per loop.

set−variable $variable−names "*"
!while ¬ &seq &set #l0 $variable−names ""
 100 ml−write &cat "variable: " #l0
!done

NOTES

The list of variables is evaluated when the variable is initialized, variables defined after the
initialization will not be included in the list. The list can contain the current buffer's buffer variables
(See Variables(4) for more information on the different types of variables).

Using unset−variable(2) to delete a variable which are in the list, before it has be evaluated, will have
undefined effects.

SEE ALSO

list−variables(2), $command−names(5).

MicroEmacs '02

$variable−names(5) 1016

$version(5)

NAME

$version − MicroEmacs version date−code

SYNOPSIS

$version "YYYYMMDD"

DESCRIPTION

$version is a system variable which is defined as the MicroEmacs build date code. This value is fixed
at compile time and cannot be changed. The variable may be used in macros to identify
incompatibility issues.

EXAMPLE

Given a macro that only operates with a MicroEmacs executable built on or after 1st August 2001
then this macro should check that $version is not less than 20010801. The check may be
performed as follows:

!if &les $version "20010801"
 ml−write "[Error: MicroEmacs executable is incompatible]"
 !abort
!endif

NOTES

This variable was introduced in 2001−08−01, evaluating this variable on an earlier version of
MicroEmacs would return the string "ERROR" unless an environment variable $version has been
defined. "ERROR" evaluates to 0 hence the test still operates correctly.

This variable is used in the macro file me.emf to check for any macro − executable incompatibility
issues.

MicroEmacs '02

$version(5) 1017

$window−col(5)

NAME

$window−col − Window cursor column (no expansion)
$window−line − Window cursor line (with narrows)
$window−acol − Window cursor actual column (expansion)
$window−aline − Window cursor actual line (ignore narrows)

SYNOPSIS

$window−col integer

0 <= integer <= 65535

$window−line integer

1 <= integer <= n

$window−acol integer

0 <= integer <= n

$window−aline integer

1 <= integer <= n

DESCRIPTION

$window−col is defined as the current position of the cursor in the current line in the current window.
Column zero is the left hand edge. This differs from $window−acol in that tab and special characters
only count for 1 character. $window−col is valid in the range 0 − n.

$window−line is defined as the current buffer line number the cursor is on in the current window.
Line numbering starts from 1. $window−line is valid in the range 1 − n.

$window−aline is identical to $window−line except when the current buffer contains narrowed out
sections before the current line. In this case $window−line will be set to the line number without
counting the number of lines in the narrow, whereas $window−aline will return the current line
number including all lines narrowed out before it. When this variable is set, the line required may lie
in a narrowed out section in which case the narrow is automatically removed. See narrow−buffer(2)
for more information on narrowing.

$window−acol is defined as the current column of the cursor in the current window. Column zero is
the left hand edge. This differs from $window−col in that tab and special characters may not count

MicroEmacs '02

$window−col(5) 1018

for 1 character.

NOTES

Variable $window−wcol was renamed to $window−acol in June 2000. Variable $window−wline was
also removed and a new variable $window−y−scroll introduced at this time. The following macro
code can be used to calculate the value of the original $window−wline variable:

&sub &sub $window−line $window−y−scroll 1

SEE ALSO

$frame−depth(5), $window−depth(5), $window−width(5), $window−y−scroll(5), narrow−buffer(2).

MicroEmacs '02

$window−col(5) 1019

$window−chars(5)

NAME

$window−chars − Character set used to render the windows

SYNOPSIS

$window−chars "sting"; Default is
"=−#*%=^|#|v*==^^||##||vv**|<−#−>*||<<−−##−−>>** x*[]>\.$$\"

DESCRIPTION

$window−chars is a fixed length string that defines the set of characters used to render the windows.
The characters have fixed indices defined as follows:−

Index 0

The active window mode line separator character, This replaces all Index 1 characters when the
window is current. Default is '='.

Index 1

The inactive window mode line separator character. This character is replaced by Index 0 characters
when the window becomes current. Default is '−'.

Index 2

UNIX based platforms only. The root or superuser indicator character that appears on the mode line.
Default is '#'.

Index 3

The buffer changed indicator character that appears on the mode line. Default is '*'.

Index 4

The buffer in view(2m) mode indicator character that appears in the mode line. Default is '%'.

Index 5

Single column vertical scroll bar split window horizontally character. Default is '='.

Index 6

MicroEmacs '02

$window−chars(5) 1020

Single column vertical scroll bar up−arrow character. Default is '^'.

Index 7

Single column vertical scroll bar upper−shaft character. Default is '|'.

Index 8

Single column vertical scroll box character. Default is '#'.

Index 9

Single column vertical scroll bar lower−shaft character. Default is '|'.

Index 10

Single column vertical scroll bar down−arrow character. Default is 'v'.

Index 11

Single column vertical scroll bar corner character. Default is '*'.

Index 12−13

Double column vertical scroll bar split window horizontally character. Default is '=='.

Index 14−15

Double column vertical scroll bar up−arrow characters. Default is "^".

Index 16−17

Double column vertical scroll bar upper−shaft characters. Default is "||".

Index 18−19

Double column vertical scroll box characters. Default is "##".

Index 20−21

Double column vertical scroll bar lower−shaft characters. Default is "||".

Index 22−23

Double column vertical scroll bar down−arrow characters. Default is "vv".

Index 24−25

Double column vertical scroll bar corner characters. Default is "**".

MicroEmacs '02

$window−chars(5) 1021

Index 26−32

Single column horizontal scroll bar. Default is "|<−#−>*".

Index 33−46

Double column horizontal scroll bar. Default is "||<<−−##−−>>**".

Index 47

Osd title bar blank character. Default is ' '.

Index 48

Osd title bar right corner kill character. Default is 'x'.

Index 49

Osd dialog bottom right corner resize character. Default is '*'.

Index 50

Osd open button character. Default is ' '.

Index 51

Osd close button character. Default is ' '.

Index 52

Displayed tab character (used when $system(5) bit 0x80000 is set). Default is '>'.

Index 53

Displayed new−line character (used when $system(5) bit 0x80000 is set). Default is '\'.

Index 54

Displayed space character (used when $system(5) bit 0x80000 is set). Default is '.'.

Index 55

Displayed truncated text to left character (used when the current line is scrolled to the right). Default
is '$'.

Index 56

Displayed truncated text to right character (used when the current line is longer than the window
width). Default is '$'.

MicroEmacs '02

$window−chars(5) 1022

Index 57

Inserted end of wrapped line character in an ipipe−shell−command(2) buffer. Default is '\'. EXAMPLE

The $window−chars is typically platform dependent, it's setting is determined by the characters
available in character set of the hosting platform. MS−DOS and Microsoft Windows use an OEM font
might use the following value:

"=−#*%=\C^\xB1 \xB1\C_\CD==\C^\C^\xB1\xB1 \xB1\xB1\C_\C_\C[
\CZ|\CQ\xB1 \xB1\CP\CD||\CQ\CQ\xB1\xB1 \xB1\xB1\CP\CP\C[
\CZ x* >\\.$$\\"

This utilizes character−set specific characters to render some of the window components.

NOTES

$scroll−bar(5) allows the scroll box to be rendered in reverse video allowing a space to be
used for the scroll box.

♦

Use symbol(3) to determine the displayable characters on the host platform.♦
The use of MicroEmacs's extended character set on Windows and XTerm platforms can
greatly improve the look and usability of MicroEmacs, see the Extend Char Set option in the
Platform page of user−setup(3) and bit 0x10000 of variable $system(5).

♦

SEE ALSO

split−window−horizontally(2), symbol(3), $box−chars(5), $global−scheme(5), $mode−line(5),
$mode−line−scheme(5), $scroll−bar(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

$window−chars(5) 1023

$window−depth(5)

NAME

$window−depth − Number of text lines in a window
$window−width − Number of character columns in a window

SYNOPSIS

$window−depth integer

1 <= integer <= $frame−depth

$window−width integer

0 <= integer <= $frame−width − 1

DESCRIPTION

$window−depth returns the depth (height) of the current window, excluding the mode line, specified
in text lines. (i.e. the number of lines of text in the window). The returned value is an integer in the
range:

0 − ($frame−depth − 3)

$window−width returns the width, in characters, of the current window. The returned value is an
integer in the range:

0 − $frame−width.

NOTES

These variables can not be set, any attempt to set them results in an error.

SEE ALSO

$frame−depth(5), $frame−width(5), $window−scroll−bar(5), $window−mode−line(5),

MicroEmacs '02

$window−depth(5) 1024

$window−flags(5)

NAME

$window−flags − Current window setup flags

SYNOPSIS

$window−flags bitmask; Default is 0

DESCRIPTION

The $window−flags variable is used to set or get various behavioural characteristic settings of the
current window, it is a bit based flag where:

0x001

If set the width of the window is locked, calls to resize−all−windows(2) will maintained the width of
this window whenever possible.

0x002

If set the depth of the window is locked, calls to resize−all−windows(2) will maintained the depth of
this window whenever possible.

0x004

If set the buffer being displayed by the window is locked, the user can still manually change the
buffer being displayed (by using commands like find−buffer(2)) but commands that pop−up buffers
(such as help(2) or find−tag(2)) will not use this window.

0x008

When set the command compare−windows(2) will ignore this window.

0x010

When set the commands like previous−window(2) and next−window(2) will skip this window unless
the numeric argument given to the command is used to override the flag setting.

0x020

When set the command delete−other−windows(2) will not delete this window unless the numeric
argument given to the command is used to override the flag setting.

MicroEmacs '02

$window−flags(5) 1025

0x040

When set the command delete−window(2) will not delete this window unless the numeric argument
given to the command is used to override the flag setting.

0x080

When set the window cannot be split using either the split−window−horizontally(2) or
split−window−vertically(2) commands.

0x100

If not set the window cannot be deleted if it is the only window without this bit set. This more esoteric feature
is utilized by the toolbar, all toolbar windows have this bit set which means that the main user window cannot
be delete. NOTES

The $window−flags setting is not preserved during a window splitting operation (i.e. using a
command like split−window−vertically(2)) as the persistence of these settings can lead to unexpected
behaviour.

The toolbar uses bit 0x1000 to indicate that the window is displaying a toolbar tool, this bit should not
be used by users and its value should be maintained.

SEE ALSO

next−window(2), delete−other−windows(2), compare−windows(2).

MicroEmacs '02

$window−flags(5) 1026

$window−mode−line(5)

NAME

$window−mode−line − Window mode line position
$window−scroll−bar − Window scroll bar (or separator) position

SYNOPSIS

$window−mode−line integer

1 <= integer <= $frame−depth − 2

$window−scroll−bar integer

0 <= integer <= $frame−width − 1

DESCRIPTION

$window−mode−line stores the screen line of the current windows mode−line, where screen lines are
counted from 0 at the top of the screen. Often used in conjunction with set−cursor−to−mouse(2) and
$mouse−y(5) to add more complex mouse functionality.

$window−scroll−bar stores the screen position of the right−hand horizontal window separator line or
scroll−bar (see split−window−horizontally(2) and $scroll−bar(5)). A value of greater than
$frame−width(5) indicates that there is no right−hand separator column or scroll bar present. Often
used in conjunction with $mouse−x(5).

EXAMPLE

In the following example the position of the mouse is checked to see if it is on the mode line of the
window, if so then a different action is taken.

set−cursor−to−mouse
; If we are on the mode line then interpret position of
; the cursor on line to control the screen.
!if &equal $window−mode−line $mouse−y
 !if &less $mouse−x "2"
 menu−main ; Inform buffer to pop up menu.
 !elif &equal $mouse−x "2"
 delete−window
 !elif &equal $mouse−x "3"
 delete−other−windows
 !elif &equal $mouse−x "4"
 backward−page
 !elif &equal $mouse−x "5"
 forward−page

MicroEmacs '02

$window−mode−line(5) 1027

 !elif &equal $mouse−x "6"
 recenter
 !elif &equal $mouse−x "7"
 undo
 !endif
!else

!endif

SEE ALSO

$mode−line(5), $mouse−x(5), $mouse−y(5), $scroll−bar(5), $mouse−pos(5),
set−cursor−to−mouse(2), split−window−horizontally(2).

MicroEmacs '02

$window−mode−line(5) 1028

$window−x−scroll(5)

NAME

$window−x−sroll − Current window X scroll
$window−xcl−sroll − Current window current line X scroll
$window−y−sroll − Current window Y scroll

SYNOPSIS

$window−x−sroll integer
$window−xcl−sroll integer

0 <= integer <= 65535

$window−y−sroll integer

0 <= integer <= n

DESCRIPTION

$window−x−sroll defines the horizontal scroll position in the current window for all lines except the
current line, $window−xcl−sroll defines the scroll position for the current line. The variables set how
many characters are scrolled off the left hand edge of the current window, the variables are indirectly
set by commands such as scroll−left(2), forward−char(2) etc.

$window−y−sroll defines the vertical scroll position in the current window. It sets the number of
lines are scroll up off the top of the current window, it is indirectly set by commands such as
scroll−up(2), forward−line(2) etc.

EXAMPLE

The following example first stores the current window's buffer position and the window layout. The
middle '...' section could be replaced with macro code performing any number of operations before
the last section which restores the initial position:

 set−variable #l0 $window−line
 set−variable #l1 $window−col
 set−variable #l2 $window−xcl−scroll
 set−variable #l3 $window−x−scroll
 set−variable #l4 $window−y−scroll
 .
 .
 .
 set−variable $window−line #l0
 set−variable $window−col #l1

MicroEmacs '02

$window−x−scroll(5) 1029

 set−variable $window−xcl−scroll #l2
 set−variable $window−x−scroll #l3
 set−variable $window−y−scroll #l4

NOTES

If these variables are set by the user or a macro the value is validated against the $scroll(5) method
and the current cursor position which may lead to the variable being reset if found to be invalid. For
example, if the current line is 10 when the $window−y−scroll is set to 20 the variable will be reset to
0 as a value of 20 will mean the current line is not displayed in the current window.

SEE ALSO

scroll−left(2), scroll−up(2), $scroll(5), $window−line(5), $window−col(5), $window−acol(5).

MicroEmacs '02

$window−x−scroll(5) 1030

etfinsrt(3)

NAME

etfinsrt − Insert template file into current buffer

SYNOPSIS

etfinsrt "template"

DESCRIPTION

etfinsrt is generally called by file hooks when the new buffer has been created as opposed to loaded
from a file (see $buffer−fhook(5)).

etfinsrt uses &find(4) to locate and insert the required "template.etf" file. If successful, etfinsrt then
replaces the following strings in the template:

$ASCII_TIME$

To the current time. Inserts the output of ascii−time(3).

$BUFFER_NAME$

To the buffer name. The name is capitalized, '.'s are replaced with '_' and any trailing "<##>" digits
(used to make the buffer name unique) are removed.

$COMPANY_NAME$

To the value of %company−name, or if not defined to the value used for $USER_NAME$.
%company−name is usually set up in the company setup file defined in User setup.

$USER_NAME$

To the value of the registry entry "/history/user−name", or if not defined to the value
"<unknown>". The user name is usually set up in the User setup dialog.

$YEAR$

To the current year (4 digit number).

$CURSOR$

To leave the cursor at this point, only one of these tokens should be used in the template and the token is
removed. EXAMPLE

MicroEmacs '02

etfinsrt(3) 1031

The following is taken from hkmake.emf and inserts the "makefile.etf" template if the buffer has been
created.

define−macro fhook−make
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "makefile"
 !endif
 set−variable $buffer−hilight .hilight.make
 −1 buffer−mode "tab" ; Normal tabs please !!!
 1 buffer−mode "indent"
 1 buffer−mode "time"
!emacro

NOTES

etfinsrt is a macro defined in etfinsrt.emf.

magic(2m) mode is always used to perform the the search/replace so the replace strings should be
appropriate for magic.

SEE ALSO

$buffer−fhook(5), &find(4), ascii−time(3).

MicroEmacs '02

etfinsrt(3) 1032

%compile−com(5)

NAME

%compile−com − Default system compile command line

SYNOPSIS

%compile−com "string"; Default is "make"

DESCRIPTION

Sets the default command−line inserted into the message line when the compile(3) command is
executed. %compile−com does not need to be defined to run the compile command.

SEE ALSO

compile(3), %grep−com(5).

MicroEmacs '02

%compile−com(5) 1033

cygnus(3)

NAME

cygnus − Open a Cygwin BASH window
%cygnus−bin−path − Cygwin BASH directory
%cygnus−hilight − Cygwin shell hilight enable flag
%cygnus−prompt − Cygwin shell prompt

PLATFORM

Windows '95/'98/NT − win32 ONLY

SYNOPSIS

cygnus

%cygnus−bin−path "path"
%cygnus−hilight [0|1]
%cygnus−prompt "hilightString"

DESCRIPTION

cygnus creates an interactive BASH shell window within a MicroEmacs buffer window, providing a
UNIX command line facility within the Microsoft Windows environment. This is a preferable
environment to the MS−DOS shell and is certainly far more comfortable for those people familiar
with UNIX.

Within the window BASH commands may be entered and executed, the results are shown in the
window. Within the context of the BASH shell window then directory naming conforms to the
cygwin standard conventions (as opposed to the Microsoft directory naming).

On running cygnus a new buffer is created called *cygnus* which contains the shell. Executing the
command again creates a new shell window called *cygnus1*, and so on. If a cygwin window is
killed off then the available window is used next time the command is run.

Additional controls are available within the shell window to control the editors interaction with the
window. The operating mode is shown as a digit on the buffer mode line, this should typically show
"3", which corresponds to F3. The operating modes are mapped to keys as follows:−

F2

Locks the window and allows local editing to be performed. All commands entered into the window
are interpreted by the editors. F2 mode is typically entered to cut and paste from the window, search

MicroEmacs '02

cygnus(3) 1034

for text strings etc. In mode 2, a 2 is shown on the mode line.

F3

The normal operating mode, text typed into the window is presented to the shell window. Translation
of MicroEmacs commands (i.e. beginning−of−word) are translated and passed to the shell. For
interactive use this is the default mode. In mode 3, a 3 is shown on the mode line.

F4

All input is passed to the shell, no MicroEmacs commands are interpreted and keys are passed straight
to the shell window. This mode is used where none of the keys to be entered are to be interpreted by
MicroEmacs. Note that you have to un−toggle the F4 mode before you can swap buffers as this
effectively locks the editor into the window.

F5

Clears the buffer contents. This simply erases all of the historical information in the buffer. The
operation of the shell is unaffected.

To exit the shell then end the shell session using "exit" or "C−d" as normal and then close the
buffer. A short cut "C−c C−k" is available to kill off the pipe. However, it is not recommended that
this method is used as it effectively performs a hard kill of the buffer and attached process

%cygnus−bin−path is a user defined variable that defines the file system location of the cygwin
directory. This variable MUST be defined within the user start up script in order for the cygnus
command to start the shell. With a default installation of cygwin then the settings are typically defined
as:−

Release B19

set−variable %cygnus−bin−path "C:/Cygnus/B19/h−i386~1/bin"

Release B20

set−variable %cygnus−bin−path "c:/cygnus/cygwin−b20/H−i586−cygwin32/bin"

%cygnus−hilight is a boolean flag which controls how the cygnus command shell window is
hilighted. This value MUST be defined within the user start up script prior to executing cygnus if
hilighting is to be enabled; by default hilighting is disabled. A value of 1 enables shell hilighting i.e.

set−variable %cygnus−hilight 1

%cygnus−prompt is an optional variable that is used in conjunction with %cygnus−hilight, it
defines the hilighting string identifying the prompt. This allows the prompt to be rendered with a
different color. The default prompt is bash−2.01$ and may be hilighted using a definition:−

set−variable %cygnus−prompt "bash−2.01$"

MicroEmacs '02

cygnus(3) 1035

The user typically overrides the prompt definition within the BASH startup file, a more appropriate
definition of the prompt may be:−

set−variable %cygnus−prompt "^[a−z]*@[^>]*>"

NOTES

The cygnus command uses the ipipe−shell−command(2) to manage the pipe between the editor and
the bash shell. The window is controlled by the macro file hkcygnus.emf which controls the
interaction with the shell.

The macro cygnus in hkcygnus.emf defines the parameter setup to connect to the cygwin bash
shell (Version 19), installed in the default location c:/cygnus. If your installation of cygnus is in a
different location then correct the macro to match your install location, preferably correct by creating
a mycygnus.emf file in your user directory simply containing a re−defined cygnus macro.

If you have exported some of the cygwin environment variables in your autoexec.bat then you
will have to figure out for yourself what variables macro cygnus needs to export − the current
configuration is for a vanilla install.

The bash shell is executed with options i, for interactive shell and m to enable job control.

TESTED CONFIGURATIONS

This configuration has only been tested on a Windows '98 installation, whether this works on NT and
Windows '95 (OEM SR2) is unknown.

We have only been running "make" operations in the shell and do not know how the likes of "more",
"man" or anything other terminal interaction works.

Tested Configurations

Windows '98 (Pentium 120MHz/Pentium Pro 200MHz/Cyrix 300MHz/Pentium II 450MHz)

cygwin version B19.3 − this is the original "cygwin" distribution + the latest
"coolview.tar.gz" patch.
cygwin version B20 − the latest cygwin distribution.

BUGS

Break Key

A break in a bash shell is C−c, the macros define the key C−c C−c to perform the break. This
sequence is sent to the process but is not enacted by the shell. This is a property of the Bash shell
rather than MicroEmacs.

MicroEmacs '02

cygnus(3) 1036

Slow Response

If you are getting a very slow response from the bash shell then check the directory where bash was
started. Sometimes there are problems if the shell is started in "c:/" (which is typically "/") then the
bash shell is very unresponsive and tends to 'ignore me' for periods of time. If it is started in another
location, i.e. "c:/temp" directory, then this problem does not occur.

You can see the start−up location in the top of the buffer when the shell is started.

Prompt at top of buffer

Very, very occasionally the ishell sticks at the top of the buffer with only a couple of lines showing. A
swap of the buffers or a quick window resize sorts out the problem. A fix for this problem has been
applied but still may occasionally occur.

WinOldAp

Winoldap is created by the Microsoft environment whenever a BASH shell is created. On occasions
where processes have terminated badly the user may be prompted to kill these off; this is the normal
behaviour of windows. It is strongly advised that all of the BASH processes are killed from within the
Bash shell itself and the shell is always exited correctly (i.e. exit) before leaving the editor. The
Windows operating system for '95/'98 is not particularly resilient to erroneous processes (for those of
us familiar with UNIX) and can bring the whole system down. I believe that NT does not suffer from
these problems (much).

Locked Input

There are occasions after killing a process the editor appears to lock up. This is typically a case that the old
application has not shut down correctly. Kill off the erroneous task (Alt−Ctrl−Del − End Task) then bring
the editor under control using a few C−g abort−command(2) sequences. SEE ALSO

ipipe−shell−command(2), ishell(3).
Cygnus Win32 home sites www.cygnus.com and www.cygnus.co.uk

MicroEmacs '02

cygnus(3) 1037

diff(3)

NAME

diff − Difference files or directories
diff−changes − Find the differences from a previous edit session
%diff−com − Diff command line

SYNOPSIS

diff "oldFile" "newFile"
diff−changes
%diff−com "string"; Default is "diff"

DESCRIPTION

diff executes the diff(1) command with the command line set by the %diff−com(5) variable and the
user supplied oldFile and newFile. The output of the command is piped into the *diff* buffer and is
hilighted to show the changes (GNU diff only).

Your version of diff(1) will determine whether it is possible to difference directories.

diff−changes is a simple macro that differences the current buffer and the last backup of the
associated file. It is a quick way to determine what has been modified recently. This macro only
works if a backup file exists.

%diff−com is the command line that is used to execute a diff(1) system command.

For GNU diff then the following command line setting is recommended:−

diff −−context −−minimal −−ignore−space−change \
 −−report−identical−files −−recursive

which should be defined in your personal user configuration. This is the default for Linux.

NOTES

diff and dif−changes are macros defined in tools.emf.

diff(1) must be executable on the system before diff or diff−changes can function.

diff(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU diff may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnudiff.zip>

MicroEmacs '02

diff(3) 1038

For MS−DOS users, a DJGPP port of diff is also available on the net. A commercial version of diff is
also available from MKS.

SEE ALSO

compare−windows(2), compile(3), gdiff(3), grep(3), %grep−com(5).

MicroEmacs '02

diff(3) 1039

%ftp−flags(5)

NAME

%ftp−flags − "Configure the FTP console"
%http−flags − "Configure the HTTP console"

SYNOPSIS

%ftp−flags "[c|s|p]" ; Default is undefined.
%http−flags "[c|s|p]" ; Default is undefined.

DESCRIPTION

The %ftp−flags and %http−flags modify the behavior of the editor during FTP and HTTP file
transfers, respectively. (see ftp(3) and find−file(2)).

By default, the flags are disabled, the facilities outlined below are enabled by setting the variable in
the user configuration. The flag values for both flags are defined as follows:−

c

Create a console buffer (*ftp−console* for ftp, *http−console* for http) into which the
FTP/HTTP command interactions with the remote server are logged.

s

Show the console whenever a FTP/HTTP operation is performed. The console is popped into the
display pane and shows the current interaction status.

p

Show the download progress within the console window ('#' for every 2Kb downloaded)

Typically the following flags are enabled in the user.emf file:−

set−variable %ftp−flags "csp"
set−variable %http−flags "csp"

Once familiar with this facility the console pop−up becomes inconvenient and the flags are typically
reduced to:−

set−variable %ftp−flags "cp"
set−variable %http−flags "cp"

MicroEmacs '02

%ftp−flags(5) 1040

This disables the pop−up feature of the console. Enabling the limited flag set allows some post
mortem debugging to be performed if anything goes wrong. The console buffers are manually
selected when these flags are set.

NOTES

Note that ftp and http facilities are available on UNIX by default, but must be compiled in for
Windows versions.

SEE ALSO

%http−proxy−addr(5), find−file(2), ftp(3).

MicroEmacs '02

%ftp−flags(5) 1041

gdiff(3)

NAME

gdiff − Graphical file difference
%gdiff−com − Gdiff diff(1) command line

SYNOPSIS

gdiff "version1" "version2"

%gdiff−com "string"; Default is "diff −c −w"

DESCRIPTION

gdiff is a macro utility that facilitates the merging of two files (typically with different modification
revisions). The changes between the revisions are hilighted with color, allowing modification regions
and lines to be selected for the generation of a newer revision file, which might encompass selected
modifications from each of the base revisions.

gdiff executes the diff(1) command with the command line set by the %gdiff−com(5) variable and the
user supplied version1 and version2. The output is displayed in two buffer windows, side by side, and
the differences in the lines are hilighted to show the changes. In addition the content of the two
buffers is normalized such that both windows are aligned at the same line position, allowing the
changes in the text to be viewed in both windows at the same time.

Whilst in gdiff view mode then both scroll bars (if visible) are locked, such that either scrolls BOTH
windows at the same time. Other key commands are disabled, as are the menu interactions. The short
cut keys are defined as follows:−

esc h/A−h − View the help page.

Invokes the display of a OSD help box, summarizing the interaction commands

C−up − Move to previous difference

Moves to the previous changed region above the current cursor position.

C−down − Move to next difference

Moves to the next changed region below the current cursor position.

left mouse button
space
enter

MicroEmacs '02

gdiff(3) 1042

r − Select difference version

Selects the difference version of the currently selected window. The region is hilighted as the required
region to be incorporated into the new revision.

R − Select neither version.

Marks both regions as not required.

l − Line select current version

Selects the current line from the region as being included, without including ALL of the region
modifications.

L − Line select neither version

Discards lines from both revisions of the file.

g − Globally selects the current version.

Shortcut allows ALL modifications to the current side to be accepted. This is typically the fastest
method to select all changes, minor region adjustment may then be performed on those regions which
are inappropriately included by the selection.

G − Globally selects neither version.

Marks all regions as not being acceptable.

C−x C−s − Save current side

Saves the current window to the specified file, merging the selected changes between the two
revisions. Note that the save only operates iff all hilighted changes have been selected.

C−x C−w − Save current side as

Same as Save current side except the user is prompted to enter a new filename to which the
modifications are written.

C−x k − Exit graphical diff

Exits the gdiff utility. Hilighting

The hilighting within the windows is dependent upon the color scheme selected, in general the
following hilights apply:−

normal text

No change

MicroEmacs '02

gdiff(3) 1043

cyan/grey

Addition/removal of line(s)/region(s) between files.

yellow

Modification in line(s)/region(s).

green/red

Selected region, red or green is attributed to a selection for each window. NOTES

gdiff is a macro defined in gdiff.emf, inspired by the GNU utility of the same name gdiff(1)

diff(1) must be executable on the system before gdiff can function. The diff(1) invocation must
include the context difference, which annotates the differences with a +, − or ! markers. diff(1) is
typically invoked with the options −c −w.

diff(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU diff may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnudiff.zip>

For MS−DOS users, a DJGPP port of GNU diff is also available on the net. A commercial version of
diff is also available from MKS.

SEE ALSO

compare−windows(2), compile(3), diff(1), gdiff(3f), grep(3), %grep−com(5).

MicroEmacs '02

gdiff(3) 1044

%grep−com(5)

NAME

%grep−com − Grep command line

SYNOPSIS

%grep−com "string"; Default is "grep "

DESCRIPTION

Sets the command line used to execute a grep(1) system command. The output of the grep(3)
execution should include both file and line number information so that the command get−next−line(2)
can be used properly. This is not defined by default and the grep command will not execute until it is
defined.

grep(1) is typically used with the −n option which produced line numbering information which drives
the get−next−line(2) command.

EXAMPLE

The following example shows how the grep strings are defined.

set−variable %grep−com "grep −n "
0 add−next−line "*grep*"
add−next−line "*grep*" "%f:%l:"

This definition corresponds to a grep output such as:−

m5var000.5:13:Sets the number of seconds to wait
m5var000.5:14:temporary file to t seconds. A
m5var000.5:15:Note than the temporary
m5var000.5:17:saving a buffer. Backup files are
m5var000.5:24:On unlimited length file name systems

where grep produces file and line number information for every match.

Use add−next−line(2) to define the line pattern produced by grep. Some versions of grep place the
file name on a single line matches within the file occur on subsequent lines. In this case additional
add−next−line patterns may be defined to cater for the grep output as follows:

set−variable %grep−com "grep /n "
0 add−next−line "*grep*"
add−next−line "*grep*" "File: %f:"
add−next−line "*grep*" "%l:"

MicroEmacs '02

%grep−com(5) 1045

This definition would be used with a grep output such as:−

File:m5var000.5:
13:Sets the number of seconds to wait
14:temporary file to t seconds. A
15:Note than the temporary
17:saving a buffer. Backup files are
24:On unlimited length file name systems
File:m5var001.5:

NOTES

grep(1) is a standard utility on UNIX systems. For Windows 95/NT a version of GNU grep may be
found at:

<ftp.winsite.com/ftp/pub/pc/winnt/misc/gnugrep.zip>

For MS−DOS users, a DJGPP port of grep is also available on the net. A commercial version of grep
is also available from MKS.

SEE ALSO

add−next−line(2), grep(1), grep(3), add−next−line(2).

MicroEmacs '02

%grep−com(5) 1046

%http−proxy−addr(5)

NAME

%http−proxy−addr − Set HTTP proxy server address
%http−proxy−port − Set HTTP proxy server port

SYNOPSIS

%http−proxy−addr "proxy−addr"
%http−proxy−port "port−number"; Default is 80

DESCRIPTION

If the %http−proxy−addr variable is set all HTTP file loading requests, using commands like
find−file(2), are sent via the given proxy server. %http−proxy−port should be set to the proxy
servers port number, defaulting to 80 if not set. These variables are typically set in your
<user>.emf setup file, e.g.:

set−variable %http−proxy−addr "proxy.foobar.com"
set−variable %http−proxy−port "8080"

NOTES

Note that http is available on UNIX by default, but must be compiled in for win32 versions.

SEE ALSO

%http−flags(5), find−file(2), ftp(3).

MicroEmacs '02

%http−proxy−addr(5) 1047

%tag−file(5)

NAME

%tag−file − Tags file name
%tag−template − Tag file search string
%tag−option − Tag file search option

SYNOPSIS

%tag−file "fileName"
%tag−template "string"
%tag−option "string"

DESCRIPTION

The %tag−file and %tag−template variables must be defined for find−tag(2) to work, they define
the information required to locate tag references.

%tag−file is the name of the tag file to be used, usually set to "tags". %tag−template is a regular
expression search string used to identify tags in a tag file. For example, a tag usually consists of a
name "%[^\t]" followed by a tab "\t" followed by the file name that contains the function
"%[^\t]" followed by another tab, followed by the search string and end of line "%[^\n]\n", i.e.

set−variable %tag−template "%[^\t]\t%[^\t]\t%[^\n]\n"

This would match a vi(1) tag string definition, as created by the UNIX utility ctags(1). The tags file
typically contains entries such as:−

$auto−time m5var000.5 /^.XI $auto−time − "Automatic buffer"$/
$buffer−bhook m5var002.5 /^.XI $buffer−bhook − "Buffer macro"$/
$buffer−ehook m5var002.5 /^.XI $buffer−ehook − "Buffer macro"$/

The tag−template definition is modified to match the output of the ctags(1) utility. The format of the
tags file may differ from platform to platform, typically the differences are encountered in the line
contents field which is usually defined as / / for a forward search tag and ? ? for
a reverse search tag. Note that a tag's search string typically starts with the character '^' and ends with
'$' which indicate the start and end of the line. The variable fields are expected to be in conventional
order of label, filename and lineText.

%tag−option is a user defined variable that modifies the behavior of find−tag(2). This is defined as a
string, where each character identifies an option, when undefined then default behavior is assumed.
The options are defined as:−

m − Enable multiple tags support

MicroEmacs '02

%tag−file(5) 1048

Allows a single tag to be present multiple times in the tag file, typically used when a function is
defined multiple times. When enabled find−tag can be used to loop through all definitions of a given
tag.

r − recursive tags file

By default, the tags file is assumed to reside in the current directory location. The r option enables an
ascending search up the directory hierarchy from the current directory position in search of a
recursively generated tags file.

c − Continue recursive tag search

Used in conjunction with flag r; when not specified, the recursive searching of a tag stops at the first
tag file found, regardless of whether the given tag was located in the found tag file. If this flag is
given and the tag was not found in the first tag file, the recursive search continues. This allows local
tag files to be created and regularly maintained, yet still being able to access a higher level tag file
when required.

Modifications to this variable should be made in the user.emf file, e.g. To enable multi recursive
ascent tag searching define:−

set−variable %tag−option "mrc"

NOTES

Note that GNU Emacs uses it's own tag file format generated by etags(1) which does not contain the
appropriate information to drive the MicroEmacs '02 find−tag command.

The above settings should support the extended version 2 tag file format which has an extra tag type
field at the end of each line.

SEE ALSO

ctags(1), ctags(3f), find−tag(2), vi(1).

MicroEmacs '02

%tag−file(5) 1049

&abs(4)

NAME

&abs, &add, &sub, &mul, &div, &mod, &neg, &inc, &dec, &pinc, &pdec − Numeric macro
operators

SYNOPSIS

&abs num1
&add num1 num2
&sub num1 num2
&multiply num1 num2
÷ num1 num2
&mod num1 num2
&negate num

&inc variable increment
&dec variable decrement
&pinc variable increment
&pdec variable decrement

DESCRIPTION

The numeric operators operate on variables or integers to perform integer computations, returning the
integer result of the operation. The contents of the variables are interpreted as signed integers
typically with a dynamic range of 2^31 <= num <= 2^31−1.

The operators may all be abbreviated to their three letter abbreviation (i.e. &multiply may be
expressed as &mul). In all cases the first argument is completely evaluated before the second
argument.

&abs num1

Returns the absolute value of num1 i.e. if num1 is positive it returns num1, else −num1

&add num1 num2

Addition of two numbers num1 and num2. i.e. num1 + num2

&sub num1 num2

Subtract the second number num2 from the first num1 i.e. num1 − num2.

&multiply num1 num2

MicroEmacs '02

&abs(4) 1050

(Signed) Multiply num1 by num2. i.e. num1 * num2. &mul is the three letter abbreviation.

&div num1 num2

Divide the first number num1 by the second num2, returning the integer result. i.e. num1 / num2.
&div is the three letter abbreviation.

&mod num1 num2

Divide the first number num1 by the second num2, returning the integer remainder. i.e. num1 %
num2.

&negate num

Negate the integer (multiply by −1) i.e. −num. &neg is the three letter abbreviation.

Expression evaluation is prefix. Operators may be nested using a pre−fix ordering, there is no concept
of brackets (in−fix notation). The expression (2 * 3) + 4 is expressed as:−

&add &mul 2 3 4

conversely 2 * (3 + 4) is expressed as:−

&mul 2 &add 3 4

The pre/post incrementing and decrementing operators provide a mechanism for stepping through
indexed information without incurring the overhead of providing multiple statements to perform
assignment operations. The variable argument MUST be the name of a variable, it cannot be an
expression or an indirection. The increment may be any integer expression (including another auto
(dec)increment). Note that variable is re−assigned with it's new value within the operator, therefore
use with care when performing multiple (dec)increments within the same statement line. The four
operators are defined as follows:

&inc variable increment

Pre−increment the variable by increment, returning the incremented value i.e. variable += increment.

&dec variable decrement

Pre−decrement the variable by decrement, returning the decrement value i.e. variable −= decrement.

&pinc variable increment

Post−increment the variable by increment, returning the pre−increment value i.e. variable++., where
the ++ value is determined by increment. The return value is the value of variable as passed by the
caller, the next reference to variable uses the variable+increment value.

&pdec variable decrement

MicroEmacs '02

&abs(4) 1051

Post−decrement the variable by decrement, returning the pre−decrement value i.e. variable−−, where the −−
value is determined by decrement. EXAMPLE

Add two numbers together and assign to a variable:−

set−variable %result &add %num1 %num2

Increment %result by 1 and add to %result2

set−variable %result &add %result 1
set−variable %result2 &add %result2 %result

The previous example could have used the increment operators to achieve the same result in a single
operation e.g.

set−variable %result2 &add %result2 &inc %result 1

SEE ALSO

Variable Functions, &great(4).

MicroEmacs '02

&abs(4) 1052

&and(4)

NAME

&and, &or, ¬, &equal, &sequal − Logical macro operators

SYNOPSIS

&and log1 log2
&or log1 log2
¬ log

&equal num1 num2
&great num1 num2
&less num1 num2

DESCRIPTION

The logical testing operators perform comparison tests, returning a boolean value of TRUE (1) or
FALSE (0).

The functions may all be abbreviated to their three letter abbreviation (i.e. &great may be expressed
as &gre). In all cases the first argument is completely evaluated before the second argument. Logical
operators include:−

&and log1 log2

TRUE if the logical arguments log1 and log2 are both TRUE.

&or log1 log2

TRUE if either one of the logical arguments log1 and log2 are TRUE.

¬ log

Logical NOT. Returns the opposite logical value to log.

The numerical logical functions operate with integer arguments:

&equal num1 num2

TRUE. If numerical arguments num1 and num2 numerically equal. Abbreviated form of the function
is &equ.

great num1 num2

MicroEmacs '02

&and(4) 1053

TRUE. If numerical argument num1 is greater than num2. Abbreviated form of the function is &gre.

&less num1 num2

TRUE. If numerical argument num1 is less than num2 Abbreviated form of the function is &les.

Evaluation of the logical operators are left to right, the leftmost argument is fully evaluated before the
next argument. The operator ordering is prefix notation (see &add(4) for an example of prefix
ordering).

EXAMPLE

Test for integers in the range greater than 12:

!if &great %i 12
 ...

Test for integers in the range 8−12, inclusive

!if &and &great 7 &less 13
 ...

NOTES

MicroEmacs always evaluates all arguments operators BEFORE the result is obtained, this differs
from most programming languages. Consider the following example:

!if &and &bmod "edit" &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
!endif

This would not not work as the user may expect, the user would be prompted to save every time
regardless of whether the buffer has been changed. Instead the following should be used:

!if &bmod "edit"
 !if &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 !endif
!endif

SEE ALSO

Variable Functions, &add(4), &sequal(4), &sin(4), &cond(4).

MicroEmacs '02

&and(4) 1054

&atoi(4)

NAME

&ato, &gmod, &bmo, &ind, &inw, &exi − Miscellaneous functions

SYNOPSIS

&atoi char
&itoa num

&gmode mode
&bmode mode
&nbmode buffer mode
&inword char

&indirect str

&exist str

DESCRIPTION

These are a selection of miscellaneous functions providing tests and exchanging of information.

The functions may all be abbreviated to their three letter abbreviation (i.e. &indirect may be
expressed as &ind). In all cases the first argument is completely evaluated before the second
argument.

&atoi char

Converts the given character char to it's ASCII number which is returned. (see &itoa). Abbreviated
command is &ato.

&itoa num

Converts an integer num to it's ASCII character representation which is returned to the caller.
Abbreviated command is &ito.

&gmode mode

Returns 1 if the given mode mode is globally enabled. Allows macros to test the global mode state
(see Operating Modes). Abbreviated command is &gmo.

&bmode mode

MicroEmacs '02

&atoi(4) 1055

Returns 1 if the mode mode is enabled in the current buffer. Allows macros to test the state of the
buffer mode. Abbreviated command is &bmo.

&nbmode buffer mode

Returns 1 if the mode mode is enabled in buffer buffer . Allows macros to test the state of a buffer
mode other than the current. Abbreviated command is &nbm.

&inword char

TRUE. If the given character char is a 'word' character, see forward−word(2) for a description of a
'word' character. Abbreviated command is &inw.

&indirect str

Evaluate str as a variable. The str argument is evaluated and takes the resulting string, and then uses it
as a variable name. i.e. a variable may reference another variable which contains the data to be
referenced. Abbreviated command is &ind.

&exist str

Tests for the existance of str which may be a variable or a command/macro name, returning TRUE if the
variable or command does currently exist. Abbreviated command is &exi. EXAMPLE

The &exi function is etremely useful in initializing, for example:

!if ¬ &exi %my−init
 ; %my−init is not yet defined so this is the first call
 set−variable %my−init 1
 .
 .

Or in all the file hooks a user defined extension is checked for and executed if defined:

define−macro fhook−c
 .
 .
 ; execute user extensions if macro is defined
 !if &exi my−fhook−c
 my−fhook−c
 !endif
!emacro

The &ind function deserves more explanation. &ind evaluates its string argument str, takes the
resulting string and then uses it as a variable name. For example, given the following code sequence:

; set up reference table

set−variable %one "elephant"
set−variable %two "giraffe"
set−variable %three "donkey"

MicroEmacs '02

&atoi(4) 1056

set−variable %index "%two"
insert−string &ind %index

the string "giraffe" would have been inserted at the point in the current buffer.

The &bmode invocation allows a calling macro to determine the buffer mode state (see Operating
Modes). Consider the following example which is a macro to perform a case insensitive alphabetic
sort using the sort−lines(2) function. sort−list sorts according to the state of the exact(2m) mode,
hence the macro has to determine the buffer state in order to be able to do the sort.

define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 !if @?
 @# sort−lines
 !else
 sort−lines
 !endif
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

The &inword function is shown in the following example. In this case the mouse is positioned over a
word. The &inword function is used to determine if the cursor is on a valid word character, if so the
cursor is placed at the start of the word.

define−macro mouse−control−drop−left
 set−cursor−to−mouse
 !if &inword @wc
 backward−word
 set−mark
 forward−word
 !else
 ...
 !endif
 copy−region
 set−cursor−to−mouse
!emacro

SEE ALSO

Operating Modes, Variable Functions, &sprintf(4), &equal(4).

MicroEmacs '02

&atoi(4) 1057

&band(4)

NAME

&band, &bor, &bnot, &bxor − Bitwise macro operators

SYNOPSIS

&band num1 num2
&bor num1 num2
&bxor num1 num2
&bnot num

DESCRIPTION

The bitwise operators perform bit operations on numeric values returning a numerical result of the
operation.

The functions may all be abbreviated to their three letter abbreviation (i.e. &band may be expressed
as &ban). In all cases the first argument is completely evaluated before the second argument.

&band num1 num2

Bitwise AND of num1 and num2 i.e. num1 & num2.

&bor num1 num2

Bitwise (inclusive) OR of num1 and num2 i.e. num1 | num2.

&bxor num1 num2

Bitwise (exclusive OR) XOR of num1 and num2 i.e. num1 ^ num2.

¬ num

Bitwise NOT operator of num, inverts the state of all bits i.e. ~num.

Evaluation of the bitwise operators are left to right, the leftmost argument is fully evaluated before the
next argument. The operator ordering is prefix notation (see &add(4) for an example of prefix
ordering).

SEE ALSO

Variable Functions, &add(4), &and(4), &negate(4), &or(4).

MicroEmacs '02

&band(4) 1058

&cat(4)

NAME

&cat, &lef, &rig, &mid, &len, &slo, &trb − String macro operators

SYNOPSIS

&cat str1 str2
&lef str len
&right str index
&mid str index len

&len str

&slower str
&supper str

&trboth str
&trleft str
&trright str

DESCRIPTION

The string operators operate on character strings (% or $ variables), performing general string
manipulation, returning a string result.

The operators may all be abbreviated to their three letter abbreviation (i.e. &right may be expressed
as &rig). In all cases the first argument is completely evaluated before the second argument.

&cat str1 str2

Concatenate two string str1 with str2 to form a new string. i.e. str1str2

&lef str len

Return len leftmost characters from str. If str length is shorter than len then the string itself is
returned. A len of zero returns the empty string.

&rig str index

Returns the rightmost characters of string str from index index. This function causes some confusion,
consider &lef and &rig to be the string equivalents of their integer counterparts &div and &mod;
&rig returns the remainder of the equivalent &lef function. Invocation with index set to zero returns
str.

MicroEmacs '02

&cat(4) 1059

&mid index len

Extracts a sub−string from string str, starting at position index of length len.

&len str

Returns the integer length of the string (number of characters).

&slower str

Returns the given string with all upper case characters converted to lower case.

&supper str

Returns the given string with all lower case characters converted to upper case.

&trboth str

Returns the given string trimmed of white spaces (i.e. ' ', '\t', '\r', '\n', '\Cl' and '\Ck') from both
sides of the string.

&trleft str

Returns the given string trimmed of white spaces from the left side of the string only.

&trright str

Returns the given string trimmed of white spaces from the right side, or end, of the string only.

Evaluation of the strings is left to right, the leftmost argument is fully evaluated before the next
argument. The operator ordering is prefix notation (see &add(4) for an example of prefix ordering).

EXAMPLE

Concatenate two strings abc and def together:−

set−variable %result &cat "abc" "def"

To concatenate three strings abc, defghi together:

set−variable %result &cat "abc" &cat "def" "ghi"

or, a slightly different ordering:

set−variable %result &cat &cat "abc" "def" "ghi"

Retrieve the leftmost character of a string variable, modify the variable to contain the remainder.

set−variable %foo "abcdef"

MicroEmacs '02

&cat(4) 1060

set−variable %c &lef %foo 1
set−variable %foo &rig %foo 1

Where %c = "a"; %foo = "bcdef" following evaluation.

To retrieve the characters cde into variable %result from the string "abcdef" use:

set−variable %result &mid "abcdef" 2 3

To retrieve the rightmost character from the string:

set−variable %foo "abcdef"
set−variable %result &rig %foo &sub &len %foo 1

or the same result could be achieved using &mid:

set−variable %result &mid %foo &sub &len %foo 1 1

To get an input string from the user which is free of spaces at the start and end:

set−variable %result &trb @ml "Enter string"

NOTES

The original MicroEMACS "&rig str n" function returns the last n characters from the string str this
differs from the definition of &rig in this implementation. As most string decomposition is performed
left to right, and to make &lef and &rig complement each other, the indexing of the function has been
modified.

SEE ALSO

Variable Functions, &sin(4), &sequal(4), &lget(4), &sprintf(4).

MicroEmacs '02

&cat(4) 1061

&cbind(4)

NAME

&cbind, &kbind, &nkind − Command/key binding operators

SYNOPSIS

&cbind key
&kbind n command
&nbind key

DESCRIPTION

&cbind returns the command bound to the given key sequence, &kbind can be abbreviated to &kbi.
If the key is not bound then &kbind returns the string "ERROR".

&nbind returns the numerical argument associated with the given key binding, &nbind can be
abbreviated to &nbi. If the key is not bound then &nbind returns the string "ERROR", if the binding
has no argument then an empty string ("") is returned.

&kbind returns a key sequence bound to the given command with the given numerical argument n. If
no binding can be found then &kbind returns an empty string ("").

EXAMPLE

The following example waits for the user to press a key, then prints what command the key is bound
to.

ml−write "Enter key: "
set−variable #l0 @cgk
ml−write &spr "%s is bound to %s" #l0 &cbin #l0

NOTES

In March 2001 &kbind was renamed &ckind and a new &nkind and &kbind added.

SEE ALSO

Variable Functions, global−bind−key(2).

MicroEmacs '02

&cbind(4) 1062

&cond(4)

NAME

&cond − Conditional expression operator

SYNOPSIS

&cond log expr1 expr2

DESCRIPTION

The conditional expression &cond provides an alternative way to write !if−!else−!endif constructs,
e.g.:−

!if &gre %a %b
 set−variable %z %a
!else
 set−variable %z %b
!endif

may be replaced with a conditional expression, breaking down the components then

log is &gre %a %b
expr1 is %a
expr2 is %b

rewriting the expression we get:

set−variable %z &cond &gre %a %b %a %b

This is far more concise, albeit a little less readable, but does improve the performance of macros as
there is less information to interpret.

The &cond operator accepts three fields, ALL fields are evaluated although only one of the results
expr1 or expr2 is used. The log field is a logical value, if it is non−zero (TRUE) then the result of the
expr1 evaluation is used, otherwise the result of expr2 is used.

It should be noted that the conditional expression may be used in any construct i.e. &add(4), &cat(4),
etc. the expr arguments may be strings, numbers or booleans the resultant value of the expr arguments
is simply returned to the calling expression.

SEE ALSO

Variable Functions, &add(4), &great(4).

MicroEmacs '02

&cond(4) 1063

&find(4)

NAME

&find − Find a file on the search path
&which − Find a program on the path

SYNOPSIS

&find <basename> <extension>
&which <progname>

DESCRIPTION

&find searches for a named file <basename><extension> on the MicroEmacs '02 search path
defined by the variable $search−path(5) (initialized from the environment variable $MEPATH(5)).
Each path component defined in $search−path is prepended to the constructed file name and it's
existence is tested. If the file exists, then the FULL path name of the file is returned to the caller,
otherwise ERROR.

<basename>

The base name of the file, excluding any extension.

<extension>

The extension of the file name, this must be specified with the extension delimiter, typically dot ('.').
A NULL string (e.g. '""') may be specified if no extension is required.

&which searches for the given executable program <progname> on the system program search path
defined the the environment variable $PATH.

USAGE

&find is typically used with insert−file(2) and find−file(2) within macro scripts, and is used to locate
user specific files.

EXAMPLE

The following example uses &find to locate the uses 'C' template file. Given a $search−path setting
of /usr/bob/emacs:/usr/local/microemacs:−

insert−file &find "c" ".etf"

MicroEmacs '02

&find(4) 1064

Would insert the file /usr/bob/emacs/c.etf if it existed, else the file
/usr/local/microemacs/c.etf if it exists.

SEE ALSO

Variable Functions, find−file(2), $search−path(5), insert−file(2).

MicroEmacs '02

&find(4) 1065

&rep(4)

NAME

&rep, &irep, &xrep, &xirep − Replace string in string functions

SYNOPSIS

&rep str1 str2 str3
&irep str1 str2 str3
&xrep str1 str2 str3
&xirep str1 str2 str3

DESCRIPTION

These functions search for str2 in str1, replacing it with str3, returning the resultant string.

The functions may all be abbreviated to their three letter abbreviation (i.e. &xirep may be expressed
as &xir). In all cases the first argument is completely evaluated before the second and third
arguments.

&rep string search replace

Searches for the search string in the given string using a simple case sensitive exact match algorithm.
Any occurrences are removed from string and replace is inserted in its place. Either of the 3 input
strings can be the empty string ("").

&irep string search replace

&irep is identical to &rep except a case insensitive search algorithm is used.

&xrep string regex−search regex−replace

&xrep can be used to access the more powerful regular expression searching capabilities. The
function is similar to &rep except it takes a regex search string and the replacement string may also
refer to all or part of the matched string. See Regular Expressions for information on the regex format.

&xirep string regex−search regex−replace

&xirep is identical to &xrep except a case insensitive regex search is used. EXAMPLE

The following example turns a UNIX format file name (using a '/' to divide directories − like
MicroEmacs) into an windows format name (using a '\'):

set−variable #l0 &rep #l0 "/" "\\"

MicroEmacs '02

&rep(4) 1066

The following example replaces one or more white spaces in the variable with a single space, this is
an easy way to remove unnecessary spaces:

set−variable #l0 "This is not so spacey after xrep"
set−variable #l0 &xrep #l0 "\\s +" " "
ml−write #l0

SEE ALSO

Operating Modes, Variable Functions, &sequal(4), &sin(4).

MicroEmacs '02

&rep(4) 1067

&sequal(4)

NAME

&seq, &iseq, &sle, &sgre, &xseq, &xiseq − String logical macro operators

SYNOPSIS

&sequal str1 str2
&isequal str1 str2
&sless str1 str2
&sgreat str1 str2

&xsequal str1 regex
&xisequal str1 regex

DESCRIPTION

The string logical testing operators perform string comparison tests, returning a boolean value of
TRUE (1) or FALSE (0).

The functions may all be shortened to their three letter abbreviation (i.e. &sequal may be expressed
as &seq). In all cases the first argument is completely evaluated before the second argument. String
logical operators include:−

&sequal str1 str2

TRUE if the two strings str1 and str2 are the same. Abbreviated form of the function is &seq.

&sless str1 str2

TRUE if string str1 alphabetically less than str2. Abbreviated form of the function is &sle.

&sgreat str1 str2

TRUE if string str1 alphabetically larger than str2. Abbreviated form of the function is &sgr.

&isequal str1 str2

TRUE if the two strings str1 and str2 are the same ignoring letter case. Abbreviated form of the
function is &ise.

&xsequal str1 regex

TRUE if the string str1 matches the regex (case sensitive). Abbreviated form of the function is &xse.

MicroEmacs '02

&sequal(4) 1068

See Regular Expressions for information on the regex format.

&xisequal str1 regex

TRUE if the string str1 matches the regex (case insensitive). Abbreviated form of the function is &xis.
See Regular Expressions for information on the regex format.

Evaluation of the string logical operators are left to right, the leftmost argument is fully evaluated
before the next argument. The operator ordering is prefix notation (see &add(4) for an example of
prefix ordering).

EXAMPLE

Test for variable $buffer−bname(5) is equal to *scratch*:

!if &seq $buffer−bname "*scratch*"
 ...

The following example tests a character is in the range a−z:

!if ¬ &and &sle %c "a" &sgr %c "z"
 ...

The following example inserts the string "c" into the alphabetically order string list %test−list:

set−variable %test−list "|a|b|d|e|"
set−variable %test−insert "c"

set−variable #l0 1
!while &and ¬ &seq &lget %test−list #l0 "" ...
 ... &sle &lget %test−list #l0 %test−insert
 set−variable #l0 &add #l0 1
!done
set−variable %test−list &lins %test−list #l0 %test−insert

The first test on the !while &and conditional checks that the current item in the list is not an empty
string (""). If it is the end of the list has been reached.

The following example tests the current buffers file name for a ".c" extension:

!if &xse $buffer−fname ".*\\.c"
 ...

Note the '\' character is needed to protect the second '.', i.e. so that it does not match any character
and the second '\' is required as the string is first parsed by the macro interpreter which changes it to
".*\.c" which is then interpreted as a regex.

SEE ALSO

MicroEmacs '02

&sequal(4) 1069

Variable Functions, &sin(4), &slower(4), &rep(4), &add(4), &equal(4), &cond(4), Regular
Expressions.

MicroEmacs '02

&sequal(4) 1070

&sin(4)

NAME

&sin, &isin, &rsin, &risin − String in string test functions

SYNOPSIS

&sin str1 str2
&isin str1 str2
&rsin str1 str2
&risin str1 str2

DESCRIPTION

These functions test for the existence of str1 in str2, returning the position of the string in str2 or 0 if
not found.

The functions may all be abbreviated to their three letter abbreviation (i.e. &risin may be expressed
as &ris). In all cases the first argument is completely evaluated before the second argument.

&sin str1 str2

Returns 0 if string str1 does not exists in string str2. Otherwise the function returns the character
position + 1 of the location of the first character of the first occurrence of str1.

&isin str1 str2

Returns 0 if case insensitive string str1 does not exists in string str2. Otherwise the function returns
the character position + 1 of the location of the first character of the first occurrence of str1.

&rsin str1 str2

Returns 0 if string str1 does not exists in string str2. Otherwise the function returns the character
position + 1 of the location of the first character of the last occurrence of str1.

&risin str1 str2

Returns 0 if case insensitive string str1 does not exists in string str2. Otherwise the function returns the
character position + 1 of the location of the first character of the last occurrence of str1. EXAMPLE

The &sin and similar functions are useful for two different purposes. Consider the following example,
this utilizes &sin in two different contexts. !while ¬ &sin @wc " \t\n" is a test for the
end of the number, i.e. a white space character (<tab>, <SPACE> or <NL>).

MicroEmacs '02

&sin(4) 1071

The invocation set−variable #l1 &isin @wc "0123456789abcdef" is subtly different.
In this case the return value is used to convert the character to it's integer hex value by using the value
returned by &isin.

;
; calc−hexnum
; Convert the sting from the current position in the buffer
; to a hexadecimal number.
define−macro calc−hexnum
 forward−delete−char
 forward−delete−char
 set−variable #l0 0
 !while ¬ &sin @wc " \t\n"
 set−variable #l1 &isin @wc "0123456789abcdef"
 !if ¬ #l1
 ml−write "Bad Hex number found"
 !abort
 !endif
 set−variable #l0 &mul #l0 16
 set−variable #l0 &add #l0 &sub #l1 1
 forward−delete−char
 !done
 insert−string #l0
!emacro

The &rsin function is very similar to sin except the value return is the position of the last occurrence
of the string in the given string instead of the first. This is particularly useful when extracting the path
or file name from a complete file name. For example, given a UNIX style file name such as
"/usr/local/bin/me" the path can be obtained using set−variable %path &lef
%pathfile &rsin "/" %pathfile and the file name by using set−variable %file
&rig %pathfile &rsin "/" %pathfile

SEE ALSO

Operating Modes, Variable Functions, &sequal(4), &rep(4).

MicroEmacs '02

&sin(4) 1072

&ldel(4)

NAME

&ldel, &lfind, &lget, &linsert, &lset − List manipulation functions

SYNOPSIS

&ldel list index
&lfind list value
&lget list index
&linsert list index value
&lset list index value

DESCRIPTION

The list manipulation functions perform operations on specially formatted strings called lists. A list is
defined as:

"|value1|value2|.....|valueN|"

Where '|' is the dividing character, this is not fixed to a '|', but is defined by the first character of the
string. Following are all valid lists.

"|1|2|3|4|5|"
"X1X2X3X4X5X"
"\CAHello\CAWorld\CA"
"??"

The functions may all be abbreviated to their three letter abbreviation (i.e. &linsert may be expressed
as &lin). In all cases the first argument is completely evaluated before the second or third argument.

&ldel list index

Creates a new list from deleting item index from list. If index is out of list's range (0 < index <= #
items in list) then list is returned unchanged.

&lfind list value

Returns the index whose item is the same as value in list. If value is not found in list then "0" is
returned.

&lget list index

Returns the value of item index in list. If index is out of list's range (0 < index <= # items in list) then
an empty string is returned.

MicroEmacs '02

&ldel(4) 1073

&linsert list index value

Creates a new list from inserting value into list at point index, thereby pushing item index to index+1
etc. If index is 0 the value is inserted at the beginning of the list, if index is less than 0 or greater that
the number of items in list then value is inserted at the end of the list.

&lset list index value

Creates a new list from setting index of list to value. If index is out of list's range (0 < index <= # items in list)
then &lset behaves like &linsert. EXAMPLE

The following example moves item 4 in a list to position 2:

set−variable #l0 &lget %list 4
set−variable #l1 &ldel %list 4
set−variable %list &lins #l1 2 #l0

The following example is taken from vm.emf, it firstly checks where the user has entered a vm
command, if not then the key is execute as normal, otherwise the appropriate vm command is
executed.

define−macro vm−input
 set−variable #l2 @cck
 set−variable #l3 @cc
 !if ¬ &set #l0 &lfi "|esc h|delete|space|return|A|a|C|c|....|z|" #l2
 !if ¬ &seq #l3 "ERROR"
 execute−line &spr "!nma %s %s" &cond @? @# "" #l3
 !return
 !endif
 ml−write &spr "[Key \"%s\" not bound − \"esc h\" to view help]" #l2
 !abort
 !endif
 set−variable #l1 &lget "|%osd−vm−help osd|vm−del−windows|scroll−down|....
 vm−goto−list|vm−Archive−box|vm−archive−box|....
 vm−cut−all−data|0 vm−extract−data|...|vm−forward|" #l0
 execute−line #l1
!emacro

SEE ALSO

Variable Functions, &mid(4), &cat(4).

MicroEmacs '02

&ldel(4) 1074

&opt(4)

NAME

&opt − MicroEmacs optional feature test

SYNOPSIS

&opt str

DESCRIPTION

This function can be used to test the availability of optional features in the current session of
MicroEmacs. Some features, like spelling checker support, are a compilation option, other options
like mouse support may also be unavailable on some platforms. The &opt function can be used by
macros to check that required base functionality is available.

The function returns 1 in the given feature "str" is supported, otherwise it returns 0 if the feature is
unknown or not supported in the running version.

NOTES

Optional components of MicroEmacs '02 are enabled/disabled at compile time, most options are
configured by MEOPT_<NAME>#define's within the source file emain.h. Following is a
complete list of options, giving the opt string and #define label:

abb − MEOPT_ABBREV

Abbreviation functionality (see expand−abbrev(2)).

cal − MEOPT_CALLBACK

Callback and idle event handling (see create−callback(2)).

cfe − MEOPT_CFENCE

Fence matching (see $fmatchdelay(5)).

cli − MEOPT_CLIENTSERVER

Client/server support (see Client−Server).

col − MEOPT_COLOR

MicroEmacs '02

&opt(4) 1075

All color support (making hilighting redundent etc, see add−color(2)).

cry − MEOPT_CRYPT

File encryption (see crypt(2m) mode).

deb − MEOPT_DEBUGM

Macro debugging (see $debug(5)).

dir − MEOPT_DIRLIST

Directory listing when loading a directory (see file−browser(3) and dir(2m) mode).

ext − MEOPT_EXTENDED

Miscellaneous more advanced commands and features such as append−buffer(2).

fho − MEOPT_FILEHOOK

File type auto−detection and configuration (see add−file−hook(2)).

fra − MEOPT_FRAME

Multiple frames (Internal or external, see opt "mwf" and command create−frame(2)).

has − MEOPT_CMDHASH

Use a hash table for rapid command name lookup.

hil − MEOPT_HILIGHT

Hilight and user definable indentation rules (see hilight(2) and indent(2)).

hsp − MEOPT_HSPLIT

Horizontal window splitting (see split−window−horizontally(2)).

ipi − MEOPT_IPIPES

Interactive pipes (see ipipe−shell−command(2)).

ise − MEOPT_ISEARCH

Incremental search (see isearch−forward(2)).

lbi − MEOPT_LOCALBIND

Buffer, message−line and OSD local binding overrides (see buffer−bind−key(2)).

MicroEmacs '02

&opt(4) 1076

mag − MEOPT_MAGIC

Regular expression search engine (see magic(2m) mode).

mou − MEOPT_MOUSE

Mouse support (see $mouse(5)).

mwf − MEOPT_MWFRAME

Multiple window frame support (see opt "fra").

nar − MEOPT_NARROW

Buffer narrowing (see narrow−buffer(2)).

nex − MEOPT_FILENEXT

Location list stepping (see get−next−line(2)).

osd − MEOPT_OSD

On Screen Display GUI support (see osd(2)).

pok − MEOPT_POKE

Direct screen poking (see screen−poke(2)).

pos − MEOPT_POSITION

Position storing and returning (see set−position(2)).

pri − MEOPT_PRINT

Printing support (see print−buffer(2)).

rcs − MEOPT_RCS

File Revision Control Support (see $rcs−co−com(5)).

reg − MEOPT_REGISTRY

Internal registry and history support (see read−registry(2) and read−history(2)).

scr − MEOPT_SCROLL

Window scroll−bar support.

soc − MEOPT_SOCKET

MicroEmacs '02

&opt(4) 1077

URL support, FTP and HTTP via sockets (see find−file(2)).

spa − MEOPT_SPAWN

External process launching (see shell−command(2)).

spe − MEOPT_SPELL

Spelling checker support (see spell(2)).

tag − MEOPT_TAGS

Tags support (see find−tag(2)).

tim − MEOPT_TIMSTMP

File timestamping on save (see time(2m) mode).

typ − MEOPT_TYPEAH

Input detect or 'type−ahead' for background processing support.

und − MEOPT_UNDO

Undo support (see undo(2)).

wor − MEOPT_WORDPRO

Word−processor style commands like fill−paragraph(2) (see forward−paragraph(2)). EXAMPLE

The following example checks for URL support and if not available it pops up an error:

!if ¬ &opt "soc"
 osd−dialog "Opt Test" "Error: No URL support!" " &OK "
!endif

SEE ALSO

Building MicroEmacs.

MicroEmacs '02

&opt(4) 1078

®(4)

NAME

® − Retrieve a registry value (with default)

SYNOPSIS

® root subkey default

DESCRIPTION

® retrieves the value of a node defined by root/subkey from the registry. The node name is
specified in two components, typically required when iterating over a registry tree, where the root
component is static and the subkey is dynamic, subkey may be specified as the null string ("") if an
absolute registry path is specified.

The default value is the value of the node to return if the registry node does not exist.

EXAMPLE

The following example is taken from me.emf and uses the registry to retrieve some of the default
configuration files:

; Load in the color setup
!force execute−file ® "/history" &cat $platform "/color" "color"
; execute company setup
!if ¬ &seq &set #l0 ® "/history" "company" "" ""
 !force execute−file #l0
!endif

SEE ALSO

get−registry(2), set−registry(2).

MicroEmacs '02

®(4) 1079

&set(4)

NAME

&set − In−line macro variable assignment

SYNOPSIS

&set <var> <expr>

DESCRIPTION

&set performs an in−line macro variable assignment assigning a variable <var> the value of the
expression <expr>, returning the evaluated result to the caller. <expr> may be numeric, boolean or a
string expression.

&set is typically used for defining (and simultaneously using) indices e.g. as with add−color(2) or
add−color−scheme(2). This is a short−hand of set−variable(2).

EXAMPLE

The following example uses&set to define new colors (see color.emf):

; Standard colors
add−color &set %white 0 200 200 200
add−color &set %black 1 0 0 0
add−color &set %red 2 200 0 0
add−color &set %green 3 0 200 0
add−color &set %yellow 4 200 200 0
add−color &set %blue 5 0 0 200
add−color &set %magenta 6 200 0 200
add−color &set %cyan 7 0 200 200

SEE ALSO

Variable Functions, &inc(4), set−variable(2).

MicroEmacs '02

&set(4) 1080

&sprintf(4)

NAME

&sprintf − Formatted string construction

SYNOPSIS

&sprintf format args

DESCRIPTION

The &sprintf function (or &spr in it's abbreviated form) provides a mechanism to generated a
formatted string, similar to the 'C' programming language sprintf(2) function.

The &sprintf function is generally used where a number of different sources of information have to
be converted and joined together to form a new string. It is possible to do this using &cat(4), but it
does become complicated if the number of strings to be spliced together is greater than about 4,
sprintf alleviates these problems and results in faster execution. Where only two, or three strings are
to be concatenated &cat provides better execution times.

The &sprintf function produces a string construct for the format and a caller determined number of
arguments args (variable arguments). The format string may contain special '%' formatting
commands to insert strings and numbers into the base format string. The format for the '%' commands
is "%nc" where:−

n

An optional numerical argument, the interpretation of the numeric value is determined by the
following command (c).

c

The command determines the interpretation of the next argument arg which are specified as
follows:

d (Decimal integer)

Expects a single numeric argument arg which is inserted into the format string as decimal text
string. If n is specified then the inserted text string is fixed to n character in length.

n (Repeat String)

Expects two arguments arg, the first is a numeric argument giving the number of times to
insert the given string (the second argument). If n is specified then the string is inserted n *

MicroEmacs '02

&sprintf(4) 1081

numeric−argument times.

s (String)

Expects a single argument arg which is a string to be inserted into the key. If n is given then it
is insertedn times.

x (Hexadecimal integer)

Expects a single numeric argument arg which is inserted into the format string as
hexadecimal text string. If n is given then the inserted text string will be fixed to n character
in length.

%

Inserts a single '%', n has no effect.

The &sprintf function may be nested (i.e. a string argument to &sprintf may be the result of
another &sprintf invocation). Although this type of construct is not generally required !!

EXAMPLE

The following examples show how the command may be used:−

set−variable %result &sprintf "Foo [%s%s]" "a" "b"

generates "Foo [ab]"

set−variable %result &sprintf "Foo [%n%s]" 10 "a" "b"

generates "Foo [aaaaaaaaaab]".

set−variable %result &sprintf "[%d] [%3d] [%x] [%3x]" 10 11 12 13

generates "[10] [11] [c] [d]"

NOTES

It is the callers responsibility to ensure that the correct number of arguments is supplied to match the
requested formatting string. The results are undefined if an incorrect number of arguments are
supplied.

SEE ALSO

Variable Functions, &cat(4).

MicroEmacs '02

&sprintf(4) 1082

&stat(4)

NAME

&stat − Retrieve a file statistic

SYNOPSIS

&stat <stat> <filename>

DESCRIPTION

&stat returns the specified <stat> on the given <filename>. Valid <stat> values are:−

a

Returns the absolute file name, corrects relative paths and symbolic links, i.e. on unix if the filename
is a symbolic link it returns the file name the link points to (recursive), otherwise returns the file
name.

d

Returns the file's modification time stamp. The value returned is an integer, larger values indicate a
later time.

r

Returns a non−zero value if the user has permission to read the given file.

s

Returns the size of the file in bytes.

t

Returns the type of the file, where values returned are

 X File does not exist.
 R File is a regular file.
 D File is a directory.
 H File is a http URL link (see note).
 F File is an ftp URL file (see note).
 N File is an untouchable system file.

Note that a URL type is determined from the file name, e.g. http://..., and its existence is not
verified.

MicroEmacs '02

&stat(4) 1083

w

Returns a non−zero value if the user has permission to write to the given file.

x

Returns a non−zero value if the user has permission to execute the given file. EXAMPLE

The following example is a macro which, given a file name, uses &stat to check that file file is
regular:

define−macro test−file
 !force set−variable #l0 @1
 !if ¬ $status
 set−variable #l0 @ml04 "File name"
 !endif
 !if ¬ &equ &stat "t" #l4 1
 ml−write &spr "[%s is not a regular file]" #l0
 !abort
 !endif
!emacro

test−file "foobar"

The macro can be passed a file name and aborts if the file is not regular, there by returning the state.

The follow example checks that a file is not empty, this is used by mail−check to test for any
incoming mail.

 !if &gre &stat "s" %incoming−mail−box
 ml−write "[You have new mail]"
 !endif

SEE ALSO

Variable Functions, find−file(2).

MicroEmacs '02

&stat(4) 1084

.calc.result(5)

NAME

.calc.result − Last calc calculation result

SYNOPSIS

.calc.result integer

DESCRIPTION

.calc.result is used to store the result of the last calculation made by calc(3).

The "LR" (Last Result) in the next calculation is substituted with this value.

SEE ALSO

calc(3).

MicroEmacs '02

.calc.result(5) 1085

which(3)

NAME

which − Program finder
.which.result − Program path

SYNOPSIS

which "progname"
.which.result "string"

DESCRIPTION

which searches for the given program "progname" on the system path (set by the environment
variable $PATH). If found the location is printed on the message line, otherwise an error message is
printed and the command fails.

The variable .which.result is set to the last found program or the string "ERROR" if the program was
not found.

NOTES

which is a macro defined in tools.emf, it used the &which macro directive.

SEE ALSO

&which(4).

MicroEmacs '02

which(3) 1086

nroff(9)

SYNOPSIS

0−9, tni, so − UNIX t/nroff file.

FILES

hknroff.emf − UNIX t/nroff file.
nroff.etf − UNIX t/nroff template file
ntags.emf − t/nroff tags generator macro definition.

EXTENSIONS

1, 2, 3, 4, 5, 6, 7, 8, 9 − UNIX t/nroff files.
tni, so − UNIX t/nroff include files.
sm − [Special] Superman t/nroff file.

MAGIC STRINGS

−*− nroff −*−

Recognized by GNU and MicroEmacs. Denotes a t/nroff type file, may be used in .1/.9, .tni and .so files.
DESCRIPTION

The nroff file type templates handle UNIX n/troff type files.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, preprocessor definitions, comments,
strings and characters of the language to be differentiated and rendered in different colors.

Tags

A C−tags file may be generated within the editor using the Tools −> Nroff−Tools −> Create Tag
File. find−tag(2) takes the user to the file using the tag information. The tags are generated using the
.XI keyword, this may not be standard for all nroff pages.

MicroEmacs '02

nroff(9) 1087

Folding and Information Hiding

Generic folding is enabled within the C and C++ files. The folds occur about sections .S[HS]....S[HS]
located on the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds
the current region. Note that folding does not operate on K&R style code.

Tools

The nroff buffer provides a facility to toggle the hilighting of the buffer on and off. If font change
inserts are used (\fB, \fR, etc), then the enclosed bold and italic regions are hilighted, hiding the
escape sequences. This allows the nroff text to be viewed in a more representative rendered format.

The local buffer command aman invokes, the following command sequence (defined in
hkman) to render a nroff man file into a buffer window;−

soelim <file> | tbl −TX | neqn | nroff −man | col −x

The command tex2nr attempts to convert a latex(9) file into an nroff file. The latex escape
sequences are converted into their nroff equivalents. The command is only made available
when an Nroff file is loaded (as the command is defined in the hknroff.emf file).

Short Cuts

The short cut keys used within the buffer are:−

C−c C−s − Insert a font size escape character \S0.
C−c C−r − Insert a roman font escape character \fR.
C−c C−b − Insert a bold font escape character \fB.
C−c C−i − Insert a italic font escape character \fI.
C−c C−c − Insert a courier font escape character \fC.
C−c C−p − Insert a previous font escape character \fP.
esc o, esc q − fill−paragraph(2) fills paragraph to next .XX command.
C−c b − Bold region by inserting \fB .. \fR.
C−c c − Courier region by inserting \fC .. \fR.
C−c c − Italic region by inserting \fI .. \fR.
C−c C−h − Toggle hilighting on/off.
C−c C−& − Adds nroff padding \f& about words.
C−x C−& − Removes nroff padding \f& about words.
esc h − Nroff help.

f2 − (un)fold the current region
f3 − (un)fold all regions

BUGS

The nroff language template is heavily biased towards the man macros only and includes all of the
extension macros used for generating the JASSPA hypertext documentation.

MicroEmacs '02

nroff(9) 1088

The template in the current form has been used entirely by JASSPA in generating all of the
documentation (HTML, Winhelp, ehf, PostScript) used by MicroEmacs '02. It does not include all
of the troff/nroff keywords, or keywords for any of the standard macro packages.

The JASSPA documentation preparation tools are proprietary and have not been made publicly
available.

SEE ALSO

fill−paragraph(2), find−tag(2), fold−all(3), fold−current(3), ntags(3f), time(2m).

Supported File Types

MicroEmacs '02

nroff(9) 1089

MacroArguments(4)

NAME

@?, @#, @0, @1, @2, @3, ... @p − Macro arguments

SYNOPSIS

@? − Boolean flagging if a numeric argument was supplied
@# − The value of the numeric argument

@0 − The name of the macro
@1 − The first argument of macro
@2 − The second argument of macro
@3 ... @n

@p − The name of the calling (or parent) macro.

DESCRIPTION

Macros may be passed arguments, allowing a macro to be used by other macros. The @? and @# are
used to determine the numeric argument given to the command. The @n variable (where n is an
integer) used in the context of a macro allows the macro body to determine it's arguments.

From a macro all commands are called in the following form

[num] <macro−name> "arg1" "arg2"

When executed macros do not have to be given an argument, in this case @? will be 0 and @# will be
1 (the default argument). If an argument is given then @? will be 1 and @# will be set to the numeric
argument given.

The current macro command name <macro−name> can be obtain by using the @0 variable, e.g.

define−macro Test−it
 ml−write @0
!emacro

When executed, writes the message "Test−it" which is the name of the macro.

Arguments may be passed into macro commands in the same way as standard commands are given
arguments. The macro being called can access these by the @1 to @n variables, where n is a positive
integer. Any variables given as arguments are evaluated so if the variable name is required then
enclose it in quotes, e.g.

set−variable %test−var "Hello World"

MicroEmacs '02

MacroArguments(4) 1090

efine−macro Test−it
 ml−write &cat &cat &cat &cat @0 " " @1 " = " &ind @1
 set−variable @1 @2
!emacro

Test−it "%test−var" "Goodbye World"

On execution the macro writes the message

"Test−it %test−var = Hello World"

and will set variable %test−var to "Goodbye World".

The @p variable can be used to obtain the name of the macro which is executing the current macro,
i.e. the value of the parent's @0 variable. If the macro was executed directly by the user then there is
no parent macro and the value of @p is an empty string ("").

DIAGNOSTICS

If an attempt is made to access an argument which has not been given then a error occurs. This error
can be trapped using the !force(4) directive, enabling the macro to take appropriate action, see
example.

EXAMPLE

Consider the implementation of replace−all−string(3) macro defined in search.emf:

define−macro replace−all−string
 !force set−variable #l0 @3
 !if ¬ $status
 set−variable #l1 @ml05 "Replace all"
 set−variable #l2 @ml05 &spr "Replace [%s] with" #l1
 set−variable #l0 @ml00 "In files"
 !else
 set−variable #l1 @1
 set−variable #l2 @2
 !endif
 .
 .
 .
!emacro

In this example if the 3rd argument is not given then the macro gets all arguments from the user.

The @p variable having a value of "" when a macro is called directly by the user can be useful when
determining the amount of information to feed−back to the user. For example, executing the clean
macro is an easy way to remove surplus white characters, so it is often used by other macros as well
as by the user. When called directly clean refreshes the display and prints a message of completion,
but when called by other macros this would cause an unwanted screen−update and message, so clean
only does this when executed by the user. This is done as follows:

MicroEmacs '02

MacroArguments(4) 1091

define−macro clean
 ;
 ; Prepare to clean up file.
 .
 .
 .
 !if &seq @p ""
 screen−update
 ml−write "[Cleaned up buffer]"
 !endif
!emacro

NOTES

The parsing of arguments can be inefficient because of the way the arguments have to be parsed; to
get the 4th argument the 1st, 2nd and 3rd arguments must be evaluated. This is because each
argument is not guaranteed to be only one element, it could be an expression which needs to be
evaluated. Consider the following invocation of our Test−it macro

Test−it &cat "%test" "−var" "Goodbye World"

The 2nd argument is not "%test" as this is part of the first argument, the 2nd argument is in fact the
4th element and the invocation will have the same effect except slower.

SEE ALSO

MacroNumericArguments, define−macro(2), replace−all−string(3), !force(4).

MicroEmacs '02

MacroArguments(4) 1092

CommandVariables(4)

NAME

@clk, @cl − Last key or command name
@cck, @cc − Current key or command name
@cgk, @cg − Get a key or command name from the user
@cqk, @cq − Get a quoted key or command name from the user

SYNOPSIS

@clk
@cl
@cck
@cc
@cgk
@cg
@cqk
@cq

DESCRIPTION

The Command Variables allow macros to obtain MicroEmacs '02 input commands and keystrokes
from the user. The general format of the command is:−

@ci[k]

Where,

i

Determines the source of the input as follows:−

l

The last input entered.

c

The current input entered.

q

Provides a low level character input mechanism, obtaining a single raw character input from
the user. The input fetch does not interact with the message line and the user is NOT

MicroEmacs '02

CommandVariables(4) 1093

prompted for input (use ml−write(2) to create your own message). @cq is very low level, it is
generally preferable to use @cg which provides a more intelligent binding.

g

Like @cq, @cg[k] gets a single character input, however if the input is bound to a function then the
function name is returned instead of the character e.g. if ^F or <left−arrow> is depressed then
forward−char is returned. This has distinct advantages over @cq as the binding becomes device
independent and executes on all platforms. In addition, it honors the users bindings, however bizarre.

k

When, omitted command input is returned to the caller (i.e. the name of the command, such as
"forward−char"). When present, the raw keystroke is returned to the caller, i.e. "^F (control−F).

The @cl, @clk, @cc and @cck variables can also be set, this feature can be used by macros to
change the command history. While setting the current command is limited in use, setting the last
command can be immensely useful, consider the following macro code:−

kill−line
forward−line
set−variable @cl kill−line
kill−line

Without the setting of the @cl variable, the current kill buffer will contain only the last line. But the
setting of @cl to kill−line fools MicroEmacs into thinking the last command was a kill command so
the last kill line as appended to the current yank buffer, i.e. the kill buffer will have both lines in it.

This feature can be used for any command whose effect depends on the previous command. Such
commands include forward−line(2), kill−region(2), reyank(2) and undo(2). This feature should not be
abused as unexpected things may happen.

Summary

@cl

Get or set the last command.

@clk

Get or set the last key stroke.

@cc

Get or set the current command.

@cck

Get or set the current keystroke.

MicroEmacs '02

CommandVariables(4) 1094

@cg

Get a command name from the user.

@cgk

Get a keystroke from the user.

@cq

Get a quoted command name from the user.

@cqk

Get a quoted keystroke from the user. EXAMPLE

The following example shows how the @cc and @cl commands are used:−

define−macro current−last−command
 insert−string &spr "Last key [%s] name [%s]\n" @clk @cl
 insert−string &spr "Current key [%s] name [%s]\n" @cck @cc
!emacro

Pressing the up key and then executing this macro using execute−named−command (esc x) will insert
the lines:−

Last key [up] name [backward−line]
Current key [esc x] name [execute−named−command]

@cg like @cq gets a single character input, however if the keyboard input is bound to a function then
the function name is returned instead of the character e.g. if ^F or <left−arrow> is depressed then
forward−char is returned. This has distinct advantages over @cq as the binding becomes device
independent and executes on all platforms, additionally it honors the users bindings, however bizarre.

@cq provides a low level character input mechanism, obtaining a single raw character input from the
user. This does not interact with the message line and the user is not prompted for input (use
ml−write(2) to create your own message). @cq is very low level, it is generally preferable to use @cg
which provides a more intelligent binding.

EXAMPLE

The following example is taken from draw.emf which uses @cg to obtain cursor movements from
the user. Note how the input from @cg (stored in variable %dw−comm) is compared with the
binding name rather than any keyboard characters.

 !repeat
 0 screen−update
 !force set−variable #l0 @cg
 !if &seq #l0 "abort−command"

MicroEmacs '02

CommandVariables(4) 1095

 !if &iseq @mc1 "Really quit [y/n]? " "nNyY" "y"
 find−buffer :dw−buf
 0 delete−buffer "*draw*"
 −1 buffer−mode "view"
 !abort
 !endif
 !elif &seq #l0 "newline"
 .
 .
 !elif &seq #l0 "forward−line"
 1 draw−vert
 !elif &seq #l0 "backward−line"
 −1 draw−vert
 !elif &seq #l0 "forward−char"
 1 draw−horz
 !elif &seq #l0 "backward−char"
 −1 draw−horz
 !elif &seq #l0 "osd"
 .osd.draw−help osd
 !elif &set #l1 &sin #l0 "mdeu−="
 !if &les #l1 5
 set−variable :dw−mode &sub #l1 1
 set−variable :dw−modes #l0
 draw−setmode−line
 !elif &sin #l0 "−="
 set−variable :dw−char #l0
 draw−setmode−line
 !endif
 !else
 ml−write "[Invalid command]"
 !endif
 !until 0

SEE ALSO

@wc(4), &kbind(4), define−macro(2).

MicroEmacs '02

CommandVariables(4) 1096

@fs(4)

NAME

@fs − Frame store variable

SYNOPSIS

@fs row column

DESCRIPTION

The frame store variable @fs gives macros a way of obtaining the character currently being drawn on
the screen at the given location. If the given value of row or column is out range, i.e. less than zero or
greater than or equal to the screen size (see $frame−width(5)) then the value returned is the empty
string (i.e. "").

This variable cannot be set and is only updated during a screen update, this means that macros that
change the cursor position will need to redraw the screen before using this variable.

EXAMPLE

The following example gets the word under the current mouse position, this may not be the current
cursor position:

define−macro word−under−mouse
 set−variable #l0 $mouse−y
 set−variable #l1 $mouse−x
 !if ¬ &inw @fs #l0 #l1
 ml−write "[mouse not over a word]"
 !return
 !endif
 set−variable #l2 @fs #l0 #l1
 set−variable #l1 &sub #l1 1
 !if &inw @fs #l0 #l1
 set−variable #l2 &cat @fs #l0 #l1 #l2
 !jump −3
 !endif
 set−variable #l1 $mouse−x
 set−variable #l1 &add #l1 1
 !if &inw @fs #l0 #l1
 set−variable #l2 &cat #l2 @fs #l0 #l1
 !jump −3
 !endif
 ml−write &spr "[mouse is over the word \"%s\"]" #l2
!emacro

MicroEmacs '02

@fs(4) 1097

SEE ALSO

$frame−width(5), screen−update(2), MacroArguments, MacroNumericArguments, define−macro(2).

MicroEmacs '02

@fs(4) 1098

MessageLineVariables(4)

NAME

@mn, @mna, @ml, @mc, @mx, @mxa − Message line input

SYNOPSIS

@mn
@mna
@ml[f][h] "prompt" ["default"] ["initial"] ["com−list"] ["buffer−name"]
@mc[f] prompt [valid−list]
@mx "command−line"
@mxa "command−line"

DESCRIPTION

The Message Line Variables provide a method to prompt the user for an input returning the data to
the caller. The @mn variable cause MicroEmacs to input data from the user in the default way for
that command's argument, i.e. the normal prompt with the normal history and completion etc.
Similarly @mna causes MicroEmacs to input the current argument and any subsequent arguments in
the default way.

The @ml variable can be used to get a string (or Line) of text from the user using the message−line in
a very flexible way. The first optional flag f is a bitwise flag where each bit has the following
meaning

0x01

The default value will be specified and this will be returned by default.

0x02

The initial value will be specified and this will be initial value given on the input line.

0x04

Auto−complete using the initial value, usually used with bit 0x02.

0x08

Hide the input string, the characters in the current input string are all displayed as '*'s.

If no value is specified then default value is 0 and h can not be specified. The default value is returned
when the user enters an empty string. If the initial string is specified the the input buffer will be

MicroEmacs '02

MessageLineVariables(4) 1099

initialized to the given string instead of and empty one.

The flag h specifies what type of data is to be entered, this specifies the history to be used and the
semantics allowed, h can have the following values

0 For a general string input using the general history.
1 For an absolute file name, with completion and history.
2 For a MicroEmacs '02 buffer name, with completion and history.
3 For a MicroEmacs '02 command name, with completion and history.
4 For a file name, with completion and history.
5 For a search string, with history.
6 For a MicroEmacs '02 mode name, with completion and history.
7 For a MicroEmacs '02 variable name, with completion and history.
8 For a general string using no history.
9 For a user supplied completion list (com−list).
a For a user supplied completion list (buffer−name).

A default value of 0 is used if no value is specified. At first glance type 1 and 4 appear to be the same.
They differ only when a non absolute file name is entered, such as "foobar". Type 1 will turn this into
an absolute path, i.e. if the current directory is "/tmp" then it will return "/tmp/foobar". Type 4
however will return just "foobar", this is particularly useful with the &find(4) directive to then find
the file "foobar".

When a value of 9 is used the argument com−list must be given which specifies a list of completion
values in the form of a MicroEmacs list (see help on &lget(4) for further information on lists). The
user may enter another value which is not in the list, which will be returned.

Alternatively a completion list may be given in the form of a buffer using a value of a. The argument
buffer−name must be given to specify the buffer name from which to extract the completion list; each
line of the buffer is taken as a completion value. This option is particularly useful for large completion
lists as there is no size restrictions.

The @mc variable can be used to get a single character from the user using the message−line. The
optional flag f is a bitwise flag where each bit has the following meaning

0x01

The valid−list specifies all valid letters.

0x02

Quote the typed character, this allows keys such as 'C−g' which is bound to the abort command to be
entered.

The default value for f is 0. When @mc is used, the user is prompted, with the given prompt, for a
single character. If a valid−list is specified then only a specified valid character or an error can be
returned. For example, a yes/no prompt can be implemented by the following

!if &iseq @mc1 "Are you bored [y/n]? " "yYnN" "y"

MicroEmacs '02

MessageLineVariables(4) 1100

 save−buffers−exit−emacs
!endif

By using the &isequal(4) operator a return of "Y" or "y" will match with "y".

When the @mx variable is used MicroEmacs sets the system variable $result(5) to the input prompt,
it will then execute the given command−line. If this command aborts then so does the calling
command, if it succeeds then the input value is taken from the $result variable. Similarly @mxa
causes MicroEmacs to get the current and any subsequent arguments in this way.

These variables are useful when trying to use existing commands in a different way, such as trying to
provide a GUI to an existing command. See the delete−buffer example below.

EXAMPLE

The following example can be used to prompt the user to save any buffer changes, the use of @mna
ensures the user will be prompted as usual regardless of the number of buffers changed:

save−some−buffers @mna

The following example sets %language to a language supplied by the user from a given list, giving
the current setting as a default

set−variable %languages "|American|British|French|Spanish|"
set−variable %language "American"

set−variable %language @ml19 "Language" %language %languages

The following example is taken from diff−changes in tools.emf, it uses @mc to prompt the user
to save the buffer before continuing:−

define−macro diff−changes
 !if &seq $buffer−fname ""
 ml−write "[Current buffer has no file name]"
 !abort
 !endif
 !if &bmod "edit"
 !if &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 !endif
 !endif
 .
 .

Note that the input is case insensitive. The following version would not work as the user may expect
when the buffer has not been edited:

 .
 .
 !if &and &bmod "edit" &iseq @mc1 "Save buffer first [y/n]? " "nNyY" "y"
 save−buffer
 .

MicroEmacs '02

MessageLineVariables(4) 1101

 .

Unlike C and other similar languages MicroEmacs macro language always evaluates both &and
arguments. This means that the user will be prompted to save the buffer regardless of whether the
buffer has been edited.

The @mx variables are useful when using existing commands in a new environment. For example,
consider providing a GUI for the delete−buffer(2) command, when executed the calling GUI may not
be aware that changes could be lost or a process may still be active. These variables can be used as a
call back mechanism to handle this problem:

define−macro osd−delete−buffer−callback
 !if &sin "Discard changes" $result
 2 osd−xdialog "Delete Buffer" " Dicard changes? " 2 10 6 "&Yes" "&No"
 set−variable $result &cond &equ $result 1 "y" "n"
 !elif &sin "Kill active process" $result
 2 osd−xdialog "Delete Buffer" " Kill active process? " 2 10 6 "&Yes" "&No"
 set−variable $result &cond &equ $result 1 "y" "n"
 !else
 1000 ml−write &spr "[Unknown prompt %s]" $result
 !abort
 !endif
!emacro

define−macro osd−delete−buffer
 .
 . set #l0 to buffer name to be deleted
 .
 delete−buffer #l0 @mxa osd−delete−buffer−callback
!emacro

SEE ALSO

define−macro(2).

MicroEmacs '02

MessageLineVariables(4) 1102

SearchGroups(4)

NAME

@s0, @s1, @s2, ... @s9 − Last search group values

SYNOPSIS

@s0 − Last search's whole match string
@s1 − Last search's first group value
@s2 − Last search's second group value
...
@s9 − Last search's nineth group value

DESCRIPTION

The search group variables @sn return the string matches of the last regular expression search i.e.
search−forward(2) (in magic(2m) mode) or regex−forward(3).

@s0 returns the whole of the matched string, @sn, n = 1..9, returns the bracket matches
corresponding to the group demarkation points indicated by \(and \) in the search regular
expression.

DIAGNOSTICS

An error is generated if an attempt is made to access these variables and the last search failed or the
last search did not have the specified group.

The value returned for an unused group, e.g. @s2 for the regex string "\(a\)\|\(b\)" if "a" was
matched, is an empty string ("").

EXAMPLE

The following macro code gives a simple example of their potential use:

forward−search "Token *{\\(Start\\|End\\)}"
!if $status
 ml−write "[found \"%s\"]" @s0
 if &seq @s1 "Start"
 .
 .

NOTES

MicroEmacs '02

SearchGroups(4) 1103

Remember that the regular expression escape character '\' has to be duplicated within a macro file as '\'
is also the macro file escape sequence.

SEE ALSO

magic(2m), search−forward(2), regex−forward(3).

MicroEmacs '02

SearchGroups(4) 1104

CurrentBufferVariables(4)

NAME

@wc, @wl − Extract characters from the current buffer

SYNOPSIS

@wl
@wc

DESCRIPTION

Buffer variables are special in that they can only be queried and cannot be set. Buffer variables allow
text to be taken from the current buffer and placed into a variable. Two types of extraction are
provided @wl provides a line extraction method, @wc provides a character extraction method.

For example, if the current buffer contains the following text:

Richmond
Lafayette
<*>Bloomington (where <*> is the current point)
Indianapolis
Gary
=* me (BE..) == rigel2 == (c:/data/rigel2.txt) ===================

The @wl variable allows text from the current buffer to be accessed, a command such as:−

set−variable %line @wl

would start at the current point in the current buffer and grab all the text up to the end of that line and
pass that back. Then it would advance the point to the beginning of the next line. Thus, after the
set−variable command executes, the string "Bloomington" is placed in the variable %line and the
buffer rigel2 now looks like this:

Richmond
Lafayette
Bloomington
<*>Indianapolis (where <*> is the current point)
Gary
=* me (BE..) == rigel2 == (c:/data/rigel2.txt) ===================

The buffer command @wc gets the current character in the buffer, it does not change the buffer
position. It is important to stress that the cursor position is not modified, in general a macro will
interrogate the character under the cursor and then affect the buffer (i.e. by moving the cursor,
deleting the character etc.) dependent upon the value of the character returned.

MicroEmacs '02

CurrentBufferVariables(4) 1105

EXAMPLE

The @wc variable provides the most useful mechanism to modify the current buffer. The following
example is a macro called super−delete which is bound to <CTRL−del>. The macro deletes
characters under the cursor in blocks. If a white space character is under the cursor then all characters
up until the next non−white space character are deleted. If a non−white space character is under the
cursor then all non−white space characters up until the next white space character are deleted, then the
white space is deleted. White space in this context is a SPACE, tab or CR character.

;
;−−− Macro to delete the white space, or if an a word all of the
; word until the next word is reached.
;
define−macro super−delete
 !while ¬ &sin @wc " \t\n"
 forward−delete−char
 !done
 !repeat
 forward−delete−char
 !until &or &seq @wc "" ¬ &sin @wc " \t\n"
 !return
!emacro

global−bind−key super−delete "C−delete"

SEE ALSO

define−macro(2).

MicroEmacs '02

CurrentBufferVariables(4) 1106

@y(4)

NAME

@y − Yank buffer variable

SYNOPSIS

@y − Yank buffer variable

DESCRIPTION

The Yank Buffer Variable @y retrieves the current yank(2) string from the kill buffer and returns it to
the caller.

EXAMPLE

The current contents of the yank buffer can be obtained using @y, so to set variable #l1 to the
current or last word if the cursor is not in a word, simply use:

 forward−char
 backward−word
 set−mark
 forward−word
 copy−region
 set−variable #l1 @y

SEE ALSO

yank(2), MacroArguments, MacroNumericArguments, define−macro(2).

MicroEmacs '02

@y(4) 1107

abort−command(2)

NAME

abort−command − Abort command

SYNOPSIS

abort−command (C−g)

DESCRIPTION

Aborts the current command, when in trouble, this command will usually limit the damage. If you
find yourself in a position where you do not want to be then this command will usually take you back
to a sane state. This command rings the bell and stops keyboard macros.

Avoid re−binding this key where possible as it is used in other places.

When abort−command is invoked a warning is automatically given alerting the user, this may be an
audible or a visual warning depending on the global state of the quiet(2m) mode.

SEE ALSO

buffer−mode(2), quiet(2m).

MicroEmacs '02

abort−command(2) 1108

about(2)

NAME

about − Information About MicroEmacs '02

SYNOPSIS

about

DESCRIPTION

about displays information about the current MicroEmacs '02 editing session and includes the
following information:−

Version number and date information for MicroEmacs '02.♦
Global status information including the number of active buffers and global mode status
information.

♦

Current buffer status information; buffer modes and buffer size information.♦

EXAMPLE

The following is an example output from about.

MicroEmacs '98 − Date 1/1/98

Global Status:
 # buffers : 21

 Modes on : auto backup crlf exact magic quiet tab undo
 Modes off : binary cmode crypt ctrlz del dir edit hide indent
 justify letter line lock nact narrow over pipe rbin
 save time usr1 usr2 usr3 usr4 usr5 usr6 usr7 usr8
 view wrap

Current Buffer Status:
 Buffer : m2cmd148.2
 File name : c:/emacsdoc/m2cmd148.2

 Lines : Total 34, Current 27
 Characters: Total 759, Current 683

 Modes on : auto backup edit exact indent justify magic quiet
 tab time undo wrap
 Modes off : binary cmode crlf crypt ctrlz del dir hide letter
 line lock nact narrow over pipe save rbin usr1 usr2
 usr3 usr4 usr5 usr6 usr7 usr8 view

MicroEmacs '02

about(2) 1109

SEE ALSO

describe−bindings(2), list−buffers(2).

MicroEmacs '02

about(2) 1110

add−color(2)

NAME

add−color − Create a new color
add−color−scheme − Create a new color scheme

SYNOPSIS

add−color "col−no" "red" "green" "blue"
n add−color−scheme "schemeNum" "fore" "back" "current−fore" "current−back"

"selected−fore" "selected−back"
"current−selected−fore" "current−selected−back"
["fm−fore" "fm−back" "fm−cur−fore" "fm−cur−back"
"fm−sel−fore" "fm−sel−back"
"fm−cur−sel−fore" "fm−cur−sel−back"] DESCRIPTION

add−color creates a new color and inserts it into MicroEmacs '02 colors table, where red, green and
blue are the color components and col−no is the MicroEmacs '02 color table number. The color table
contains 256 entries indexed by col−no in the range 0−255.

On some platforms (DOS and UNIX termcap) the number of colors is physically limited by the
hardware to less than 256 (typically 16), in this case all 256 colors can be defined and for each created
color the closest system color is used.

By default, only color 0 (white) and 1 (black) are defined. Once created, the colors may be used to
create color schemes, this is the sole use of colors.

add−color may be used to modify an existing col−no index by re−assignment, the existing color
definition is over−written with the new color definition. add−color−scheme creates a color scheme
entry used by hilight(2), screen−poke(2), osd(2) and variables such as $global−scheme(5),
$buffer−scheme(5), $ml−scheme(5).

The command takes an index number "schemeNum" and eight color values (defined by add−color)
alternating between foreground and background colors. The 8 colors represent the 4 color paired
states of foreground and background that may appear in a text buffer. The paired states correspond to
current and selected lines (or permutations thereof). If an argument n is given to the command then
schemeNum is set to a duplicate of the nth scheme, no other arguments are required.

schemeNum is the identifying index that is used to recognize the scheme. By default only two color
schemes are defined at initialization, they are a monochrome scheme and inverse scheme with indices
0 and 1 using white as foreground and black as background, selected text is inverted. When defining a
color scheme, if an existing schemeNum index is used then that scheme is modified.

MicroEmacs '02

add−color(2) 1111

The next eight arguments must be given, they specify foreground and background color pairs for the
four different situations, as follows:−

Default

Color combination used when none of the following three are applicable.

Current

Color combination used when the text is on the same line as the cursor. It is also used by the
$mode−line−scheme(5) for the current window's mode line and for the current selection on an osd(2)
dialog.

Selected

Color combination used when the text is in the current selected region, but is not on the current line.
Also used by osd for non−current item Hot keys.

Current−selected

Color combination used when the text is on the current line and in the current selected region. Also
used by osd for the current item's Hot key.

The following 8 arguments set up fonts and are optional, any missing arguments are defaulted to 0.
Each argument is a bitmask indicating which font should be enabled, where each bit is as follows:

0x01 Enable bold font.
0x02 Enable italic font.
0x04 Enable light font.
0x08 Enable reverse font.
0x10 Enable underlining.

Normally only the foreground value is used, i.e. the first, third, fifth and seventh values. But
screen−poke(2) can be used to draw reversed color scheme in which case the background values are
used.

EXAMPLE

The color palette is typically created at start−up via the configuration file schemeX.emf. These files
are not easily read as they are automatically generated via the scheme−editor(3) dialog. A more
readable form of "schemed.emf" would be as follows:−

; Standard colors
add−color &set .white 0 200 200 200
add−color &set .black 1 0 0 0
add−color &set .red 2 200 0 0
add−color &set .green 3 0 200 0
add−color &set .yellow 4 200 200 0
add−color &set .blue 5 0 0 200

MicroEmacs '02

add−color(2) 1112

add−color &set .magenta 6 200 0 200
add−color &set .cyan 7 0 200 200
; Light colors
add−color &set .lwhite 8 255 255 255
add−color &set .lblack 9 75 75 75
add−color &set .lred 10 255 0 0
add−color &set .lgreen 11 0 255 0
add−color &set .lyellow 12 255 255 0
add−color &set .lblue 13 0 0 255
add−color &set .lmagenta 14 255 0 255
add−color &set .lcyan 15 0 255 255
; Selection color
add−color &set .sel−col 16 91 78 131
; Set the required cursor−color
set−variable $cursor−color .col12
; Set up the standard schemes for the text, mode line message line, scroll bar and osd.
add−color−scheme $global−scheme .white .black .lwhite .black ...
 white .sel−col .lwhite .sel−col 0 8 1 9 8 0 9 1
add−color−scheme $ml−scheme .white .black .lwhite .black ...
 white .sel−col .lwhite .sel−col 0 8 1 9 8 0 9 1
add−color−scheme $mode−line−scheme .white .red .lwhite .lred ...
 white .red .lwhite .red 8 0 9 1 0 8 1 9
add−color−scheme $scroll−bar−scheme .white .lblack .lwhite .lblack ...
 lblack .white .lblack .lwhite 8 0 9 1 0 8 1 9
 .
 .

NOTES

Color schemes can be created and altered using the scheme−editor(3) dialog, the created color scheme
can then the used from start−up by using the user−setup(3) dialog. Therefore direct use of these
commands is largely redundant.

The existence of a color or scheme index is checked as each entry is submitted, therefore any color or
scheme used must have been previously been created, otherwise a default value is substituted.

Changing any existing color definitions causes all references to the color from a scheme to adopt the
new color.

Changing any existing color−scheme definitions changes the rendered color of any hilight(2) etc., that
was using that color−scheme.

A −ve color scheme value (i.e. −n) uses the previous 'n'th entry that is defined in the color block. i.e.
if current−fore was specified as −2 then it would inherit the fore field color.

Not all UNIX terminals support all the above fonts.

On some telnet packages color is not directly supported and some of the termcap display attributes
such as bold and italic are represented by a color (e.g. italic text is shown in green). Using this
translation it is possible to achieve reasonable color support on a VT100 terminal − it is a little
awkward but is worth while if you have to use this type of connection frequently.

MicroEmacs '02

add−color(2) 1113

SEE ALSO

scheme−editor(3), user−setup(3), change−font(2), hilight(2), screen−poke(2), $buffer−hilight(5),
$cursor−color(5), $global−scheme(5), $trunc−scheme(5), $ml−scheme(5), $osd−scheme(5),
$mode−line−scheme(5), $scroll−bar−scheme(5), $system(5).

MicroEmacs '02

add−color(2) 1114

add−dictionary(2)

NAME

add−dictionary − Declare existence of a spelling dictionary

SYNOPSIS

n add−dictionary "file"

DESCRIPTION

add−dictionary adds the given dictionary (specified by the given file) to the dictionary list. Note that
the file may omit the .edf extension, this is automatically added.

The command accepts a numeric argument 'n' which determines the actions to be undertaken. When n
is omitted then the dictionary is marked for loading (on demand) − this is the standard invocation used
in the start up files.

If an argument of 0 is given the dictionary is created but it is not marked for loading, this can be used
to create an empty dictionary.

If an argument of −1 is given the contents of the dictionary are dumped into the current buffer, used
for dictionary maintenance. The two main uses of this command are discussed below.

Dictionary Loading

A call to add−dictionary with no numeric argument does not perform an immediate load of the
dictionary, instead the dictionary is only loaded on demand, i.e. when a call to spell(2) (usually via
spell−word(3) or spell−buffer(3)) is made, this ensures that the start up time for MicroEmacs does not
become too long. When the dictionary is loaded it is checked for efficiency, if found to be inefficient
it is automatically optimized and flagged as changed. On exiting MicroEmacs, the user is prompted to
save any dictionary that has be altered or optimized.

The spelling search order is made from the last dictionary added to the first, as soon as a word is
found in a dictionary the search is halted. This implies that if a word has been defined incorrectly in
one dictionary, but correct in another, the order in which the dictionaries are added determines the
result.

The number of dictionaries allowed is unlimited but note that any words added are always added to
the LAST dictionary. The size of the dictionary is restricted to about 16Mb, the size is NOT tested
when words are added and if this size is exceeded the results are undefined. However, it is unlikely
that this limit will be reached, the largest dictionary created to date is 0.8Mb.

MicroEmacs '02

add−dictionary(2) 1115

A new main dictionary may be created as follows:−

1)

Find a file containing an ispell(1) compatible list of words.

2)

execute−file(2) spellutl.emf to define macro spell−add−word(3).

3)

Start up MicroEmacs '02 and execute the command add−dictionary giving an appropriate new
dictionary name.

4)

Load up the file containing the words and execute the command spell−add−word(3) with a very large
argument so all the words are added.

5)

Save the dictionary by either executing the command save−dictionary(2) or exiting. Dictionary Dump

A call to add−dictionary with a numeric argument n of −1 causes the contents of the given dictionary
to be dumped into the current buffer (make sure you are in an empty buffer or *scratch*) where:

xxxx − Good word xxxx with no spell rules allowed
xxxx/abc − Good word xxxx with spell rules abc allowed
xxxx>yyyy − Erroneous word with an auto−replace to yyyy

The dump of the dictionary may be edited, allowing erroneous entries to be removed. The macro file
spellutl.emf contains macros edit−dictionary(3) and restore−dictionary(3) which enable the user
to edit a dictionary.

NOTES

MicroEmacs '02 is supplied with a dictionaries for American and British English, it is strongly
suggested that these dictionaries are NOT modified in anyway. Ensure that the dictionary is protected
by loading the base dictionaries first, followed by a personal dictionary. New words added during
spelling will then be added to the personal dictionary rather than the main dictionary.

EXAMPLE

The MicroEmacs '02 start−up file me.emf executes language.emf which in turn executes the user
language setup file, for example american.emf, which adds the main language dictionaries and rules.

MicroEmacs '02

add−dictionary(2) 1116

language.emf then adds the user's dictionary, this process can be simplified to:−

; add the main American dictionary
add−dictionary "lsdmenus"

; reset the spell rules
0 add−spell−rule
; Now add the American spell rules
−2 add−spell−rule "A" "" "" "re" ; As in enter > reenter
−2 add−spell−rule "I" "" "" "in" ; As in disposed > indisposed
 .
 .
; Now add the user dictionary
add−dictionary $MENAME

SEE ALSO

add−spell−rule(2), save−dictionary(2), spell−add−word(3), edit−dictionary(3), spell−buffer(3).

MicroEmacs '02

add−dictionary(2) 1117

add−file−hook(2)

NAME

add−file−hook − Declare file name context dependent configuration

SYNOPSIS

n add−file−hook "extensions" "fhook−name"

DESCRIPTION

add−file−hook defines a macro binding between a file name or file type and a set of macros. This
binding enables file type dependent screen highlighting and key bindings to be performed. For a
higher level introduction refer to File Hooks.

add−file−hook operates in two different modes to establish the type of file:−

Content recognition, by examination of the contents of the file.♦
File extension recognition.♦

Content recognition has the highest priority and is used in preference to the file extension.

add−file−hook is called multiple times to add new recognition rules. The rules are interrogated in
last−in−first−out (LIFO) order, hence the extension added last has a greater precedence than those
added first. This ordering allows default rules to be over−ridden.

Initialization

add−file−hook must be initialized prior to the first call, using an invocation of the form:−

0 add−file−hook

with a numeric argument n of 0, and no arguments. This invocation resets the file hooks by deleting
all of the installed hooks.

File Extension Recognition

add−file−hook with no numerical argument n allows the extension of a file (or the base file name if
there is no extension) to be used to determine which user defined setup macro is to be executed. The
extensions argument is a space separated list of file endings (as opposed to true extensions) and is
usually specified with the extension separator. For example, the extension ".doc" may indicate that
the file is a document and therefore the indent, wrap and justify buffer modes are required. This may
be performed automatically by defining a macro which adds these modes and adding a file hook to

MicroEmacs '02

add−file−hook(2) 1118

automatically execute this macro whenever a file "*.doc" is loaded.

The command arguments are defined as follows:−

extensions

A space separated list of file extensions, which are to be checked, this list includes the extension
separator (typically dot ('.'). It should be noted that the extension search is actually a comparison of
the tail of the string, as such files such as makefile, which do not have an extension, are specified
literally.

fhook−name

The name of the file hook to execute. This is the name of the macro to execute that initializes the
buffer.

As an example:−

define−macro fhook−doc
 1 buffer−mode "indent"
 1 buffer−mode "wrap"
 1 buffer−mode "justify"
!emacro

add−file−hook ".doc" "fhook−doc"

It is quite possible that the same macro should be executed for a text file, i.e. "*.txt" this is
achieved by a single add−file−hook as the space (' ') character is used as an extension separator, e.g.

add−file−hook ".doc .txt" "fhook−doc"

There are three special file hooks, which are fhook−binary, fhook−rbin and fhook−default, these
are not predefined, but if the user defines them then they are executed whenever a file is loaded in
binary or reduced binary mode (see buffer−mode(2)) or the extension does not match any of those
defined.

Considering the fhook−XXX prefix, the initial 'f' character must be present as this is changed to a 'b'
and an 'e' when looking for the enter (begin) buffer and exit buffer hooks. These hooks are executed
whenever the user swaps to or from a buffer (including creating and deleting). So for the given
example, if the tab size of 8 is required in a document (but 4 elsewhere) then this operation this is
performed by defining the bhook−XXX and ehook−XXX macros, e.g.:−

define−macro bhook−doc
 set−variable $tabsize 8
!emacro

define−macro ehook−doc
 set−variable $tabsize 4
!emacro

File hooks are often used to setup the desired buffer modes, hilighting, local key bindings,

MicroEmacs '02

add−file−hook(2) 1119

abbreviation file, etc.

Buffer hooks are usually used to set and restore conflicting global variables.

File Content Recognition

add−file−hook with a non−zero numerical argument n defines a macro binding between the content
in a file and a set of macros. This binding enables file type dependent screen hi−lighting and key
binding to be performed. For a full description of file hooks refer to File Hooks, for file extension
dependent hooking refer to add−file−hook(2).

The content defined file hooks interrogate the contents of a file on loading and search for a magic
string identifier embedded in the text which uniquely identifies the file type.

The recognition process performs a search of the first n (numerical argument) non−blank lines of the
file, searching for the regular expression specified by the extensions argument. The sign of the
numerical argument n is interpreted as follows:−

−ve − Case insensitive search♦
+ve − Case sensitive search♦

The command arguments are defined as follows:−

extensions

A regular expression string defining the text to be searched for.

fhook−name

The name of the file hook to execute. This is the name of the macro to execute that will initialize the
buffer.

The search commences from the first non−blank line in the file, if the regular expression, defined by
extensions is located then the file hook fhook−name is invoked. This is typically used to identify files
which do not have file extensions i.e. UNIX shell script files. To identify a shell script file which
commences with:−

#!/bin/sh

The following file hook is used:−

1 add−file−hook "#!/.*sh" "fhook−shell"

Note that ".*sh" also matches /bin/csh, /usr/local/bin/zsh etc, so care should be taken
to ensure that the regular expression string is sufficiently well specified to recognize the file type.

The second class of embedded text are explicit identifiers embedded into the text. The embedded
strings take the form:

MicroEmacs '02

add−file−hook(2) 1120

−*− mode−*
−*− Mode: mode; ... −*−
−!− mode −!−

The −*− notation belongs to GNU Emacs, but MicroEmacs '02 recognizes the construct and extracts
the string correctly. The −!− notation is MicroEmacs '02 specific and is provided so as not to cause
conflict with GNU Emacs. MicroEmacs '02 searches for either construct on the first non−blank line of
the file.

The explicit strings are defined with a negative numerical argument n, which identifies them as
explicit rather than magic text strings. The string should be defined in lower case and matches a case
insensitive string take from the file. e.g. to define a file hook for a make file:

#_____________________________−!−Makefile−!−________________________________

Make file for MicroEmacs using the Microsoft MSCV 2.0/4.0 development kit.

Author : Jon Green
Created : 020197.1002
Last Edited : <150297.1942>
File : makefile.w32
....

might be defined as:

−1 add−file−hook "−!−[\t]*makefile.*−!−" fhook−make

NOTES

Automatic Macro File Loading

add−file−hook performs an automatic load of a macro file if the fhook macro is not present in
memory. The file name of the command file containing the macro is automatically derived from the
name component of the fhook macro name. The fhook− part of the name is stripped off and
prepended with hk and suffixed with .emf. Hence, macro fhook−doc would be searched for in file
hkdoc.emf within the MicroEmacs '02 directory. The command file is automatically loaded and
executed.

In cases where the fhook macro is not located in an equivalent hook file, the file location of the macro
may be explicitly defined for auto loading via a define−macro−file(2) invocation.

As an example, consider the C−mode file hook, used to load .c files. The loading of a C header file
(.h) utilizes the same highlighting modes, but it's startup sequence is slightly different when handling
new files. In this case the fhook−cmode for .c and fhook−hmode for .h files are located in the
same hook file namely hkcmode.emf.

define−macro−file hkcmode fhook−hmode

add−file−hook ".c .cc .cpp .def .l .y .i .ac" "fhook−cmode"
add−file−hook ".h .hpp" "fhook−hmode"

MicroEmacs '02

add−file−hook(2) 1121

In this case the define−macro−file has been used to inform MicroEmacs '02 of the location of the
fhook−hmode macro thereby overriding the automatic load of a file called hkhmode.emf. The
fhook−cmode macro requires no such definition as it is located in a hook file that matches the mode
name, hkcmode.emf.

Extending a standard hook definition

The standard file hook files hkXXX.emf should not be modified. The standard file hooks may be
extended with local definitions by defining a file myXXX.emf, which is an extension to the hook file
hkXXX.emf. This is automatically executed after hkXXX.emf. Refer to sections Language Templates
and File Hooks for details.

File Extensions

The file extensions are specified as a space separated list of file name endings. Back−up file endings
such as tilde (~) are not classed as correct file endings and are skipped by the file hook search, hence
a file ending ".c~" invokes the same hook function as a ".c" file. It is therefore not necessary to add
the backup and auto−save endings to the file hook definition.

The extension separator, usually dot (.), is typically added to the extensions list, they may be omitted
with effect where a file always ends in the same set of characters. A notable example is "makefile"
which includes no extension, as such, MicroEmacs '02 applies the same hook function to a file called
Imakefile as the endings are the same.

Binary Files

It is sometimes useful to associate file types as binary files, so that they are immediately loaded in
binary. In this case, both file extension and content recognition methods (i.e. of a magic string) are
applicable. In both cases the file is bound to the well known hook fhook−binary which
automatically loads the file in a binary mode.

Note, that for the content recognition process for a binary hook, the load time is doubled as the file is
initially loaded in the default text mode, the binary hook function forces a second load operation in
binary.

SUMMARY

add−file−hook is summarized as follows:−

Binds one or more extensions to a macro called fhook−xxxx.♦
Extensions are typically specified with the dot (.) separator.♦
Multiple extensions are specified as a space separated list.♦
Binds a regular expression search string to a macro called fhook−xxxx.♦
The absolute value of the numerical argument determines the number of lines in the file over
which the regular expression search is made.

♦

MicroEmacs '02

add−file−hook(2) 1122

The sign of the numerical argument determines if the regular expression search is case
(in)sensitive.

♦

When one of the files with a known file extension, or recognized content, is loaded macro
fhook−xxxx is executed.

♦

fhook−xxxx, if undefined, is automatically searched for in file hkxxxx.emf.♦
When the buffer containing the known file is entered (i.e. gains focus), then entry macro
bhook−xxxx is executed.

♦

When the buffer containing the known file is exited (i.e. looses focus), then the exit macro
ehook−xxxx is executed.

♦

EXAMPLE

The standard set of supported file types by MicroEmacs '02, at the time of writing, is defined as:−

; reset the file hook list
0 add−file−hook
; Add file extension hooks.
; Files loaded in binary mode do not need hook as fixed
add−file−hook "*help* *info* .ehf" fhook−ehf
add−file−hook "*bindings* *commands* *variables*" fhook−lists
add−file−hook "*buffers*" fhook−blist
add−file−hook "/ *directory* *files*" fhook−dir
add−file−hook "*registry*" fhook−reg
add−file−hook "*icommand* *shell* *gdb* *dbx*" fhook−ipipe
add−file−hook ".emf" fhook−emf
add−file−hook ".doc .txt" fhook−doc
add−file−hook ".1 .2 .3 .4 .5 .6 .7 .8 .9 .so .tni .sm" fhook−nroff
add−file−hook ".c .h .def .l .y .i" fhook−c
add−file−hook ".cc .cpp .hpp .rc" fhook−cpp
add−file−hook "Makefile makefile .mak" fhook−make
add−file−hook "Imakefile imakefile" fhook−imake
add−file−hook ".sh .ksh .csh .login .cshrc .profile .tcshrc" fhook−shell
add−file−hook ".bat .btm" fhook−dos
add−file−hook ".man" fhook−man
add−file−hook ".dmn" fhook−dman
add−file−hook ".ini .hpj .reg .rgy" fhook−ini
add−file−hook ".htm .html" fhook−html
add−file−hook ".htp .hts" fhook−hts
add−file−hook ".tcl" fhook−tcl
add−file−hook ".rul" fhook−rul
add−file−hook ".awk .nawk .gawk" fhook−awk
add−file−hook ".p .pas" fhook−pascal
add−file−hook ".vhdl .vhd" fhook−vhdl
add−file−hook ".fvwm .fvwm2rc" fhook−fvwm
add−file−hook ".java .jav" fhook−java
add−file−hook ".nsr" fhook−nsr
add−file−hook ".erf" fhook−erf
; Add magic hooks
 1 add−file−hook "^#!/.*sh" fhook−shell ; UNIX shell files
 1 add−file−hook "^#!/.*wish" fhook−tcl
 1 add−file−hook "^#!/.*awk" fhook−awk
 1 add−file−hook "^#VRML" fhook−vrml
−4 add−file−hook "<html>" fhook−html
−1 add−file−hook "−[*!]−[\t]*c.*−[*!]−" fhook−c ; −*− C −*−
−1 add−file−hook "−[*!]−[\t]*c\\+\\+.*−[*!]−" fhook−cpp ; −*− C++ −*−

MicroEmacs '02

add−file−hook(2) 1123

−1 add−file−hook "−[*!]−[\t]nroff.*−[*!]−" fhook−nroff ; −*− nroff −*−
−1 add−file−hook "−!−[\t]*shell.*−!−" fhook−shell ; −!− shell −!−
−1 add−file−hook "−!−[\t]*msdos.*−!−" fhook−dos ; −!− msdos −!−
−1 add−file−hook "−!−[\t]*makefile.*−!−" fhook−make ; −!− makefile −!−
−1 add−file−hook "−!−[\t]*document.*−!−" fhook−doc ; −!− document −!−
−1 add−file−hook "−!−[\t]*fvwm.*−!−" fhook−fvwm ; −!− fvwm −!−
−1 add−file−hook "−!−[\t]*erf.*−!−" fhook−erf ; −!− erf −!−
−1 add−file−hook "−!−[\t]*fold:.*−!−" fhook−fold ; −!− fold:... −!−

OBSCURE INFORMATION

This section includes some low−level information which is so obscure it is not relevant to the typical
user.

Resolving Loading Order Problems

There is a potential loading order problem involving auto−loading of file libraries and the setting up
of bhook and ehook. E.g. if the main fhook function has been defined as a define−macro−file(2), but
the bhook or ehooks have not the when a buffer is created as only the fhook is define, only the fhook
is set, the rest remain disabled even though the execution of the macro file will define these extra
hooks.

To solve this problem simply define the bhook/ehooks as well. Note that automatically loaded hooks
do not suffer from this problem as the macro file is executed before the hooks are assigned, thereby
ensuring the all the hooks are defined.

SEE ALSO

File Hooks, Language Templates, $buffer−bhook(5), $buffer−ehook(5), $buffer−fhook(5).

MicroEmacs '02

add−file−hook(2) 1124

global−mode(2)

NAME

global−mode − Change a global buffer mode
add−global−mode − Set a global buffer mode
delete−global−mode − Remove a global buffer mode

SYNOPSIS

n global−mode "mode" (esc m)
add−global−mode "mode"
delete−global−mode "mode"

DESCRIPTION

global−mode changes the state of one of the hereditary global modes. A buffer's modes are initialized
to the global modes when first created. This command is very useful in changing some of the default
behavior such as case sensitive searching (see the example below). See Operating Modes for a full list
and description of modes. Also see buffer−mode(2) for a full description of the use of the argument n.

The about(2) command gives a list of the current global and buffer modes.

add−global−mode and delete−global−mode are macros defined in meme3_8.emf which use
global−mode to add or remove a global mode. They are defined for backward compatibility with
MicroEMACS v3.8 and for ease of use; they are simple macros, add−global−mode is defined as
follows:

define−macro add−global−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 global−mode @1
 !if ¬ $status
 ; No − use 1 global−mode to add a mode
 !nma 1 global−mode
 !endif
!emacro

EXAMPLE

The following example globally disables exact(2m) and magic(2m) modes, if these lines are copied to
the user setup file then are searches will be simple and case insensitive by default:

−1 global−mode "exact"
−1 global−mode "magic"

MicroEmacs '02

global−mode(2) 1125

NOTES

Globally adding binary(2m), crypt(2m) and rbin(2m) modes is strongly discouraged as any file loaded
would be assigned these modes. Instead use the numeric argument of command find−file(2) or
commands find−bfile(3) and find−cfile(3).

auto(2m), autosv(2m), backup(2m), exact(2m), magic(2m), quiet(2m), tab(2m) and undo(2m) modes
are present on all platforms by default. On Windows and DOS platforms crlf(2m) is also present and
on DOS ctrlz(2m) is also present.

SEE ALSO

Operating Modes, buffer−mode(2), find−bfile(3), find−cfile(3), about(2).

MicroEmacs '02

global−mode(2) 1126

buffer−mode(2)

NAME

buffer−mode − Change a local buffer mode
named−buffer−mode − Change a named buffer mode
add−mode − Set a local buffer mode
delete−mode − Remove a local buffer mode
unmark−buffer − Remove buffer change flag

SYNOPSIS

n buffer−mode "mode" (C−x m)
n named−buffer−mode "buffer−name" "mode"
add−mode "mode"
delete−mode "mode"
unmark−buffer

DESCRIPTION

buffer−mode changes the state of a given buffer mode, affecting only the current buffer. A buffer's
mode affects the behavior of MicroEmacs '02. The about(2) command gives a list of the current
global and buffer modes. Refer to Operating Modes for a description of the buffer modes.

The argument n when given, has the following meaning:

Delete Add toggle Mode

 −1 1 0 Use "mode"
 −2 2 130 auto
 −3 3 131 autosv
 −4 4 132 backup
 −5 5 133 binary
 −6 6 134 cmode
 −7 7 135 crlf
 −8 8 136 crypt
 −9 9 137 ctrlz
 −10 10 138 del
 −11 11 139 dir
 −12 12 140 edit
 −13 13 141 exact
 −14 14 142 hide
 −15 15 143 indent
 −16 16 144 justify
 −17 17 145 letter
 −18 18 146 line
 −19 19 147 lock
 −20 10 148 magic
 −21 21 149 nact
 −22 22 150 narrow

MicroEmacs '02

buffer−mode(2) 1127

 −23 23 151 over
 −24 24 152 pipe
 −25 25 153 quiet
 −26 26 154 rbin
 −27 27 155 save
 −28 28 156 tab
 −29 29 157 time
 −30 30 158 undo
 −31 31 159 usr1
 −32 32 160 usr2
 −33 33 161 usr3
 −34 34 162 usr4
 −35 35 163 usr5
 −36 36 164 usr6
 −37 37 165 usr7
 −38 38 166 usr8
 −39 39 167 view
 −40 40 168 wrap

Note that when omitted the default argument is 0, i.e. prompt for and toggle a mode.

named−buffer−mode changes the state of a given buffer mode for a given buffer which may not be
the current buffer.

add−mode and delete−mode are macros which use buffer−mode to add and remove a buffer mode.
unmark−buffer is also a macro which removes the edit flag from the current buffer. They are defined
for backward compatibility with MicroEMACS v3.8 and can be found in meme3_8.emf; add−mode is
defined as follows:

define−macro add−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 buffer−mode @1
 !if ¬ $status
 ; No − use 1 buffer−mode to add a mode
 !nma 1 buffer−mode
 !endif
!emacro

NOTES

When a buffer is created it inherits the current global mode state.

SEE ALSO

Operating Modes, global−mode(2), about(2), &bmode(4).

MicroEmacs '02

buffer−mode(2) 1128

add−next−line(2)

NAME

add−next−line − Define the searching behavior of command output

SYNOPSIS

n add−next−line "buffer−name" ["string"]

DESCRIPTION

add−next−line is used to set up the next−line functionality which is used by the get−next−line(2)
command. The next−line feature is aimed at giving the user easy access to file locations which are
stored in another buffer. This buffer may typically be the output from the grep(1) command or a
compiler (e.g. cc(1)) and needs to contain the file name and line number of the required location.

As long as the format of the buffer is consistent and there is a maximum of one location per line, the
next−line feature can be successfully configured.

The first argument, "buffer−name", gives the name the aforementioned buffer, this is "*grep*" for the
grep(3) command etc. There is no limit on the number of next−line formats, nor on the number of
add−next−line strings which are given. While there is no real need to initialize each new type, it is
advised that the first add−next−line is called with a numerical argument of zero, e.g.:

0 add−next−line "*grep*"
add−next−line "*grep*" "....."

This tells MicroEmacs to reinitialize the type by freeing off any strings currently stored, note that the
"string" argument is not used in this case. Resetting the next−line type safe guards against duplicate
strings being added to it, a common problem if MicroEmacs is reinitialized.

Following is a typical output from grep:

foo.c: 45: printf("hello world\n") ;
foo.c: 46: printf("hello again\n") ;

If we replace the file name with "%f" and the line number with "%l", this becomes:

%f: %l: printf("hello world\n") ;

get−next−line works on a left to right basis, as soon as it has enough information from the line it does
not need to continue. Therefore the previous example can be reduced to just "%f: %l:". This is the
string argument that should be given for the above example, i.e.:

add−next−line "*grep*" "%f: %l:"

MicroEmacs '02

add−next−line(2) 1129

get−next−line takes the given string and replaces the "%f" with $file−template(5) and the "%l" with
the $line−template(5) and then uses the resultant string as a regular expression search string to find
the next location. Crudely these could be set to "foo.c" and "45" respectively to find the first
example, but this would fail to find any other. As a result the templates are usually magic search
strings which will match any file and line number.

Similarly, following is an example output of the gcc(1) compiler:

basic.c:522: warning: `jj' might be used uninitialized in this command
display.c:833: warning: implicit declaration of function `ScreenPutChar'

In this case the add−next−line given needs to be:

add−next−line "*compile*" "%f:%l:"

If a −ve numerical argument is given to add−next−line the given 'next−line' is ignored, this can be
useful when some warnings are to be ignored. For example a common warning from gcc is given
when a variable might be used uninitialized, given as follows:

bind.c:578: warning: `ssc' might be used uninitialized in this function

These warnings can be ignored using the following:

−1 add−next−line "*compile*" ...
 ... "%f:%l: warning: `.*' might be used uninitialized in this function"

Some versions of grep(1) give the file name first and then the lines on the following lines. This is not
a major problem as get−next−line remembers the last file name. The only problem occurs when
skipping some parts of the list at which point the last file name parsed may not be the current file.
Following is an example output of such a grep and the setup required:

File foo.c:
Line 45: printf("hello world\n") ;
Line 46: printf("hello again\n") ;

The configuration to locate the lines is defined as:

0 add−next−line "*grep*"
add−next−line "*grep*" "File %f:"
add−next−line "*grep*" "Line %l:"

NOTES

The reinitialize command format of this command changed in January 2001, the format changed
from:

add−next−line "*grep*" ""

SEE ALSO

MicroEmacs '02

add−next−line(2) 1130

$file−template(5), $line−template(5), cc(1), compile(3), get−next−line(2), grep(1), grep(3).

MicroEmacs '02

add−next−line(2) 1131

add−spell−rule(2)

NAME

add−spell−rule − Add a new spelling rule to the dictionary

SYNOPSIS

n add−spell−rule ["rule−letter" "base−ending" "remove" "derive−ending"]

DESCRIPTION

add−spell−rule adds a new spelling rule to the speller. The rules effectively define the prefix and
suffix character replacements of words, which is given an alphabetical identifier used within the
speller , in conjunction with the language dictionary. The letter conventions are defined by the Free
Software Foundation GNU ispell(1) package.

add−spell−rule is used in the MicroEmacs '02 dictionary initialization files called <language>r.emf,
e.g. americar.erf, britishr.erf supplied in the MicroEmacs macros directory.

The command takes a single numeric argument n to control the addition of a rule to the speller, as
follows:−

0 add−spell−rule

Removes all existing rules and re−initializes. This is, by convention, explicitly called before
instantiating a new set of rules.

−1 add−spell−rule "rule−letter" "base−ending" "" "deriv−ending"

−2 add−spell−rule "rule−letter" "base−ending" "" "deriv−ending"

Adds a prefix rule, an argument of −1 indicates that this prefix rule cannot be used with a suffix rule.
An argument of −2 indicates it can be matched with any suffix rule which can be used with a prefix
rule (e.g. argument of 2).

"rule−letter" is any character in the range A−z except '_', all rules of the given letter must be
a prefix rule of the same type (i.e. same argument). The start of a base word must match the
given "base−ending" regular expression string for the rule to be applied, the "remove" string
must be empty for a prefix and the "deriv−ending" is the prefix string. Example, for the
American language;−

−2 add−spell−rule "I" "" "" "in" ; As in disposed > indisposed

A prefix rule of type 'I' can be applied to any base word which has rule 'I' enabled, and it

MicroEmacs '02

add−spell−rule(2) 1132

prefixes "in" to the word.

1 add−spell−rule "rule−letter" "base−ending" "remove" "deriv−ending"

2 add−spell−rule "rule−letter" "base−ending" "remove" "deriv−ending"

Add suffix rules. An argument of 1 indicates that this prefix rule cannot be used with a prefix rule. An
argument of 2 indicates it can be matched with any prefix rule which can be used with a suffix rule
(i.e. argument of −2).

"rule−letter" is any character in the range A−z, all rules of the given letter must be a suffix
rule of the same type (i.e. same argument). The end of a base word must match the given
"base−ending" regular expression string for the rule to be applied, the "remove" string must
be a fixed string and the "deriv−ending" must also be a fixed string which is appended to the
base−word after "remove" has been removed. Example, for the American language;−

2 add−spell−rule "N" "e" "e" "ion" ; As in create > creation
2 add−spell−rule "N" "y" "y" "ication" ; As in multiply > multiplication
2 add−spell−rule "N" "[^ey]" "" "en" ; As in fall > fallen

A suffix rule of type 'N' can be applied to any base word which has rule 'N' enabled, and it can
be used with prefixes, e.g. with rule;−

−2 add−spell−rule "A" "" "" "re" ; As in enter > reenter

to derive "recreation" from "create". A rule which cannot be used with prefixes, i.e.:

1 add−spell−rule "V" "e" "e" "ive" ; As in create > creative
1 add−spell−rule "V" "[^e]" "" "ive" ; As in prevent > preventive

While some prefix words are legal, such as "recreative" but some are not, such as "collect"
where "recollect" is correct, so is "collective" but "recollective" is not.

SPECIAL RULES

Following are special forms of add−spell−rule used for tuning the spell support, note that an argument
can not be given:−

add−spell−rule "−" "<y|n>"

Enables and disables the acceptance of hyphens joining correct words. By default the phrase
"out−of−date" would be accepted in American even though the phrase does not exist in
the American dictionary. This is because the three words making up the phrase are correct
and by default hyphens joining words are allowed. Some Latin language such as Spanish do
not use this concept so this feature can be disable.

add−spell−rule "#" "score"

MicroEmacs '02

add−spell−rule(2) 1133

Sets the maximum allowed error score when creating a spelling guess list. When comparing a
dictionary word with the user supplied word, spell checks for differences, each difference or
error is scored in the range of 20 to 27 points, once the maximum allowed score has been
exceeded the word is ignored. The default guess error score is 60, allowing for 2 errors.

add−spell−rule "*" "regex"

Adds a correct word in the form of a regex if a word being spell checked is completely
matched by the regex the word is deemed to be correct. For example, the following rule can
be used to make the spell−checker allow all hex numbers:

add−spell−rule "*" "0[xX][[:xdigit:]]+"

This will completely match the words "0x0", "0xff" etc but not "0x00z" as the whole word is not
matched, only the first 4 letters.

NOTES

The format of the dictionary is a list of base words with each word having a list of rules which can be
applied to that word. Therefore the list of words and the rules used for them are linked e.g.

aback
abaft
abandon/DGRS
abandonment/S
abase/DGRS
abasement/S
abash/DGS
abashed/U
abate/DGRS

where the "/..." is the valid list of rules for that word.

The '_' character is used to separate different rule lists for a single word.

The format of the dictionary word list and the rule list is compatible with ispell(1).

SEE ALSO

add−dictionary(2), spell(2) spell−buffer(3), spell−word(3), ispell(1).

MicroEmacs '02

add−spell−rule(2) 1134

alarm(3)

NAME

alarm − Set an alarm

SYNOPSIS

alarm "message" "hours" "minutes"

DESCRIPTION

alarm creates an alarm for the user which will print the given "message" in the given number of
"hours" and "minutes" time from the moment of creation.

The message is printed on the screen using osd(2).

NOTES

alarm is a macro defined in misc.emf.

SEE ALSO

osd(2).

MicroEmacs '02

alarm(3) 1135

append−buffer(2)

NAME

append−buffer − Write contents of buffer to end of named file

SYNOPSIS

n append−buffer "file−name"

DESCRIPTION

append−buffer is used to write the contents of the current buffer into an EXISTING file. Use
save−buffer(2) if the buffer is to over−write the existing file already associated with the buffer. Use
write−buffer(2) if the buffer is to be written out to a new file, or to replace an existing file.

append−buffer writes the contents of the current buffer to the named file file−name. But unlike
write−buffer(2) the action of the write does not change the attributes associated with the file (if it
exists), it also does not effect the stats of the current buffer.

On writing the file, append−buffer ignores the time(2m) and backup(2m) mode settings. The current
buffer will not be time stamped and a backup will not be created for "file−name". If the buffer
contains a narrow(2m) it will automatically be removed before saving so that the whole buffer is
saved and restored when saving is complete

The argument n is a bit based flag, where:−

0x01

Enables validity checks (default). These include a check that the given file already exist, if not
confirmation of writing is requested from the user. Without this flag the command will always
succeed wherever possible. If "file−name" does not exist the buffer is written out in a similar fashion
to using the command write−buffer(2).

0x02

Disables the expansion of any narrows (see narrow−buffer(2)) before appending the buffer.

0x04

Truncate the existing file before writing out the contents of the buffer. This means that the file will
consist solely of the contents of the buffer, but it will still have the file attributes of the original file.

If n is not specified then the default argument of 1 is used.

MicroEmacs '02

append−buffer(2) 1136

EXAMPLE

The following example appends the current buffer onto the end of a file, creating the file if it does not
exists

append−buffer "things_to_do.txt"

The following example truncates the users email file while maintaining the file attributes. This is
taken from vm(3) where it is used to remove the current mail from the system mail box.

find−buffer "*vm−empty−buffer"
−1 buffer−mode "ctrlz"
5 append−buffer %vm−mail−src
delete−buffer $buffer−bname

Note that the macro ensures that ctrlz(2m) mode is removed. If it was enabled then the file written
would not be empty.

SEE ALSO

write−buffer(2), save−buffer(2).

MicroEmacs '02

append−buffer(2) 1137

ascii−time(3)

NAME

ascii−time − Return the current time as a string

SYNOPSIS

ascii−time

DESCRIPTION

ascii−time returns the current time as a formatted string in #p9 which is equivalent to #l9 for the
calling macro. The format of the time string is:

"WWW MMM DD hh:mm:ss yyyy"

Where: WWW − Week day, Sun − Sat
MMM − Month, Jan − Dec
DD − Day, 1 − 31
hh − Hour, 00 − 23
mm − Minute, 00 − 59
ss − Second, 00 − 59
yyyy − Year, 1998...

EXAMPLE

The following is taken from etfinsrt.emf, it uses ascii−time in replacing "$ASCII_TIME$" with the
current.

0 define−macro etfinsrt
 .
 .
 ; Change the create date $ASCII_TIME$.
 beginning−of−buffer
 ; Get ASCII time in #l9
 ascii−time
 !force replace−string "\\$ASCII_TIME\\$" #l9
 .
 .
!emacro

NOTES

ascii−time is a macro defined in utils.emf.

MicroEmacs '02

ascii−time(3) 1138

SEE ALSO

$buffer−fhook(5), &find(4), ascii−time(3).

MicroEmacs '02

ascii−time(3) 1139

asm(9)

SYNOPSIS

asm, s − Assembler File

EXTENSIONS

.s − Platform specific assembler file.

.asm − Platform specific assembler file.

DESCRIPTION

The standard assembler file extensions .s and .asm are by default not bound to any hook functions as
they are platform specific. The user should define a default binding for the assembler file types as
appropriate to the current platform and assembler development. i.e. for the Windows environment the
x86(9) file type would be conditionally bound to the file e.g.

!if &seq $platform "win32"
 add−file−hook ".s .asm" fhook−asmx86
!endif

SEE ALSO

x86(9).
File Hooks, Supported File Types.

MicroEmacs '02

asm(9) 1140

asn.1(9)

SYNOPSIS

asn.1 − ASN.1 File

FILES

asn1.emf − asn.1 file hook definition
ans1.etf − Template file

EXTENSIONS

asn1 − ASN.1 files.

MAGIC STRINGS

−!− asn.1 −!−

Recognized by MicroEmacs only, defines the file to be a asn.1. DESCRIPTION

The asn1 file type template handles the hilighting of the asn.1 files.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

By default, TAB's are enabled as this is the syntactical feature of the file.

Hilighting

The hilighting emphasizes the keywords and comments within the asn.1. BUGS

None reported.

SEE ALSO

time(2m).

Supported File Types

MicroEmacs '02

asn.1(9) 1141

auto(2m)

NAME

auto − Automatic source file line type detection

SYNOPSIS

auto Mode

A − mode line letter.

DESCRIPTION

When this mode is enabled the line style of the source file, with respect to CR/LF/CTRL−Z
characters, are automatically detected and the file (if saved) is written out in the same style as it was
read in. This mode is designed to solve the problems of MS−DOS which utilize a '\r\n' with every
new line and a ctrl−Z as a file terminator, conversely UNIX utilizes only '\n' as a line terminator.

auto mode therefore allows files to be edited across file system types without corrupting the line style
of the native platform.

At load time, if auto detects CR/LF style line feeds then it enables the buffer mode crlf(2m), and if a
CTRL−Z is found at the end of the file then mode ctrlz(2m) is enabled. Otherwise these modes are
cleared.

At write time, if auto mode is enabled then the file is written out is a style determined by modes crlf
and ctrlz. For example, if crlf was enabled and ctrlz disabled then the file would be written out with
new lines as '\r\n' and with no ending ctrl−z.

If auto is not enabled then the file is written out in the style of the current platform, regardless of the
current settings on modes crlf and ctrlz.

SUMMARY

The operation on the modes may be summarized as follows:−

UNIX Systems

auto Enabled UNIX and MS−DOS files may be edited normally, edits are saved in the
format read by the system.

♦

auto Disabled UNIX files may be edited normally, files saved as UNIX files. MS−DOS files
show a ^M character at the end of each line (editing is not advised if the purity of the

♦

MicroEmacs '02

auto(2m) 1142

MS−DOS is to be maintained), any edits are written back as displayed on the screen.

MS−DOS Systems

auto Enabled UNIX and MS−DOS files may be edited normally, edits are saved in the
format read by the system.

♦

auto Disabled on reading all files are read and editing may be undertaken normally. On
writing, '\r's and a ctrl−Z are automatically added. The act of reading a UNIX file and
re−writing it translates it to an MS−DOS file.

♦

NOTES

This mode MUST be enabled globally when the file is loaded for the file style to be correctly
detected.

It is strongly advised that auto mode is permanently enabled.

Windows systems tend to use a '\r\n' style line feed but with no trailing ctrl−z.

SEE ALSO

global−mode(2), buffer−mode(2), crlf(2m), ctrlz(2m), $buffer−fmod(5).

MicroEmacs '02

auto(2m) 1143

auto−spell(3)

NAME

auto−spell − Auto−spell support
auto−spell−buffer − Auto−spell whole buffer
auto−spell−reset − Auto−spell hilight reset
auto−spell−ignore − Auto−spell ignore current word

SYNOPSIS

n auto−spell
auto−spell−buffer
auto−spell−reset
n auto−spell−ignore

DESCRIPTION

auto−spell enables and disables the auto spell checking of the current buffer. Auto spell detects word
breaks as you type and checks the spelling of every completed word hilighting any erroneous words in
the error color scheme (usually red).

The argument n determines whether auto−spell is enabled or disabled, a +ve argument enables and a
−ve argument disables. If no argument or 0 is supplied the auto−spell state is toggled.

auto−spell−buffer checks all words within the current buffer for spell, hilighting any unknown or
miss−spelled words found.

auto−spell−reset resets the buffer hilighting scheme, removing any added erroneous words.

auto−spell−ignore gets the current word and deletes the erroneous hilighting and adds the word to the
current temporary ignore dictionary, auto−spell and the spelling−checker will now ignore the word. If
an argument n of 2 is given to the command the word is added to the users personal dictionary instead
of the temporary ignore dictionary so the word is 'ignored' in all future sessions of MicroEmacs as
well.

NOTES

auto−spell, auto−spell−buffer, auto−spell−reset and auto−spell−ignore are macros defined in
spellaut.emf.

SEE ALSO

MicroEmacs '02

auto−spell(3) 1144

user−setup(3), spell−buffer(3), spell(2).

MicroEmacs '02

auto−spell(3) 1145

autosv(2m)

NAME

autosv − Automatic file save

SYNOPSIS

autosv Mode

a − mode line letter.

DESCRIPTION

When this mode is enabled when the buffer is changed it will be automatically saved to a temporary
file $auto−time(5) later.

Automatic saving for a buffer will not occur if

The buffer name starts with a '*', this is considered a temporary system buffer.

$auto−time(5) is set to 0, this disables auto−saving for all buffers.

The buffer does not a file name from which to generate a temporary file name. When this
occurs the error message:

[Auto−writeout failure for buffer xxxxx]

MicroEmacs '02 can not write to the generated temporary file name. When this occurs the
error message:

[Auto−writeout failure for file xxxxx#]

On unlimited length file name systems (UNIX), the temporary file naming convention used for file
xxxxx:

xxxxx −> xxxxx#

On systems with an xxxxxxxx.yyy file name (DOS etc), the following file naming convention is
used:

xxxxxxxx −> xxxxxxxx.###
xxxxxxxx.y −> xxxxxxxx.y##
xxxxxxxx.yy −> xxxxxxxx.yy#
xxxxxxxx.yyy −> xxxxxxxx.yy#

MicroEmacs '02

autosv(2m) 1146

NOTES

This mode MUST be enabled globally when the file is loaded for the file style to be correctly
detected.

It is strongly advised that autosv mode is permanently enabled.

Auto−save files of URL files (i.e. "ftp://..." and "http://...") are written to the system's
temporary directory. This avoids potentially slow auto−saves. This can however lead to recovery
problems as the buffer name must be used to avoid auto−saving conflict with other buffers with the
same base file name but different paths.

SEE ALSO

$auto−time(5), backup(2m), find−file(2), ftp(3).

MicroEmacs '02

autosv(2m) 1147

awk(9)

SYNOPSIS

awk − AWK files

FILES

hkawk.emf − AWK hook definition
awk.etf − AWKL template file.

EXTENSIONS

.awk − AWK file

.gawk − GNU AWK file

.nawk − New AWK file

MAGIC STRINGS

#![\t]*/.*awk

MicroEmacs '02 recognises the magic string on the first line of the file used to locate the executable. The awk
files may be extensionless and are still recognised. DESCRIPTION

The awk file type template provides simple hilighting of AWK files, the template provides minimal
hilighting.

BUGS

None reported. Template could probably benifit from some form of auto indentation.

SEE ALSO

Supported File Types

MicroEmacs '02

awk(9) 1148

Bindings(2)

DEFAULT KEY BINDINGS

The default key bindings are presented below in four alphabetical lists, one for single key bindings
and one for each of the 4 bound prefixes (esc, C−x, C−h & C−c). See Key Names for a list of valid
key names.

Single−Key Sequences

backspace backward−delete−char Delete the previous character.
delete forward−delete−char Delete character under the cursor.
down forward−line Move to next line.
end end−of−buffer Move to the end of the buffer.
esc prefix 1 Meta character prefix.
f1 osd Open top main menu.
home beginning−of−buffer Move to the start of the buffer.
insert buffer−mode Toggle over−write mode.
left backward−char Move backward one character (left).
page−down scroll−down Move forward by one screen.
page−up scroll−up Move backward by one screen.
return newline Insert a new line.
right forward−char Move forward one character (right).
tab tab Insert a tab character.
up backward−line Move to previous line.

S−backspace backward−delete−char Delete the previous character.
S−delete forward−delete−char Delete character under the cursor.
S−tab backward−delete−tab Delete white space to previous tab−stop.

C−a beginning−of−line Move to beginning of line.
C−b backward−char Move backwards by one character
C−c prefix Control character prefix.
C−d forward−delete−char Delete character under the cursor.
C−e end−of−line Move to end of line.
C−f forward−char Move forward one character (right).
C−g abort−command Abort current command.
C−h prefix Control character prefix.
C−i insert−tab Insert tab character.
C−k kill−line Delete from cursor to the end of the line.
C−l recenter Redraw screen with current line in the center.
C−m newline Insert a new line.
C−n forward−line Move to next line (down).
C−o insert−newline Open up a blank line.
C−p backward−line Move to previous line (up).
C−q quote−char Insert literal character.

MicroEmacs '02

Bindings(2) 1149

C−r isearch−backward Start incremental search backwards.
C−s isearch−forward Start incremental search forwards.
C−t transpose−chars Transpose two letters.
C−u universal−argument Repeat the next command n times (default is 4).
C−v scroll−down Move forward by one screen.
C−w kill−region Delete a marked region.
C−x prefix Control character prefix.
C−y yank Restore what was copied or deleted.
C−z scroll−up Move backward by one screen.
C−_ undo Undo the previous edit.
C−down forward−line Move forward five lines.
C−left backward−word Move one word backward.
C−page−down scroll−next−window−down Scroll next window down a page.
C−page−up scroll−next−window−up Scroll the next window up a page.
C−right forward−word Move one word forward.
C−up backward−line Move backward 5 lines.

A−e file−browser Browse the file system.
A−r replace−all−string Replace string with new string in a list of files.
A−down scroll−down Scroll the current window down one line.
A−left scroll−left Scroll the current window left one character.
A−right scroll−right Scroll the current window right one character.
A−up scroll−up Scroll the current window up one line.

esc Prefix Sequences

esc ! pipe−shell−command Pipe a shell command to a buffer.
esc $ spell−word Spell a word.
esc . set−mark Set the start of a region.
esc / execute−file Execute script lines from a file.
esc < beginning−of−buffer Move to the start of the buffer.
esc > end−of−buffer Move to the end of the buffer.
esc ? help Help − high level introduction to MicroEmacs.
esc @ pipe−shell−command Pipe a shell command to a buffer.
esc [backward−paragraph Goto the beginning of the paragraph.
esc \ ipipe−shell−command Incrementally pipe a shell command to a buffer.
esc] forward−paragraph Move forward one paragraph
esc ^ delete−indentation Join 2 lines deleting white spaces.
esc b backward−word Move one word backwards
esc c capitalize−word Capitalize first letter of a word
esc d forward−kill−word Delete word the cursor is on.
esc e set−encryption−key Reset the encryption key.
esc f forward−word Move one word forward.
esc g goto−line Goto a line.
esc i tab Insert a tab character.
esc k global−bind−key Bind a key to a command or macro.
esc l lower−case−word Lowercase word.
esc m global−mode Toggle a global mode.

MicroEmacs '02

Bindings(2) 1150

esc n forward−paragraph Move forward one paragraph
esc o fill−paragraph Reformat (fill) current paragraph.
esc p backward−paragraph Goto the beginning of the paragraph.
esc q ifill−paragraph Reformat (fill) current paragraph.
esc r replace−string Search and replace text (no query).
esc t find−tag Find a tag.
esc u upper−case−word Uppercase word.
esc v scroll−down Move to the previous screen.
esc w copy−region Copy region to the kill buffer.
esc x execute−named−command Execute the named command.
esc y reyank Kill current yank data and restore previous kill buffer data.
esc z quick−exit Save all buffers and exit.

esc ~ buffer−mode Remove edited status from current buffer.
esc backspace backward−kill−word Delete the word under the cursor.
esc esc expand−abbrev Expand an abbreviation.
esc space set−mark Set the start of a region.

esc C−c count−words Count words in a region.
esc C−f goto−matching−fence Reposition the cursor at an opposing bracket.
esc C−g abort−command Abort current command.
esc C−i tab Insert tab character.
esc C−k global−unbind−key Unbind a key from a command or macro
esc C−n change−buffer−name Rename current buffer.
esc C−r query−replace−string Search and replace with query.
esc C−v scroll−next−window−down Scroll next window down a page.
esc C−w kill−paragraph Delete current paragraph.
esc C−z scroll−next−window−up Scroll the next window up a page.

esc A−r query−replace−all−string Query replace string in a list of files.

C−x Prefix Sequences

C−x # filter−buffer Filter the buffer through a shell filter.
C−x (start−kbd−macro Start recording a keyboard macro.
C−x) end−kbd−macro Stop recording a keyboard macro.
C−x / isearch−forward Start incremental search forwards.
C−x 0 delete−window Delete the current window.
C−x 1 delete−other−windows Delete other windows.
C−x 2 split−window−vertically Split the current window into two.
C−x 3 next−window−find−buffer Find a buffer into the next window, split if necessary.
C−x 4 next−window−find−file Load a file into the next window, split if necessary.
C−x 5 split−window−horizontally Split the current window horizontally into two.
C−x 9 find−bfile Find and load a file for binary editing.
C−x < scroll−left Scroll the window left by one screen width.
C−x = buffer−info Show cursor position information
C−x > scroll−right Scroll the window right by one screen width.
C−x ? describe−key Describe binding of command to key.

MicroEmacs '02

Bindings(2) 1151

C−x @ pipe−shell−command Pipe a shell command to buffer.
C−x [scroll−up Move backward by one screen.
C−x] scroll−down Move forward by one screen.
C−x ^ grow−window−vertically Enlarge the current window by a line.
C−x ` get−next−line Find the next command line.
C−x a goto−alpha−mark Move the cursor to an alphabetic mark.
C−x b find−buffer Switch window to a buffer.
C−x c shell Start a new command processor.
C−x e execute−kbd−macro Execute a macro.
C−x h hunt−forward Continue search in forward direction.
C−x k delete−buffer Delete buffer.
C−x m buffer−mode Toggle a local buffer mode.
C−x n change−file−name Rename current buffer file name.
C−x o next−window Move to the next window.
C−x p previous−window Move to the previous window.
C−x q kbd−macro−query Query keyboard macro.
C−x r search−backward Search in a reverse direction.
C−x s search−forward Search in a forward direction.
C−x u undo Undo the previous edit.
C−x v set−variable Assign a new value to a variable.
C−x w resize−window−vertically Resize the window.
C−x x next−buffer Switch to the next buffer.
C−x z grow−window−vertically Enlarge the current window.
C−x { shrink−window−horizontally Shrink current window horizontally.
C−x } grow−window−horizontally Enlarge current window horizontally.

C−x C−a set−alpha−mark Mark the current position with an alphabetic mark.
C−x C−b list−buffers Display buffer list.
C−x C−c save−buffer−exit−emacs Exit MicroEmacs '02.
C−x C−d change−directory Change the current working directory.
C−x C−e execute−kbd−macro Execute a macro.
C−x C−f find−file Find a file and load into buffer.
C−x C−g abort−command Abort current command.
C−x C−h hunt−backward Resume search in backwards direction.
C−x C−i insert−file Insert file into the current buffer.
C−x C−l lower−case−region Lowercase region.
C−x C−n scroll−down Scroll the current window down one line.
C−x C−o delete−blank−lines Delete blank lines about the cursor.
C−x C−p scroll−up Scroll the current window up one line.
C−x C−q rcs−file Interact with RCS to check in/out a file.
C−x C−r read−file Read a file from disk.
C−x C−s save−buffer Save current file to disk.
C−x C−t transpose−lines Swap adjacent lines.
C−x C−u upper−case−region Uppercase region.
C−x C−v view−file Read a file for viewing (read only).
C−x C−w write−buffer Write a file to disk witn new name.
C−x C−x exchange−point−and−mark Exchange cursor with mark position.
C−x C−y insert−file−name Insert filename into current buffer.
C−x C−z shrink−window−vertically Reduce size of current window.

MicroEmacs '02

Bindings(2) 1152

C−h Prefix Sequences

C−h a command−apropos List commands involving a concept.
C−h b describe−bindings Show current command/key binding.
C−h c list−commands List available commands.
C−h d describe−variable Describe current setting of a variable.
C−h k describe−key Describe keyboard binding.
C−h v list−variables List defined variables.

C−h C−c help−command Display command help information.
C−h C−i help−item Display item help information.
C−h C−v help−variable Display variable help information.

MicroEmacs '02

Bindings(2) 1153

Variables(4)

NAME

Variables − Macro variables

SYNOPSIS

#tn
$variableName
%variableName
.variableName
.commandName.variableName
:variableName
:bufferName:variableName

DESCRIPTION

Variables are part of MicroEmacs macro language and may be used wherever an argument is
required. The variable space comprises:−

− Register Variable
$ − System Variable
% − Global Variable
. − Command Variable
: − Buffer Variable

All variables hold string information, the interpretation of the string (numeric, string or boolean) is
determined when the variable is used within the context of the command. There are five types of
variable, Register Variables (prefixed with a hash #), System Variables (prefixed with a dollar $),
Global Variables (prefixed with a percentage %), Buffer Variables (prefixed with a colon :) and
Command Variables (prefixed with a period .).

Register Variables

Register Variables provide a set of 10 prefixed global (#g0 .. #g9), parent (#p0 .. #p9) and local (#l0 ..
#l9) register variables. The interpreted decode time of the register variables is significantly smaller
than other variable types as no name space search is performed.

Register variables are assigned using set−variable(2), their value may be queried with
describe−variable(2), unlike Global Buffer or Command variables they cannot be deleted.

Register variables are implemented like a stack, where the global registers are the top of the stack and
every executing macro gets its own set of resister variables (#l?). The macro also has access to the

MicroEmacs '02

Variables(4) 1154

global registers (#g?) and its calling, or parent macro (#p?). If the macro has no parent macro then the
global registers are also the parent registers. Outside macros, i.e. using set−variable manually, the
global parent and local registers are the same.

Register variables are typically used for retaining short term state, computation steps etc. As with the
User Variables, the global register variables are global and care must be taken with nested macro
invocations to ensure that the register usage does not conflict.

System Variables

MicroEmacs defines many System variables which are used to configure many aspects of the editors
environment. The functionality of each system variable has been documented, they can be set and
described but cannot be unset. If the user attempts to set or describe a non−existent MicroEmacs
system variable (e.g. $PATH) the system environment is used instead, allowing the user to query and
alter the system environment.

Global, Command and Buffer Variables

The Global variables are denoted by an initial % character followed by the name of the variable
variableName. The variableName may be any ASCII character string up to 127 characters in length,
all characters of the name are significant. Shorter names are preferred as this speeds up execution.
Global Variables exist in a global context which all macros have access to.

Command variables exist within the scope of a command, they are denoted by the period (.) character.
They can be accessed by one of two forms, either .variableName or .commandName.variableName.
The first form, without the command name, assumes the scope to be the current command, as such
may only be used to access internal variables. The second form qualifies the scope by specifying the
command, this form is much more versatile and may be used to access any command variable from
any other command, e.g.

define−macro foo
 set−variable .foo "Hello world"
 1000 ml−write &cat "foo1: " .foo
 1000 ml−write &cat "foo2: " .foo.foo
!emacro
define−macro bar
 foo
 1000 ml−write &cat "bar1: " .foo
 1000 ml−write &cat "bar2: " .foo.foo
!emacro

bar

When bar is executed the following messages may be observed:−

foo1: Hello World
foo2: Hello World
bar1: ERROR
bar2: Hello World

MicroEmacs '02

Variables(4) 1155

When a macro file or buffer is executed, they are executed within their own scope so local scope
command variables (form 1) may be created and used in that scope. Any such variables created are
automatically deleted at the end of execution. For example, the default color scheme generator macro
file, schemed.emf, creates command variables for the created colors to aid readability:−

add−color &set .green 3 0 200 0
a0dd−color &set .lgreen 11 0 255 0

...

add−color−scheme .scheme.cardback .lgreen .green .lgreen ...

The variables only exist as a file or buffer is being executed, they are not accessible by another
command once the command or buffer execution has finished.

Buffer variables are similar to Command variable in function and behaviour except that their scope is
of a buffer and are denoted by the colon (:) character. Access can be in one of two forms, either
:variableName where the scope is assumed to be the current buffer or :bufferName:variableName,
where the scope is explicitly given allowing access to any buffer variable, e.g.

find−buffer "foo"
set−variable :foo "Hello world"
find−buffer "bar"
set−variable :bar "Hello world"
1000 ml−write &cat ":foo " :foo
1000 ml−write &cat ":foo:foo " :foo:foo
1000 ml−write &cat ":bar " :bar
1000 ml−write &cat ":bar:bar " :bar:bar

When the above is executed the following messages may be observed:−

:foo ERROR
:foo:foo Hello World
:bar Hello World
:bar:bar Hello World

Global, Buffer and Command variables are automatically defined when they are used. A variable is
assigned with set−variable(2) and may be subsequently deleted with unset−variable(2). The current
assignment of a variable may be queried from the command line using describe−variable(2). e.g.

define−macro foo
!emacro
set−variable %foo "Some string"
set−variable :bar "Some string"
set−variable .foo.bar "Some string"

...

ml−write &spr "%s %s %s" %foo :bar .foo.bar

...

unset−variable :bar
unset−variable %foo
unset−variable .foo.bar

MicroEmacs '02

Variables(4) 1156

An undefined variable returns the string ERROR, this known state is used to advantage with the
hilighting initialization, e.g.

!if &sequal .hilight.c "ERROR"
 set−variable .hilight.c &pinc .hilight.next 1
!endif
;
; Hi−light C Mode
;
0 hilight .hilight.c 2 50 $global−scheme

In this case the variable .hilight.c is explicitly tested for definition, if it is undefined then it is assigned
a new value.

Conventionally, names are separated with a minus sign character (−) e.g. foo−bar. It is strongly
advised that the name space is kept reasonably clean, since there are no restrictions on the number of
macros that may be defined, problems will arise if different macros use the same variables in different
contexts. Where possible, Command or Buffer Variables are preferable to Global Variables since they
have no side effects on other macros or buffers. It is advised that all variable names associated with a
particular macro set are prefixed with short identifier to make the variable name space unique. e.g. the
Metris macro prefixes all variables with :met−; the draw macro uses :dw−, the patience macro
:pat− etc.

Macro writers should endeavor to use the minimal number of variables, obviously the more variables
that exist in the system, the greater the lookup time to find a variable. Use Register Variables in
preference to Command, Global or Buffer variables for intimidate computation steps, temporary state
etc.

Note that Buffer Variables are automatically deleted when the buffer is deleted.

EXAMPLE

The following example is the macro to convert tabs to spaces, it is shown in two forms, with User
Variables and with Register Variables, the register variable implementation is obviously preferable
since no new variables have been defined.

User Variable Implementation

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 set−variable %curline $window−line ; Remember line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 3 drop−history
 set−variable %curcol $window−acol
 backward−delete−char
 &sub %curcol $window−acol insert−space

MicroEmacs '02

Variables(4) 1157

 !force search−forward "\t"
 !done
 3 drop−history
 goto−line %curline
 update−screen
 ml−write "Converted tabs!"
!emacro

Register Variable Implementation

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 ; Remember line
 set−variable #l0 $window−line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 set−variable #l1 $window−acol
 backward−delete−char
 &sub #l1 $window−acol insert−space
 !force search−forward "\t"
 !done
 goto−line #l0
 screen−update
 ml−write "[Converted tabs]"
!emacro

SEE ALSO

@wc(4), define−macro(2), describe−variable(2), set−variable(2), unset−variable(2).

MicroEmacs '02

Variables(4) 1158

Build(2)

BUILD

MicroEmacs '02 may be compiled from the source files using the command shell build scripts build
(UNIX Bourne Shell) or build.bat (DOS/Windows). A default compile sequence may be achieved
with a simple:

build

from the command line. The build script attempts to detect the host system and available compiler and
build the editor.

The build script recognizes the following options:−

−C

Build clean. Delete all of the object files.

−d

Build a debugging version, the output is med (or med32 for 32−bit Windows versions).

−h

Display a simple help page

−l logfile

Redirect all compilation output to the logfile, this may not work on DOS or Windows systems.

−la logfile

Append all compilation output to the end of logfile, this may not work on DOS or Windows systems.

−m makefile

Build using the specified makefile. over−riding the auto system detect. The supplied
makefiles include:−

aix43.mak IBM AIX 4.3 native⋅
cygwin.gmk Cygwin using GNU tools under Windows.⋅
dosdj1.mak Microsoft DOS build using djgpp version 1.⋅
dosdj2.mak Microsoft DOS build using djgpp version 2.⋅
freebsd.gmk Free BSD using GNU tools.⋅
hpux9.gmk HP−UX 9.x using GNU tools.⋅
hpux9.mak HP−UX 9.x native⋅
hpux10.gmk HP−UX 10.x using GNU tools.⋅

MicroEmacs '02

Build(2) 1159

hpux10.mak HP−UX 10.x native⋅
hpux11.gmk HP−UX 11.x using GNU tools.⋅
hpux11.mak HP−UX 11.x native⋅
irix5.gmk Silicon Graphics IRIX 5.x using GNU tools⋅
irix5.mak Silicon Graphics IRIX 5.x native⋅
irix6.gmk Silicon Graphics IRIX 6.x using GNU tools⋅
irix6.mak Silicon Graphics IRIX 6.x native⋅
linux2.gmk Linux 2.x using GNU tools⋅
openstep.mak Openstep 4.2 on NeXTstep (BSD 4.3).⋅
sunos55.gmak Sun Solaris 5.5 using GNU tools⋅
sunos55.mak Sun Solaris 5.5 native⋅
sunos56.gmak Sun Solaris 5.6 using GNU tools⋅
sunos56.mak Sun Solaris 5.6 native⋅
sunosx86.gmk Sun Solarais 2.6 (Intel) using GNU tools.⋅
win32bc.mak Borland C, 32−bit Windows version.⋅
win32b55.mak Borland C 5.5, 32−bit Windows version (Free compiler).⋅
win32sv2.mak Microsoft Developer v2.x, Win32s (for Win 3.xx)⋅
win32sv4.mak Microsoft Developer v4.2, Win32s (for Win 3.xx)⋅
win32v2.mak Microsoft Developer v2.x, 32−bit Windows.⋅
win32v5.mak Microsoft Developer v5.x, 32−bit Windows.⋅
win32v6.mak Microsoft Developer v6.x, 32−bit Windows.⋅

−ne

Build NanoEmacs (a cut down version aimed as a vi replacement), the output is ne (or ned32 for
32−bit Windows versions).

−S

Build spotless. Deletes all of the object files and any backup files, tag files etc.

−t type

Set the build type, where type can be one of the following:

c Build a console only version (i.e. no window support), the output is mec
(or mec32 on Windows).

⋅

w Build a windows only version (i.e. no console support), the output is mew
(or mew32 on Windows).

⋅

cw Build a version which supports both console and windows, the output is
mecw (or mecw32 on Windows).

⋅

−u

Build a URL version (Windows '95/'98/NT only), constructs the executable meu32.exe. Makefiles

The supplied makefiles are provided in two forms:−

MicroEmacs '02

Build(2) 1160

.gmk − GNU make, using gcc.♦

.mak − Native make, consistent with the compiler and platform.♦

The makefiles are supplied with the following targets:−

all − Default build.♦
clean − Removes intermediate files.♦
spotless − Removes intermediate files and any backup files.♦
med − Builds a debugging version.♦
men − Builds console version (Windows only).♦
men − Builds a URL version (Windows only).♦
menu − Builds console and URL version (Windows only).♦

NOTES

Other UNIX ports should be fairly easy from the base set of ported platforms. If any new platform
ports are performed by individuals then please submit the makefiles and any source changes back to
JASSPA − see Contact Information.

MicroEmacs '02

Build(2) 1161

backup(2m)

NAME

backup − Automatic file backup of last edit

SYNOPSIS

backup Mode

B − mode line letter.

DESCRIPTION

backup mode, when enabled, performs an automatic backup of the last edit when a save file operation
is performed. The backup file name is derived from the base file name and is written into the same
directory as the source file, the backup file name can be obtained from the variable
$buffer−backup(5).

On unlimited file name length systems the naming convention used depends on bit 0x400 of variable
$system(5), if this bit is set then the system simulates a DOS style 8.3 file naming convention. If this
bit is clear then variable $kept−versions(5) can be used to create multiple backup files.

Where an existing backup file already exists, then the old backup file is removed and replaced by the
newer backup file. The naming convention for backup files is defined as follows:−

On unlimited length file name systems (UNIX and some Windows systems) with a single
backup file, the following file naming conventions are used for file xxxxx:

xxxxx −> xxxxx~

On unlimited length file name systems with multiple backup files, the following file naming
conventions are used for file xxxxx:

xxxxx −> xxxxx.~?~

Where ? is the backup number, the most recent backup file is always ".~0~".

On systems with an xxxxxxxx.yyy file name (MS−DOS etc), the following file naming
conventions are used:

xxxxxxxx −> xxxxxxxx.~~~
xxxxxxxx.yyy −> xxxxxxxx.yy~
xxxxxxxx.yyyy −> xxxxxxxx.yyy~

MicroEmacs '02

backup(2m) 1162

The environment variables $MEBACKUPPATH(5) and $MEBACKUPSUB(5) can be used to modify
this behaviour.

NOTES

backup is enabled by default.

Reference should also be made to undo(2) which allows previous edits to be removed. Also see
$auto−time(5) and autosv(2m) which allows a timed backup of a running edit to be periodically
performed.

The user is warned to be extra careful if files ending in '~' or '#'s are used, it is advisable to disable
backup creation (see global−mode(2)) and auto−saving ($auto−time = 0). The author denies all
responsibility (yet again) for any loss of data! Please be careful.

SEE ALSO

$buffer−backup(5). $system(5), $kept−versions(5), $MEBACKUPPATH(5), $MEBACKUPSUB(5),
buffer−mode(2), global−mode(2), undo(2m), autosv(2m), $auto−time(5).

MicroEmacs '02

backup(2m) 1163

forward−char(2)

NAME

forward−char − Move the cursor right backward−char − Move the cursor left

SYNOPSIS

n forward−char (C−f)
n backward−char (C−b)

DESCRIPTION

backward−char moves the cursor n characters to the left. Move to the end of the previous line if the
cursor was at the beginning of the current line.

forward−char moves the cursor n characters to the right. Move to the beginning of the next line if the
cursor was already at the end of the current line.

NOTES

backward−char is also bound to left.
forward−char is also bound to right.

SEE ALSO

forward−line(2), backward−line(2).

MicroEmacs '02

forward−char(2) 1164

forward−delete−char(2)

NAME

forward−delete−char − Delete next character at the cursor position
backward−delete−char − Delete previous character at the cursor position

SYNOPSIS

n forward−delete−char (C−d)
n backward−delete−char (backspace)

DESCRIPTION

forward−delete−char deletes the next n characters from the current cursor position. If the cursor is at
the end of a line, the next line is joined on the end of the current line. If an argument is given or
letter(2m) mode is enabled then the character is added to the kill buffer, otherwise the kill buffer is
unaltered.

backward−delete−char deletes the next n characters immediately to the left of the cursor (e.g. more
conventionally backspace). If the cursor is at the beginning of a line, this will join the current line on
the end of the previous one. If an argument is given or letter mode is enabled then the character is
added to the kill buffer, otherwise the kill buffer is unaltered.

NOTES

forward−delete−char is also bound to delete and S−delete.

backward−delete−char is also bound to S−backspace.

SEE ALSO

backward−kill−word(2), forward−kill−word(2), letter(2m).

MicroEmacs '02

forward−delete−char(2) 1165

backward−delete−tab(2)

NAME

backward−delete−tab − Delete white space to previous tab−stop

SYNOPSIS

backward−delete−tab (S−tab)

DESCRIPTION

backward−delete−tab deletes all white characters left of the cursor back to the previous tab stop or
non−white space, the deleted text is not added to the kill buffer.

SEE ALSO

tab(2), $tabsize(5), $tabwidth(5).

MicroEmacs '02

backward−delete−tab(2) 1166

forward−kill−word(2)

NAME

forward−kill−word − Delete next word at the cursor position
backward−kill−word − Delete previous word at the cursor position

SYNOPSIS

n forward−kill−word (esc d)
n backward−kill−word (esc backspace)

DESCRIPTION

forward−kill−word deletes the next n words starting at the current cursor position, the deleted text is
added to the kill buffer. See forward−word(2) for a description of word boundaries. If the argument n
is 0 the command has no effect. If a −ve argument is specified, +n words are deleted and the text is
not added to the kill buffer.

backward−kill−word deletes the previous n words before the cursor, the deleted text is added to the
kill buffer. The numeric argument has the same effect as with forward−kill−word.

NOTES

backward−kill−word is also bound to esc backspace.

The −ve argument is typically used from macro scripts where the kill buffer is more precisely
controlled.

SEE ALSO

backward−delete−char(2), forward−delete−char(2), forward−word(2), yank(2).

MicroEmacs '02

forward−kill−word(2) 1167

forward−line(2)

NAME

forward−line − Move the cursor to the next line
backward−line − Move the cursor to the previous line

SYNOPSIS

n forward−line (C−n)
n backward−line (C−p)

DESCRIPTION

forward−line moves the cursor down n lines, default 1. If the line is not on the current screen then
display the next page and move to the line.

backward−line moves the cursor up n lines, if the line is not on the current screen then display the
previous page and move to the line.

For both invocations a negative value reverses the sense of movement as expected.

SEE ALSO

backward−word(2), forward−word(2), scroll−down(2), scroll−up(2).

MicroEmacs '02

forward−line(2) 1168

forward−paragraph(2)

NAME

forward−paragraph − Move the cursor to the next paragraph
backward−paragraph − Move the cursor to the previous paragraph

SYNOPSIS

n forward−paragraph (esc n)
n backward−paragraph (esc p)

DESCRIPTION

forward−paragraph puts the cursor at the end of the nth paragraph after the cursor, default is 1.

backward−paragraph puts the cursor at the beginning of the nth paragraph before the cursor, default
is 1.

DIAGNOSTICS

The following errors can be generated, in each case the command returns a FALSE status:

[end of buffer]

When moving forwards, the given argument n was greater that the number of remaining paragraphs,
the cursor is left at the end of the buffer.

[top of buffer]

When moving backwards, the given argument n was greater than the number of paragraphs before the cursor,
the cursor is left at the beginning of the buffer. NOTES

For both invocations a negative value reverses the sense of movement as expected.♦
A paragraph break is defined as a blank line.♦

SEE ALSO

backward−line(2), forward−line(2), scroll−down(2), scroll−up(2).

MicroEmacs '02

forward−paragraph(2) 1169

forward−word(2)

NAME

forward−word − Move the cursor to the next word
backward−word − Move the cursor to the previous word

SYNOPSIS

n forward−word (esc f)
n backward−word (esc b)

DESCRIPTION

forward−word places the cursor at the end of the nth word from the current position; the default is 1.

backward−word places the cursor at the beginning of the nth previous word, default 1.

NOTES

Words are distinguished by non−alphanumeric characters and need not be white space such as spaces
and tabs.

A character is considered to be part of a word if it is in the $buffer−mask(5) character set. The default
setting for $buffer−mask is "luh" which gives a word character set of the alphanumeric characters,
i.e. 0−9, A−Z, a−z, this may be changed by setting the $buffer−mask variable. The character sets
(including 4 user character sets 1−4) may be altered by using the command set−char−mask(2).

SEE ALSO

backward−line(2), backward−paragraph(2), forward−line(2), forward−paragraph(2), Locale Support,
$buffer−mask(5), set−char−mask(2).

MicroEmacs '02

forward−word(2) 1170

vb(9)

SYNOPSIS

bas, cls − Visual Basic file

FILES

hkvb.emf − Visual Basic macro file.

EXTENSIONS

.bas, .cls

MAGIC STRINGS

−!− msvb −!−

DESCRIPTION

The Visual Basic template performs the hilighting of Visual Basic files. The file type is recognised by
the standard extension, or by the inclusion of the magic string.

Hilighting

The hilighting features allows components of the language to be differentiated and rendered in
different colors.

Auto Layout

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3) and
restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the whole buffer,
respectively. The default indentation setting is 2. SEE ALSO

Supported File Types

MicroEmacs '02

vb(9) 1171

bat(9)

SYNOPSIS

bat, btm − MS−DOS batch files

FILES

hkdos.emf − MS−DOS hook definition

EXTENSIONS

.bat − MS−DOS Batch file

.btm − 4−DOS Batch file

MAGIC STRINGS

−!− msdos −!−

Recognized by MicroEmacs only. Denotes a MS−DOS batch file. DESCRIPTION

The dos file type templates provide simple hilighting of a MS−DOS batch file. The template provides
minimal hilighting support of both standard and 4−DOS batch files.

The Magic String may be used within the config.sys file to force hilighting of the MS−DOS
configuration file.

BUGS

None reported.

SEE ALSO

ini(9).

Supported File Types

MicroEmacs '02

bat(9) 1172

beginning−of−buffer(2)

NAME

beginning−of−buffer − Move to beginning of buffer/file end−of−buffer − Move to beginning/end of
buffer/file

SYNOPSIS

beginning−of−buffer (esc <)
end−of−buffer (esc >)

DESCRIPTION

beginning−of−buffer places the cursor at the beginning of the buffer/file.

end−of−buffer places the cursor at the end of the buffer/file.

NOTES

beginning−of−buffer is typically bound to home.
end−of−buffer is typically bound to end.

SEE ALSO

beginning−of−line(2), end−of−line(2).

MicroEmacs '02

beginning−of−buffer(2) 1173

beginning−of−line(2)

NAME

beginning−of−line − Move to beginning of line
end−of−line − Move to end of line

SYNOPSIS

beginning−of−line (C−a)
end−of−line (C−e)

DESCRIPTION

beginning−of−line places the cursor at the beginning of the line.

end−of−line places the cursor at the end of the line.

SEE ALSO

beginning−of−buffer(2), end−of−buffer(2).

MicroEmacs '02

beginning−of−line(2) 1174

benchmrk(3f)

NAME

benchmrk − Benchmark MicroEmacs macro processor speed

SYNOPSIS

me "@benchmrk"

DESCRIPTION

The start−up file benchmrk.emf may be invoked from the command line to time the macro
processor variable manipulation times.

This macro suite was developed to optimize the macro processor performance, and allows comparable
analysis of various macro variable manipulations. The macro is not important in it's own right and is
not likely to be useful. Running it will provide an in−site into the speed of the macro language and
should indicate to the user what are good and bad things to be doing.

As an aside, as MicroEmacs interprets the macro code the it is important that the processing operates
at a reasonable speed. Most extensions offering additional functionality are likely to be added to
MicroEmacs by way of a macro implementation − this allows speedy development of new features.
Obviously core changes do occur when we find that we cannot support certain new requirements, or
when the macro code becomes too convoluted. In these cases, new commands are added to help us
solve the problem. However, recent evolution of the code has indicated that the core set is now
reasonably complete.

SEE ALSO

start−up(3).

MicroEmacs '02

benchmrk(3f) 1175

binary(2m)

NAME

binary − Binary editor mode

SYNOPSIS

binary Mode

b − mode line letter.

DESCRIPTION

binary mode is enabled when a file is edited in binary mode. The mode is automatically enabled
when a file is loaded as a binary file via find−bfile(3).

When a file is loaded using binary mode, every 16 bytes is converted into a line of text giving the hex
address of the current position in the file, the bytes as hexadecimal numbers and all printable
characters at the end of the line (all non−printable characters are displayed as a '.'). However, This
format makes it memory hungry in that every 16 bytes of the file requires a 78 character line
(approximately 5 times more memory!). For a more memory efficient binary mode see rbin(2m).

When writing out a file which has binary mode enabled the format of each line must have the binary
mode format which is as follows:

<address>: XX XX XX XX XX XX XX | <text−form>

Only the hex values (the XX's) between the starting ':' marker and the terminating '|' character are
used, the <address> and <text−form> are ignored.

EXAMPLE

Given a single line MSDOS file:−

Live long and prosper.

When loaded in using binary mode the following 2 line buffer will be produced:−

00000000: 4C 69 76 65 20 6C 6F 6E 67 20 61 6E 64 20 70 72 | Live long and pr
00000010: 6F 73 70 65 72 2E 0D 0A 1A | osper....

Note the "0D 0A 1A" at the end, this is due to MSDOS's "\n\r" carriage returns and ^Z file
termination, these characters are unprintable and are shown as '.' at the end of the line.

MicroEmacs '02

binary(2m) 1176

When saving a binary file, only the text between the ':' and '|' is considered and it may contain any
number of hexadecimal numbers. The given file could be made UNIX compatible by editing the
buffer to:−

00000000: 4C 69 76 65 20 6C 6F 6E 67 20 61 6E 64 20 70 72 | Live long and pr
00000010: 6F 73 70 65 72 2E 0D | osper....

If the word "long" is required to be removed, the following would not work:−

00000000: 4C 69 76 65 20 6C 6F 6E 67 20 61 6E 64 20 70 72 | Live and pr
00000010: 6F 73 70 65 72 2E 0D 0A 1A | osper....

The ASCII end letters are ignored, instead the following operation must be performed which removes
the characters from the binary representation:−

00000000: 4C 69 76 65 20 61 6E 64 20 70 72 | Live long and pr
00000010: 6F 73 70 65 72 2E 0D 0A 1A | osper....

One could be nasty by doing the following:−

00000000: 4C 69 76 65 20 73 68 6F 72 74 20 61 6E 64 20 |
00000010: 64 6F 6E 27 74 20 70 72 6F 73 70 65 72 2E 0D 0A 1A |

("Live short and don't prosper").

NOTES

rbin and binary modes are mutually exclusive, i.e. they cannot both be enabled at the same time.

SEE ALSO

find−bfile(3), find−file(2), rbin(2m).

MicroEmacs '02

binary(2m) 1177

bnf(9)

SYNOPSIS

bnf − Backus−Naur Form

FILES

hkbnf.emf − Backus−Naur Form hook definition

EXTENSIONS

.bnf − Backus−Naur Form file

DESCRIPTION

The bnf file type template provides simple hilighting of text presented in Backus−Naur Form. The
hilighting allows the components of the BNF to be differentiated quickly.

The syntactical tokens that are hilighted are:−

<[a−zA−Z].*>

Component language identifiers.

| { } ::=

Meta symbols of the BNF format. BUGS

None reported.

SEE ALSO

Supported File Types

MicroEmacs '02

bnf(9) 1178

global−abbrev−file(2)

NAME

global−abbrev−file, buffer−abbrev−file − Set abbreviation file(s).

SYNOPSIS

n global−abbrev−file "abbrev−file"
n buffer−abbrev−file "abbrev−file"

DESCRIPTION

The abbreviation files allow the user to define a set of short−cut expansion text, whereby a short
sequence of chararacters are associated with a longer text segment. When the short sequence is
entered, the user may elect to maually expand the sequnce with the associated replacement text.
Provision for cursor positioning may be made in the replacement text.

buffer−abbrev−file sets the current buffer's abbreviation file (limit of one abbreviation file per
buffer). buffer−abbrev−file does the minimal amount of work to increase speed at load−up. The first
use of expand−abbrev(2) attempts to load the abbreviation file at which point errors may be reported.

An argument n of zero, forces the buffer abbreviation file to be uncached, such that the next
abbreviation that is expanded forces a re−load of the abbreviation file. This is typically only used
when an abbreviation file is being constructed and tested.

global−abbrev−file assigns a global set of abbreviations accross ALL buffers, such that the
abbreviation is available regardless of the current buffer type. The global abbreviation file has a lower
presidence than the buffer−abbrev−file, hence the currently assigned buffer−abbrev−file is
searched before the global−abbrev−file.

Similarly for global−abbrev−file, an argument of zero forces the global abbreviation file to be
uncached and re−loaded on the next use.

An abbreviation is a string which is expanded to an alternate form, e.g.

e.g. −> for example

or

PI −> 3.1415926536
etc.

An abbreviation file is an ordinary text file with a strict format, it is loaded only once at the first call
to expand−abbrev(2), from then on it reminds buffered. An abbreviation file has an abbreviation per

MicroEmacs '02

global−abbrev−file(2) 1179

line, they cannot use multiple lines. This is not a draw back as the expansion string is executed using
execute−string(2) so any MicroEmacs '02 command may also be called.

For example the following expansion string inserts the string "!continue" and a newline:−

"!abort\r"

Note that '\r' is used instead of '\n' as C−m is bound to newline(2) and not C−j. The expansion
string can also make use of a few useful abbreviations:−

\p

Mark the current position (expanded to "C−x C−a P")

\P

Move cursor to the marked position (expanded to "C−x a P")

See help on execute−string(2) for more useful abbreviations.

EXAMPLE

The abbreviation must be on the left hand side followed by at least 1 space, the expansion string must
then be on the same line in quotes. So for the given examples, the abbreviation file would be:

|
|e.g. "for example"
|PI "3.1415926536"
|

The following abbreviation could be used for a C if−else statement.

|
|if "if(\p)\r{\r\r}\relse\r{\r\r}\r\P"
|

This is particularly useful for email address, e.g.

|
|JA "\"JASSPA\" <support@jasspa.com>"
|

The following example is MicroEmacs '02 C−Mode abbreviation file for constructing C files.
Remember \p is where the cursor is positioned following the expansion.

#i "#include <\p>\r\P"
#d "#define "
if "if(\p)\r{\r\r}\r\P"
ef "else if(\p)\r{\r\r}\r\P"
el "else\r{\r\p\r}\r\P"
wh "while(\p)\r{\r\r}\r\P"

MicroEmacs '02

global−abbrev−file(2) 1180

sw "switch(\p)\r{\rcase :\rdefault:\r}\r\P"

NOTES

Abbreviation files are given the extension .eaf in the MicroEmacs '02 home directory.

One of the easiest ways to create more complex abbreviations is to record a keyboard macro, name it
and then insert the resultant macro. See notes on commands start−kbd−macro(2),
name−kbd−macro(2) and insert−macro(2).

Try to avoid using named key, such as "up" and "return", as the keyboard macro equivalent is not
readable and is likely to change in future releases.

FILES

c.eaf − C−Mode abbreviation file. emf.eaf − Macro code abbreviation file.

SEE ALSO

execute−string(2), expand−abbrev(2), insert−macro(2), iso−accents−mode(3), name−kbd−macro(2),
start−kbd−macro(2), eaf(8).

MicroEmacs '02

global−abbrev−file(2) 1181

buffer−bind−key(2)

NAME

buffer−bind−key − Create local key binding for current buffer
buffer−unbind−key − Remove local key binding for current buffer

SYNOPSIS

n buffer−bind−key "command" "key"
n buffer−unbind−key "key"

DESCRIPTION

buffer−bind−key creates a key binding local to the current buffer, binding the command command to
the keyboard input key. This command is particularly useful in conjunction with file loading hooks
(see add−file−hook(2)) allowing local key bindings dependent upon the context of the buffer.

The message line input is not effected by the current buffers local bindings.

buffer−unbind−key unbinds a user created local key binding, this command effects only the current
buffer. If a −ve argument is given to buffer−unbind−key then all the current buffer's bindings are
removed.

NOTES

The prefix commands cannot be rebound with this command.

Key response time linearly increases with each local binding added.

SEE ALSO

global−bind−key(2), ml−bind−key(2), osd−bind−key(2), global−unbind−key(2).

MicroEmacs '02

buffer−bind−key(2) 1182

buffer−help(3)

NAME

buffer−help − Displays help page for current buffer

SYNOPSIS

buffer−help

DESCRIPTION

buffer−help opens a dialog giving the user a brief help page on tools available for the current buffer.
The help page changes depending on the type of the current buffer.

SEE ALSO

buffer−setup(3).

MicroEmacs '02

buffer−help(3) 1183

buffer−info(2)

NAME

buffer−info − Status information on current buffer position

SYNOPSIS

buffer−info (C−x =)

DESCRIPTION

buffer−info reports on the current and total lines and characters of the current buffer. It also gives the
hexadecimal code of the character currently under the cursor.

The output of the command is displayed on the message line e.g.

Line 1845/3955 Col 0.0 Char 78267/167172 (46%) Win Line 99/48 Col/0/0 char = 0xA

$result(5) is set to the same output string.

SEE ALSO

$result(5), $mode−line(5), about(2).

MicroEmacs '02

buffer−info(2) 1184

buffer−setup(3)

NAME

buffer−setup − Configures the current buffer settings

SYNOPSIS

buffer−setup

DESCRIPTION

buffer−setup provides a dialog interface to configuring the setup of the current buffer's file type
within MicroEmacs. user−setup may be invoked from the main help menu or directly from the
command line using execute−named−command(2).

The changes made to a configuration in buffer−setup are maintained in future MicroEmacs sessions
by storing them within the user's setup registry file, "<logname>.erf". Note that not all file types
may be supported by buffer−setup, if not the help menu item will not be available.

The contents of the dialog change, depending on the features the current buffer's file type supports.
These features are implemented and installed within the buffer's file hook. The following buttons are
always present at the bottom of the dialog:

Save

Saves the changes made to the configuration back to the users registry file, i.e. "<Log−Name>.erf"
but does not re−initialize the current buffer. No changes made will effect the current buffer unless the
Current button is pressed. Buffers of the same type created after the save may inherrit some of the
changes.

Current

Makes the current buffer reflect the changes made, dismissing the buffer−setup dialog. This also
performs the above 'Save' operation. Some changes such as dialog creation changes, will only take
effect when MicroEmacs is restarted.

Exit

Quits buffer−setup, if changes where not Saved or made Current they will be lost.

Following is a list of configurable features which may be available:

Create Help Page

MicroEmacs '02

buffer−setup(3) 1185

Enables/disables the creation of a help page dialog for the tools available for the current file type.

Create Tools Menu

Enables/disables the creation of a file type specific sub menu located within the main menu's Tools
sub−menu.

Use Author Mode

For file types which have an automatic formatter/viewer (currently only html) enabling this will
simply load the file enabling the source code to be viewed and edited. When disabled files of this type
will be automatically processed giving a more readable 'formatted' representation.

Insert New Template

When creating a new buffer/file of this type, a default template will be inserted if this is enabled.
When disabled the buffer will remain empty.

Fence Display

Enables or disables the displaying of matching fences for this file type. Note that the way in which the
matching fence is display is determined by the Fence Display option on the Platform page of
user−setup(3); the buffer−setup option is ignored if this option is set to "Never Display".

Setup Hilighting

Creates and enables the token hilighting for the current file type.

Setup Auto Indent

Enables automatic formating (indenting) for the current file type. The indentation rules are either the
built in 'C' indentation cmode(2m) or created using the indent(2) command. When enabled the
tab(2m) is still adhered to, but the indent(2m) mode is ignored; when disabled the indent mode can be
used.

Setup Auto Spell

Enables the setting up of auto−spell(3). When enabled the auto−spell key bindings are created and
auto−spell is enabled if enabled within the user−setup dialog.

Setup Folding

Enables the setting up of section folding, when enabled the folding key bindings are created.

Add Abbreviations

Adds the file type's abbreviation file to the buffer using buffer−abbrev−file(2)

Search Modes: Exact

MicroEmacs '02

buffer−setup(3) 1186

Enables/disables the exact(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Search Modes: Magic

Enables/disables the magic(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Buffer Modes: Auto

Enables/disables the auto(2m) mode.

Buffer Modes: Backup

Enables/disables the backup(2m) mode.

Buffer Modes: Indent

Enables/disables the indent(2m) mode.

Buffer Modes: Justify

Enables/disables the justify(2m) mode.

Buffer Modes: Tab

Enables/disables the tab(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Buffer Modes: Time

Enables/disables the time(2m) mode.

Buffer Modes: Undo

Enables/disables the undo(2m) mode over−riding the setting within the user−setup(3) dialog. If this
setting is changed the setting within user−setup will be ignored for the current file type.

Buffer Modes: Wrap

Enables/disables the wrap(2m) mode. NOTES

buffer−setup is a macro using osd(2), defined in buffstp.emf.

SEE ALSO

buffer−help(3), user−setup(3). File Hooks.

MicroEmacs '02

buffer−setup(3) 1187

Client−Server(2)

CLIENT−SERVER

This sections describes how MicroEmacs '02 may be interfaced to external components through the
Client−Server interface.

The Client−Server interface of MicroEmacs '02 provides a capability for other applications to inject
commands into a running version of the editor, which are interpreted and executed. The interface is
only available on multi−tasking operating systems such as UNIX and Microsoft Windows; it is not
available on MS−DOS systems.

Within the following discussions, the Server is a running version of the MicroEmacs '02 editor; the
client is the application (or shell script) that communicates a new command to the server.

The Client−Server interface may provide a bidirectional interface such that a client may submit a
command to the server and may also retrieve a response to that command.

DESCRIPTION

The Client−Server interface operates by making an external interface available which is continually
monitored by the server. The external interface may be provided by a file, named pipe or socket
(depending upon the platform) with a well know location in the file system. Typically two files are
provided, an input file into which the client writes commands ($TEMP/me$MENAME.cmd); and an
output file where responses to those commands my be read ($TEMP/me$MENAME.rsp).

Within MicroEmacs, the client server interface appears as a hidden ipipe−shell−command(2) buffer,
with the name *server*. Commands are received through this buffer and responses are written
back to the buffer.

Client Commands

Clients may write directly to the command through the use of explicit embedded code, or may use a
me(1) invocation with the −m option. Commands to the client interface take the form
"C:<client>:<command>".

<client>

<client> is an identification string that may be used to identify the client, this information may be
used when the command is handled to interpret the command if some special client specific action is
required.

<command>

The <command> is an editor command (or macro) of the given name with any arguments.

MicroEmacs '02

Client−Server(2) 1188

Standard command escape sequences must be adhered to. i.e. to write "Hello World" on
the message line then a client may issue the command:−

me −m "C:<client>:ml−write \"Hello world\"

The client−server interface is typically used to load a file, this may be performed as follows:−

me −m "C:<client>:find−file \"/path/foo.bar\""

The absolute path is specified in this type of transaction as the current working directory of
the active MicroEmacs session is unknown. The −m option de−iconize's the existing editor
session and bring it to the foreground.

Client Responses

Responses from client commands are written to the response file, responses take a similar form to
client commands except they are prefixed by an R, i.e. "R:<client>:<data>".

As multiple clients may be utilizing the client−server mechanism then the <client> sting passed in
the command is typically returned in the response to allow the client to identify it's own response
(rather than any other clients. It is the clients responsibility that this string is unique in order that it
may be differentiated.

The returned <data> format is undefined and would be generated by a macro command used to
handle the client command; sufficient to say that the data should exist on a single line.

Server Side

On the server side, the Client−Server interface is managed like an ipipe−shell−command(2) using
the hidden buffer *server* (as previously mentioned).

The Client−Server interface is enabled from the user−setup(3) interface, the user setting of the
interface is confirmed by checking bit 0x20000 of the $system(5) variable.

The client server interface is typically initialized within the me.emf initialization file, whereby the
ipipe input handler is bound to the client pipe buffer and the buffer is hidden, so it is not available
when the buffers are swapped. (Note that the client buffer may be explicitly interrogated using
find−buffer*server*). The client handler is installed as follows:−

; Setup the Client Server
!if &band $system 0x20000
 define−macro−file meserver server−input
 find−buffer "*server*"
 set−variable :last−line 2
 set−variable :client−list ":"
 set−variable $buffer−ipipe server−input
 beginning−of−buffer
 goto−alpha−mark "I"
 −1 find−buffer "*server*"

MicroEmacs '02

Client−Server(2) 1189

!endif

This binds a MicroEmacs macro called server−input to handle the client commands as they arrive on
the input, an alpha−mark is used to record the processed position at the end of the buffer. The pipe
handler itself decodes the client request and executes it. The default handler supplied with
MicroEmacs '02 is defined within the macro file meserver.emf

Responses to the client are inserted into the response file by writing directly into the ipipe buffer
(*server*) using the ipipe−write(2) command. It is the calling macros responsibility to ensure that
the response string adheres to the format outlined above in the previous sections.

NOTES

It is not possible to kill the *server* buffer, and ipipe−kill(2) is ignored within the context of the
buffer.

FILES

meserver.emf − Default Client−Server ipipe handler.
$TEMP/me$MENAME.cmd − Command file.
$TEMP/me$MENAME.rsp − Response file.

BUGS

The first MicroEmacs '02 session that executes becomes the editor server, additional editor sessions
that are executed do not become server processes. In the event that the server editor is terminated, any
other sessions do not take over the role of server. Subsequently issuing a client command may fail, or
invoke a new editor session which adopts the role of server.

SEE ALSO

me(1), ipipe−shell−command(2)

MicroEmacs '02

Client−Server(2) 1190

CompanyProfiles(2)

COMPANY PROFILES

This section describes how a company profile should be incorporated into MicroEmacs '02. A
company profile defines a set of extensions to MicroEmacs which encapsulate settings which are used
on a company wide basis. This type of configuration is typically used with a networked (shared)
installation. The company profile would typically include:−

Name of the company.♦
Standard header files including company copyright statements.♦
Standard file layouts♦
Company defined language extensions.♦

Location Of The Company Information

It is suggested that all of the company extensions applied to MicroEmacs '02 are performed in a
separate directory location which shadows the MicroEmacs standard macro file directory. This
enables the original files to be sourced if a user does not want to include the company files. This
method also allows MicroEmacs to be updated in the future, whilst retaining the company files. For
our example, we shall use a company called JASSPA, you should replace references to jasspa with
your own company name. The steps involved are laid out as follows:−

Create a new company directory

You may skip this step if you are going to modify the standard installation.

Create a new directory to hold the company information. i.e.

/usr/local/microemacs/jasspa − UNIX
c:\Program Files\JASSPA\MicroEmacs\jasspa − Microsoft

Modify the $MEPATH(5) of the (of all users) to include the company directory on the search
path i.e.

UNIX

Users edit their local $MEPATH or a base $MEPATH is added to the system .login
or .profile scripts.

MEPATH=/usr/local/microemacs
MEPATH=/usr/local/microemacs/jasspa:$MEPATH

Microsoft Windows Platforms

Edit the me32.ini file and modify the mepath entry to reflect the location of the

MicroEmacs '02

CompanyProfiles(2) 1191

company directory:−

mepath=C:\Prog....\Mic...\macros\jasspa;C:\Prog...\Mic...\macros

DOS Platforms

Edit the autoexec.bat file and modify MEPATH to include the company directory
location.

SET MEPATH=c:\me\jasspa;c:\me

Content Of The Company Information

Company macro file

The company file is typically called by the company name (i.e. jasspa.emf) create a new
company file. The file includes your company name and hook functions for any new file
types that have been defined for the company, an example company file for Jasspa might be
defined as:−

;;
;
; Author : Jasspa
; Created : Thu Jul 24 09:44:49 1997
; Last Modified : <190698.2225>
;
; Description Extensions for Jasspa
;
; Notes
;
; History
;
;;
; Define the name of the company.
set−variable %company−name "Jasspa"
; Add Jasspa specific file hooks
; Make−up foo file hook
add−file−hook ".foo" fhook−foo
1 add−file−hook "−!−[\t]*foobar.*−!−" fhook−foo ; −!− foobar −!−
; Override the make with localised build command
set−variable %compile−com "build"

The file contains company specific file hooks and the name of the company.

Other Company Files

Files defined on behalf of the company are included in the company directory. These would
include:−

Template header files etf(8).⋅
Hook file definitions (hkXXX.emf) for company specific files, see⋅

MicroEmacs '02

CompanyProfiles(2) 1192

add−file−hook(2).
Extensions to the standard hook definitions (myXXX.emf) for company
specific language extensions to the standard hook files. See File Hooks and
File Language Templates.

⋅

SEE ALSO

$MENAME(5), $MEPATH(5), File Hooks, File Language Templates, Installation, user−setup(3),
User Profiles.

MicroEmacs '02

CompanyProfiles(2) 1193

Compatibility(2)

COMPATIBILITY

JASSPA MicroEmacs is based on the original version of MicroEMACS produced by Danial
Lawrence at revision 3.8, the source files were obtained in approximately 1990. The exact origin of
the files is unknown. In that period of time the source files have undergone an awful lot of change,
without reference to the subsequent releases made of MicroEMACS by Danial Lawrence (due to no
network access). As a result the JASSPA version of MicroEmacs does not include any modifications
or features that may have been implemented since. This version of MicroEmacs has been tailored to
suite the requirements of a small group of individuals who have used the editor on a daily basis across
a limited number of platforms, for a variety of very different tasks and operating requirements.

This version of MicroEmacs is biased towards UNIX environments, MS−DOS and Microsoft
Windows ports have been performed however they are heavily influenced by UNIX and inherit UNIX
characteristics wherever possible. The intention is that programmers, and alike, may move across
platforms using a common editor environment without being frustrated by the idiosyncrasies of
different platforms. The most noticeable platform is the Microsoft Windows platform which mimics
the X−Windows cut and paste mechanism within the MicroEmacs environment. If you want a
Windows style environment then use Notepad(1) or Wordpad(1), this editor is not for you !!

The gross changes to MicroEmacs '02 are summarized as follows:−

Macro language interpreter re−written allowing an unlimited number of named macros to be
supported. The macro implementation allows new commands to be created by the user, as
opposed to continually extending the underlying command set. The named macros are
transparent to the user, appearing as built in commands on the command line. Macro
command set significantly increased. Support for global, buffer and register variables within
the macro language.

♦

Display drivers re−written providing color hilighting support on most platforms. A macro
interface allows information to be written directly to the display canvas allowing the screen to
be annotated with additional transient information.

♦

Support for X−Window screen type in UNIX environments. Microsoft Window's
environments (3.x, '95, NT) treated in the same was as X−Windows − this may be unorthodox
for existing Window's users, UNIX users will find it more comfortable.

♦

Introduction of integrated spell checker. Support includes correction word guessing, word
auto−correction and double word detection. Ignore and personal dictionaries supported.

♦

Horizontal window splitting.♦
Introduction of scroll bars on all platforms that support a mouse. The scroll bar
implementation is platform independent.

♦

Command and file completion available on all platforms. Most commands support a
command history allowing previous command invocations to be recalled.

♦

Session history file kept, allowing the previous edit session to be reinstated.♦
Undo capability, allows previous edits to be undone when mistakes are made.♦
Backup capability, Includes a periodic timed backup while an editing session is in progress.
The timed backup is automatically recovered by the next session in situations where the
system (or editor) crashes.

♦

MicroEmacs '02

Compatibility(2) 1194

A regular expression incremental search becomes the default search forward mechanism.♦
Support for abbreviation files allowing frequently used constructs to be automatically
expanded.

♦

Automatic time stamping of files, allowing the edit time to be automatically maintained in the
source file(s).

♦

Introduction of an electric 'C' mode. Editor intelligently handles the layout of 'C' files (under
user control).

♦

Improved documentation text mode providing left/right/center and both justification methods
with inclusion for bullet points. Automatic justification may be continually performed as text
is entered, thereby maintaining the paragraph in the correct format.

♦

Integrated on−line help facilities. All commands are documented on−line. New macros may
be documented within the macro files and become part of the help system.

♦

File type determination system, based on either the file name or embedded file text allows file
type specific macros (hooks) to be applied, thereby configuring the editor into the correct
mode for the file type.

♦

Introduction of special MicroEmacs search path allowing all of the standard configuration
files to be utilized from a shared directory.

♦

The name space of JASSPA MicroEmacs differs from the original MicroEMACS and has become
more compliant with the GNU implementation of Emacs. A list of the original MicroEMACS verses
the new command name set is as follows, executing the compatibility macro file meme3_8.emf will
create macro versions of these commands:

add−global−mode => global−mode
add−mode => buffer−mode
apropos => command−apropos
backward−character => backward−char
begin−macro => start−kbd−macro
beginning−of−file => beginning−of−buffer
bind−to−key => global−bind−key
buffer−position => buffer−info
case−region−lower => lower−case−region
case−region−upper => upper−case−region
case−word−capitalize => capitalize−word
case−word−lower => lower−case−word
case−word−upper => upper−case−word
change−screen−depth => change−frame−depth
change−screen−width => change−frame−width
clear−message−line => ml−clear
ctlx−prefix => prefix 2
delete−global−mode => global−mode
delete−mode => buffer−mode
delete−next−character => forward−delete−char
delete−next−word => forward−kill−word
delete−previous−character => backward−delete−char
delete−previous−word => backward−kill−word
end−macro => end−kbd−macro
end−of−file => end−of−buffer
execute−command−line => execute−line

MicroEmacs '02

Compatibility(2) 1195

execute−macro => execute−kbd−macro
execute−macro−# => Deleted
file−name−insert => insert−file−name
forward−character => forward−char
grow−window => grow−window−horizontally
handle−tab => tab
i−shell => shell
incremental−search => isearch−forward
kill−to−end−of−line => kill−line
meta−prefix => prefix 1
move−window−down => scroll−down
move−window−up => scroll−up
name−buffer => change−buffer−name
next−line => forward−line
next−page => scroll−down
next−paragraph => forward−paragraph
next−word => forward−word
open−line => insert−newline
pipe−command => pipe−shell−command
previous−line => backward−line
previous−page => scroll−up
previous−paragraph => backward−paragraph
previous−word => backward−word
quote−character => quote−char
redraw−display => recenter
restore−window => goto−position
reverse−incremental−search => isearch−backward
save−file => save−buffer
save−window => set−position
scroll−next−down => scroll−next−window−down
scroll−next−up => scroll−next−window−up
search−reverse => search−backward
select−buffer => find−buffer
set => set−variable
shrink−window => shrink−window−vertically
split−current−window => split−window−vertically
top−bottom−switch => Deleted
transpose−characters => transpose−chars
unbind−key => global−unbind−key
update−screen => screen−update
write−message => ml−write

MicroEmacs '02

Compatibility(2) 1196

c(9)

SYNOPSIS

C, C++ − C and C++ programming language templates

FILES

hkc.emf − C programming language hook definition
hkcpp.emf − C++ programming language hook definition

c.etf − C programming language template file
h.etf − C programming language header template file
cpp.etf − C++ programming language template file
hpp.etf − C++ programming language header template file

EXTENSIONS

.c, .h, .def − ANSI C

.cpp, .cc, .hpp, .rc .C (UNIX only) − C++ programming language

.l − LEX

.y − YACC

.i − C (or C++) pre−processed file (i.e. output from pre−processor).

.rc − Microsoft Developer resource file.

MAGIC STRINGS

−*− c −*−

Recognized by GNU and MicroEmacs. Denotes a 'C' programming type file, may be used in .c, .def
and .h files.

−*− c++ −*−

Recognized by GNU and MicroEmacs. Denotes a C++ programming type file, may be used in .c, .def and .h
files. DESCRIPTION

The C and C++ file type templates offer the most sophisticated editing features within the
MicroEmacs '02 environment.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default

MicroEmacs '02

c(9) 1197

enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, preprocessor definitions, comments,
strings and characters of the language to be differentiated and rendered in different colors.

Auto Layout

The C−Mode cmode(2m) performs automatic layout of the text, variables such as c−brace(5) allow
the brace position and text formation to be modified.

restyle−region(3) and restyle−buffer(3) are available to reformat (re−layout) selected sections
of the buffer, or the whole buffer, respectively.

Comments may be formatted using esc o, which reformats the comments according to the
current fill paragraph. If a comment commences with /***... then the comment is
automatically formatted to a box. If the comment commentces with /** then the comment is
assumed to be a Java Doc comment.

Tags

A C−tags file may be generated within the editor using the Tools −> C Tools −> Create Tag File.
find−tag(2) takes the user to the file using the tag information.

On invoking the tag generator then the user is presented with a dialog box which specifies the
generation option of the tags file. The base directory of the tags file search and tagging
options may be specified to locate all of the definitions within the code space.

The tags file is extremely useful where the user is dealing with inherited source code spread
over multiple directories. Generation of a recursive tag file with all searching options enabled
allows labels to be located extremely rapidly (certainly faster than IDE environments).

Folding and Information Hiding

Generic folding is enabled within the C and C++ files. The folds occur about braces {...} located on
the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds the current
region. Note that folding does not operate on K&R style code.

The Tools −> C Tools menu allows #define's to be evaluated within the buffer. Where the
state of a #if is established to be false (using the #define information) then the disabled
region of code is grayed out indicating which regions of the code are active.

Working Environment

compile(3) may be invoked to rebuild the source, the user is prompted to save any files.

rcs−file(2) is automatically invoked if an RCS file is detected, the normal check−in/out
operations may be performed through the editor.

MicroEmacs '02

c(9) 1198

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.
C−c C−e − Comment to the end of the line with stars (*).
A−C−i − Restyle the current region.
esc q − Format a comment.
esc o − Format a comment.
f2 − (un)fold the current region
f3 − (un)fold all regions

NOTES

If the default language is C++, rather than 'C' the order of the file hooks should be over−ridden in the
users local setup, using:−

add−file−hook ".c " fhook−c
add−file−hook ".cc .cpp .hpp .rc .h .def .l .y .i" fhook−cpp

This defaults all .h and .def files etc. to be C++ rather than C.

The hilighting is typically extended using a file myc.emf (or mycpp.emf) i.e. to include the usual
extended types of int32 etc, myc.emf might be defined as:−

hilight .hilight.c 1 "uint8" .scheme.type
hilight .hilight.c 1 "int8" .scheme.type
hilight .hilight.c 1 "uint16" .scheme.type
hilight .hilight.c 1 "int16" .scheme.type
hilight .hilight.c 1 "uint32" .scheme.type
hilight .hilight.c 1 "int32" .scheme.type
hilight .hilight.c 1 "float32" .scheme.type
hilight .hilight.c 1 "float64" .scheme.type

BUGS

The 'C' and 'C++' templates have been throughly used, there are no known issues with the templates.

The .rc hilighting is a little bogus and should not really be mapped onto .cpp. Do not attept to
re−style.

SEE ALSO

c−brace(5), cmode(2m), compile(3), ctags(3f), find−tag(2), fold−all(3), fold−current(3), rcs−file(2),
restyle−buffer(3), restyle−region(3), time(2m).

Supported File Types

MicroEmacs '02

c(9) 1199

c−hash−eval(3)

NAME

c−hash−eval − Evaluate C/C++ #defines
c−hash−del − Remove C/C++ #define evaluation
c−hash−set−define − Set a C/C++ #define
c−hash−unset−define − Unset a C/C++ #define

SYNOPSIS

n c−hash−eval
c−hash−del
c−hash−set−define "variable" "value"
c−hash−unset−define "variable"

DESCRIPTION

c−hash−eval evaluates C/C++ '#' lines, hiding sections of code which have been 'hashed' out.
c−hash−eval evaluates the following '#' lines:−

#define <variable>
#ifdef <variable>
#if ...
#else
#endif

For #defines c−hash−eval creates a user variable "%cd<variable>", setting it to the value
found. For #ifdef a simple check for the existence of variable "%cd<variable>" is made. If
defined then code between the #ifdef and either its matching #else or #endif is displayed and
code between the #else and #endif is hidden. If it is not defined then the reverse happens.

The state of #if's are evaluated using calc(3), the following code is then displayed as for #ifdef.

Code is hidden by setting the $line−scheme(5) to a color similar to the back−ground. If an argument
is given to the command the code is also narrowed out using narrow−buffer(2).

c−hash−del undoes the effect of c−hash−eval by restores hidden code.

c−hash−set−define and c−hash−unset−define can be used to manually set and unset #define
variables.

NOTES

MicroEmacs '02

c−hash−eval(3) 1200

c−hash−eval, c−hash−del, c−hash−set−define and c−hash−unset−define are macros defined in
cmacros.emf.

Executing c−hash−eval in a project header file (h file) which contains all used #define definitions
will set up all #define variables ready for the main C files.

SEE ALSO

calc(3), $line−scheme(5), narrow−buffer(2).

MicroEmacs '02

c−hash−eval(3) 1201

calc(3)

NAME

calc − Integer calculator

SYNOPSIS

n calc "string"

DESCRIPTION

calc can perform simple integer based calculations given by "string", where the "string" takes the
following form:−

"[b]<s>"

Where 'b' is an optional letter setting the required output base which can be one of the following:

b − Binary
o − Octal
d − Decimal
x − Hexadecimal

Default when omitted is 'd' (decimal). "s" is the sum to be calculated, which should be bodmas in
form. Following is a list of valid symbols.

(..) − Parentheses (contents calculated first)
! − Logical not
&& − Logical and
|| − Logical or
== − Logical equals
!= − Logical not equals
~ − Bitwise not
& − Bitwise and
| − Bitwise or
^ − Bitwise xor
/ − Divide
* − Multiply
% − Modulus
+ − Addition
− − Subtraction
0xNN − Hexadecimal number
0NN − Octal number
LR − Last calculation recall

MicroEmacs '02

calc(3) 1202

Any MicroEmacs variables can be used in the calculation. The result of the calculation is stored in
.calc.result(5). The argument n is a bitwise flag where:

0x01

Print out the result on the message−line.

0x02

Use string comparisons for == and != comparisons. This has the advantage of being able to calc "Foo"
== "Bar" etc.

When omitted the default argument is 1.

EXAMPLE

To calculate the number of hours in a year:

calc "365*24"

To then calculate the number of seconds in the year:

calc "LR*60*60"

NOTES

calc is a macro defined in calc.emf.

SEE ALSO

.calc.result(5).

MicroEmacs '02

calc(3) 1203

capitalize−word(2)

NAME

capitalize−word − Capitalize word
lower−case−word − Lowercase word (downcase)
upper−case−word − Uppercase word (upcase)
lower−case−region − Lowercase a region (downcase)
upper−case−region − Uppercase a region (upcase)

SYNOPSIS

n capitalize−word (esc c)
n lower−case−word (esc l)
n upper−case−word (esc u)

lower−case−region (C−x C−l)
upper−case−region (C−x C−u)

DESCRIPTION

capitalize−word capitalizes the next n words.

lower−case−word changes the next n words to lower case.

upper−case−word changes the next n words to upper case.

lower−case−region changes all alphabetic characters in the marked region to lower case (see
set−mark(2)).

upper−case−region changes all alphabetic characters in the marked region to upper case

SEE ALSO

set−mark(2).

MicroEmacs '02

capitalize−word(2) 1204

cbl(9)

SYNOPSIS

cbl − Cobol (85) files

FILES

hkcobol.emf − Cobol (85) hook definition
cobol.etf − Cobol (85) template file.

EXTENSIONS

.cbl − Cobol file

MAGIC STRINGS

−*− cobol −*−

Recognized by MicroEmacs and GNU Emacs, defines the file to be a cobol file. DESCRIPTION

The cbl file type templates provide simple hilighting of Cobol 85 files, the template provides minimal
hilighting the language syntax.

NOTES

No special language features are provided within the language syntax definition.

BUGS

The Fortran hilight file is in it's infancy and a number of it's tokens may be misplaced.

SEE ALSO

Supported File Types

MicroEmacs '02

cbl(9) 1205

change−buffer−name(2)

NAME

change−buffer−name − Change name of current buffer

SYNOPSIS

n change−buffer−name "buffer−name" (esc C−n)

DESCRIPTION

change−buffer−name changes the name of the current buffer to buffer−name. Buffer names must be
unique as they act as the identity handle. By default the buffer name is derived from the buffer's file
name excluding the path. This can lead to conflicts, when editing files with the same name and
different paths, in which case a counter is appended to the end of the buffer name to make the name
unique. For example:

File Name Buffer Name

/etc/file.c file.c
/tmp/file.c file.c<1>

By default, or an argument is given with bit 1 set, change−buffer−name will fail if a buffer with the
given name already exists. This behavior can be changed by giving an argument with the first bit
cleared, e.g. 0, in which case if a buffer with that name already exists then a counter as appended.

SEE ALSO

$buffer−fname(5), change−file−name(2). delete−buffer(2).

MicroEmacs '02

change−buffer−name(2) 1206

change−directory(2)

NAME

change−directory − Change the current working directory

SYNOPSIS

change−directory "dir−name" (C−x C−d)

DESCRIPTION

change−directory changes the current working directory to dir−name, on certain platforms
(MS−DOS) this can also change the current drive. This command is largely redundant as any shell
command automatically inherits the directory of the current buffer's file.

SEE ALSO

change−file−name(2).

MicroEmacs '02

change−directory(2) 1207

change−file−name(2)

NAME

change−file−name − Change the file name of the current buffer

SYNOPSIS

change−file−name "file−name" (C−x n)

DESCRIPTION

change−file−name changes the file name of the current buffer to file−name. A validity check is made
on the given file name and if found to be invalid (e.g. its a directory) the name is rejected.

SEE ALSO

change−buffer−name(2), change−directory(2), write−buffer(2).

MicroEmacs '02

change−file−name(2) 1208

change−font(2)

NAME

change−font − Change the screen font

SYNOPSIS

[X−Windows]
change−font "fontName"

[IBM−PC / MS−DOS]
change−font "mode−no" "spec"

[Microsoft Windows]
n change−font "name" charSet weight width height

DESCRIPTION

change−font is a platform specific command which allows the displayable font to be modified. The
selection of font is determined by the monitor resolution and the capabilities of the graphics adapter.

This command is available on all systems except termcap. While MS−DOS does not support the
concept of different fonts, it does (or at least the graphics card does) support the concept of changing
screen resolution, which has the effect of changing the font. Each platform takes different arguments
and are considered independently, as follows:

X−Windows

The X−Windows UNIX environments accept a single argument which is a fully qualified font name.
Simply give the font X name and the font will change if it is available. The window size changes to
attempt to retain the same number of rows and columns so ensure that when changing to a larger font
then there is enough room (or a way) to resize a window which is larger than the actual screen.

The X font string describes the attributes of the font in terms of it's size name etc. as follows:−

−foundry−family−weight−slant−width−−pixels−point−hres−vres−space−av−set

Where

foundry

The type of foundry that digitized and supplied the font.

MicroEmacs '02

change−font(2) 1209

family

Font Family.

weight

Modifies the appearance of the font, the weight is usually medium or bold.

slant

Determines the orientation of the font. slant is usually roman (upright), italic or oblique.

width

Describes the proportionate width of the font. Typical widths include normal, condensed, narrow,
double.

pixels

Pixel size of the font

point

The resolution of the font in tenths of a dpi (i.e. dpi*10)

hres

Horizontal resolution of the font in dpi.

vres

Vertical resolution of the font in dpi.

space

The spacing of the font. Typical spacing values include monospaced (i.e. fixed width), proportional
and character cell.

av

Mean width of all font characters, measured in tenths of a pixel.

set

Character set − character set standards e.g. iso8859−1.

The default font used by MicroEmacs '02 is

−*−fixed−medium−r−normal−−15−*−*−*−c−90−iso8859−1

MicroEmacs '02

change−font(2) 1210

A good font to try is:

change−font "−misc−fixed−medium−r−normal−−13−*−*−*−c−80−iso8859−1"

The font may also be changed in your .Xdefaults file by inserting the line:−

MicroEmacs.font "−misc−fixed−medium−r−normal−−13−*−*−*−c−80−iso8859−1"

IBM−PC / MS−DOS

MS−DOS may only change the screen resolution, the standard screen resolution is either 80 columns
by 25 rows or 80 by 50. A more advanced graphics card can typically support up to 132 by 60,
MicroEmacs in theory has no limit but it has only been tested up to this size.

The main problem with MS−DOS machines is that there is no standard and this is no exception. The
graphics mode needed to get a 132 by 60 screen (if available) varies from one card to the next so
MicroEmacs '02 needs to know the graphic mode number your card uses to get your required screen
resolution.

MicroEmacs '02 can also attempt a little bit of magic to double the number of rows on the screen for a
given screen resolution. This is how 50 lines are obtained from the standard 25 line mode 3. If the
value of "spec" is non−zero then this is attempted, to the authors knowledge this will either work or
not depending on the direction of the wind and no harm will befall the users equipment. However the
author also quickly disclaims anything and everything, the user uses this at their own peril, like
everything else.

MicroEmacs '02 attempts to determine the new screen width and depth itself, in case this fails the
commands change−frame−width(2) and change−frame−depth(2) may be used to correct the problem.

Following are the standard MS−DOS text modes:

change−font "2" "0" ; Simple monochrome or EGA monitor, 80 by 25.
change−font "3" "0" ; Simple EGA/VGA monitor, again 80 by 25.
change−font "3" "1" ; Simple EGA/VGA monitor using spec, 80 by 50.

Most Trident cards support the following text mode:

change−font "86" "0" ; Sweet 132 by 60

A Diamond Stealth supports the following mode:

change−font "85" "1" ; Nice 132 by 50

Cirrus video cards (1MB) seem to support:

change−font "84" "1" ; PT−526 (132x50)

Time to start digging out your graphics card manual!

MicroEmacs '02

change−font(2) 1211

Microsoft Windows

The Microsoft Windows environments utilize font files to drive the display. When change−font is
invoked with no arguments, or a −ve argument then a font dialog is presented to the user to allow the
font to be selected. The current font is not changed if a −ve argument is given, in both cases the
variable $result(5) is set the the user selected font. The format of the returned string is
"OWwwwwhhhhhFontName", where:−

O

The type of character set (0 for OEM and 1 for ANSI).

W

The font weight (0 − 9).

wwww

The font width.

hhhh

The font height.

FontName

The font name.

If a +ve argument is specified with change−font then the arguments are explicitly entered, arguments
are defined as follows:−

font

The name of the font − maximum of 32 characters. Select Fixed mono fonts only.
Proportional fonts may be specified but the cursor will not align with the characters on the
screen.

An empty name ("") may be specified resulting in the selection of the default system OEM
font. No other arguments are required when specified.

Note that Courier New is not actually a fixed mono font as might be expected.

charSet

The type of character set required, this is an integer value of:−

 0 − ANSI or Western (True Type etc)
161 − Greek

MicroEmacs '02

change−font(2) 1212

162 − Turkish
204 − Russian
255 − OEM (or bitmapped)

weight

The weight of the font. The values are defined as:−

0 − Don't care (Automatically selected).
1 − Thin
2 − Extra Light
3 − Light
4 − Normal
5 − Medium
6 − Semi−Bold
7 − Bold
8 − Extra−Bold
9 − Heavy

Note that you may request a weight and it is not honored. Typically 4 and 7 are honored by
most font definitions. 4 is typically used.

width

The width of the font. Specifies the average width, in logical units, of characters in the
requested font. If this value is zero, the font mapper chooses a "closest match" value. The
"closest match" value is determined by comparing the absolute values of the difference
between the current device's aspect ratio and the digitized aspect ratio of available fonts.

Note that if the width is specified as zero then the height should be specified and the width
will be automatically selected.

height

The height of the font. Specifies the desired height, in logical units, of the requested font's character
cell or character. (The character height value is the character cell height value minus the
internal−leading value.) If this value is greater than zero, the font mapper matches it against available
character cell height values; if this value is zero, the font mapper uses a default height value when it
searches for a match; if this value is less than zero, the font mapper matches it against available
character height values.

Note: as with the weight the width and height may not be honored if the font cannot support
the specified width/height in which case the closest matching height is automatically selected

Notes on the Standard Windows Configuration

For releases prior to '99, the Terminal font is the standard MS−DOS font used for the MS−DOS
window. This is an OEM fixed width character set which contains all of the conventional symbols

MicroEmacs '02

change−font(2) 1213

found in the DOS shell.

Releases of MicroEmacs post '99 may utilise any of the windows fonts, typically Courier New or
Lucida Console are used, these provide the best screen rendering of characters. Lucida
Console is slightly better with a smaller font size as this allows a '1' (one) and 'l' (lower case L) to
be distinguished.

The Terminal fonts are the same as shown in the DOS window the last 2 arguments are the width x
height, the terminal equivalents (Bit Mapped) are commented here.

7x12

Regular weight seems to offer the best resolution for 14/15" monitors.

6x8

Regular weight is more suitable for 17−21" monitors which offer better resolutions.

The best options for the fonts are defined as follows:−

;Standard Terminal Fonts − standard weight
;change−font "Terminal" 0 4 4 6
change−font "Terminal" 0 4 6 8
;change−font "Terminal" 0 4 8 8
;change−font "Terminal" 0 4 5 12
;change−font "Terminal" 0 4 7 12
;change−font "Terminal" 0 4 8 12
;change−font "Terminal" 0 4 12 16
;change−font "Terminal" 0 4 10 18

;Standard Terminal Fonts − heavy weight
;change−font "Terminal" 0 7 4 6
;change−font "Terminal" 0 7 6 8
;change−font "Terminal" 0 7 8 8
;change−font "Terminal" 0 7 5 12
;change−font "Terminal" 0 7 7 12
;change−font "Terminal" 0 7 8 12
;change−font "Terminal" 0 7 12 16
;change−font "Terminal" 0 7 10 18

The "Courier New" font is not actually a fixed mono font as might be expected.

SEE ALSO

change−frame−width(2), change−frame−depth(2), $result(5), user−setup(3).

MicroEmacs '02

change−font(2) 1214

change−frame−depth(2)

NAME

change−frame−depth − Change the number of lines on the current frame
change−frame−width − Change the number of columns on the current frame

SYNOPSIS

n change−frame−depth ["depth"]
n change−frame−width ["width"]

DESCRIPTION

change−frame−depth changes the depth of the current frame, if the numeric argument n is given
then the frame depth is changed by n lines. If n is not specified the user is prompted for the new depth
and the frame depth will be changed to this value. It is assumed that the screen can draw the requested
n lines and MicroEmacs draws the lines at the users peril.

A change in depth causes all of the internal windows currently displayed in the frame to be re−sized,
the vertical position of the windows are modified to match the new screen dimension, the horizontal
position of the windows remains unaltered. If the window is down−sized and the currently displayed
windows are not able to fit into the new screen space then all windows are deleted with the exception
of the current window.

change−frame−width changes the width of the current frame, if the numeric argument n is given
then the frame width is changed by n characters. If n is not specified the user is prompted for the new
width and the frame width will be changed to this value. It is assumed that the screen can draw the
requested n columns and MicroEmacs draws them at the users peril. The windows are reorganized as
change−frame−depth working horizontally rather than vertically.

NOTES

Within windowing environments such as X−Windows and Microsoft Windows these commands
cause the canvas window to be re−sized to accommodate the change in screen size.

In MS−DOS and UNIX Termcap environments the physical size of the screen is determined by the
characteristics of the display adapter. change−frame−depth may be used to correct anomalies
(usually on portables) in the displayable screen area and the graphics mode. e.g. In DOS the graphics
mode utilizes 50 lines, and only 47 lines are viewable. In this case change the screen depth to 47 and
MicroEmacs will not utilize the remaining lines which are not viewable.

SEE ALSO

MicroEmacs '02

change−frame−depth(2) 1215

$frame−depth(5), $frame−width(5).

MicroEmacs '02

change−frame−depth(2) 1216

change−window−depth(2)

NAME

change−window−depth − Change the depth of the current window
grow−window−vertically − Enlarge the current window (relative change)
shrink−window−vertically − Shrink the current window (relative change)
resize−window−vertically − Resize the current window (absolute change)

SYNOPSIS

n change−window−depth ["depth"]

n grow−window−vertically
n shrink−window−vertically
n resize−window−vertically

DESCRIPTION

change−window−depth changes the depth of the current window, if the numeric argument n is given
then the window depth is changed by n lines. If n is not specified the user is prompted for the new
depth and the window depth will be changed to this value. The command aborts if the requested size
cannot be achieved (the window becomes too small or a neighbouring one does).

NOTES

Commands grow−window−vertically, shrink−window−vertically and resize−window−vertically
were replaced by the new change−window−depth command in April 2002. Following are macro
implementations of the old commands:

define−macro grow−window−vertically
 @# change−window−depth
!emacro

define−macro shrink−window−vertically
 &neg @# change−window−depth
!emacro

define−macro resize−window−vertically
 !if ¬ @?
 !abort
 !endif
 change−window−depth @#
!emacro

SEE ALSO

MicroEmacs '02

change−window−depth(2) 1217

change−window−width(2), resize−all−windows(2), split−window−vertically(2).

MicroEmacs '02

change−window−depth(2) 1218

change−window−width(2)

NAME

change−window−width − Change the width of the current window
grow−window−horizontally − Enlarge current window horizontally (relative)
shrink−window−horizontally − Shrink current window horizontally (relative)
resize−window−horizontally − Resize current window horizontally (absolute)

SYNOPSIS

n change−window−width ["width"]

n grow−window−horizontally
n shrink−window−horizontally
n resize−window−horizontally

DESCRIPTION

change−window−width changes the width of the current window, if the numeric argument n is given
then the window width is changed by n characters. If n is not specified the user is prompted for the
new width and the window width will be changed to this value. The command aborts if the requested
size cannot be achieved (the window becomes too small or a neighbouring does).

EXAMPLE

Refer to mouse.emf for an example of window growth using the mouse to manipulate the size of
the windows.

NOTES

Commands grow−window−horizontally, shrink−window−horizontally and
resize−window−horizontally were replaced by the new change−window−width command in April
2002. Following are macro implementations of the old commands:

define−macro grow−window−horizontally
 @# change−window−width
!emacro

define−macro shrink−window−horizontally
 &neg @# change−window−width
!emacro

define−macro resize−window−horizontally
 !if ¬ @?

MicroEmacs '02

change−window−width(2) 1219

 !abort
 !endif
 change−window−width @#
!emacro

SEE ALSO

change−window−depth(2), resize−all−windows(2), split−window−horizontally(2).

MicroEmacs '02

change−window−width(2) 1220

charset−change(3)

NAME

charset−change − Convert buffer; between two character sets
charset−iso−to−user − Convert buffer; ISO standard to user character set
charset−user−to−iso − Convert buffer; user to ISO standard character set

SYNOPSIS

charset−change
charset−iso−to−user
charset−user−to−iso

DESCRIPTION

charset−change opens a dialog allowing the user to select a From and To character set. If the
Convert button is selected the current buffer is converted to the destination character set. The
command assumes that the current buffer is written in the From character set, no attempt is made to
verify this.

charset−iso−to−user converts the current buffer, assumed to be in ISO−8859−1 (Latin 1) font
format, to the current user's character set (defined by user−setup(3)). This process typically corrects
any foreign language display problems.

Conversely, charset−user−to−iso converts the current buffer from the user's character set to
ISO−8859−1 (Latin 1), this is typically used for the transfer of text files between different systems.

The current character set is configured using the user−setup(3) dialog (see Display Font Set). This in
turn uses the command set−char−mask(2) to create the low level character conversion tables.

NOTES

charset−change, charset−iso−to−user and charset−user−to−iso are macros defined in
langutl.emf.

SEE ALSO

user−setup(3), set−char−mask(2), Locale Support.

MicroEmacs '02

charset−change(3) 1221

check−line−length(3)

NAME

check−line−length − Check the length of text lines are valid

SYNOPSIS

check−line−length

DESCRIPTION

check−line−length checks that the length of each line of the current buffer, starting with the current
line, is less than or equal to fill−col(5). The command aborts if a line too long is found, leaving the
cursor on the offending line. If no invalid lines are found the command succeeds leaving the cursor at
the end of the buffer.

NOTES

check−line−length is a macro implemented in misc.emf.

SEE ALSO

$fill−col(5).

MicroEmacs '02

check−line−length(3) 1222

clean(3)

NAME

clean − Remove redundant white spaces from the current buffer

SYNOPSIS

n clean

DESCRIPTION

clean removes redundant white spaces from the current buffer, there are three types this command
remove:

1)

Any space or tab character at the end of the line. All are removed until the last character is not a space
or a tab, or the line is empty. Note that an empty line is not removed unless at the end of the buffer.

2)

Space characters are removed when the next character is a tab, making the space redundant, e.g. the
strings " Hello World" and " Hello World" will look identical because the tab character (' ')
will indent the text to the 8th column with or without the space so the space can be removed.

3)

Superfluous empty lines at the end of the buffer are removed, leaving only one empty line.

4)

If argument n is given (value is not used) multiple blank lines are reduced to a single blank line.
DIAGNOSTICS

[Command illegal in view mode]

Caused by a redundant white space being found and the buffer being in view mode. Note that if clean
completes while the buffer is in view mode then no superfluous white spaces where found. NOTES

clean is a macro defined in format.emf.

Most of this command's operation is performed by simple regex search and replace strings:

MicroEmacs '02

clean(3) 1223

a)

Search for: "[\t]+$" Replace with: "\\0"

b)

Search for: "[]+\t" Replace with: "\t"

c)

Search for: "\n\n\n" Replace with: "\n\n" SEE ALSO

replace−string(2), tab(2m), delete−blank−lines(2), tabs−to−spaces(3).

MicroEmacs '02

clean(3) 1224

cmode(2m)

NAME

cmode − C Programming language mode

SYNOPSIS

cmode Mode

C − mode line letter.

DESCRIPTION

cmode mode enters C programming language mode, providing automatic indentation and bracket
matching facilities.

New users might initially find 'C−mode' a little disconcerting as the tab key is bound to the
automatic formatting command, however the benefits of 'C−mode' far out weigh this. A lot of silly
programming mistakes may be corrected at source, which are reflected in the layout. An unexpected
automatic layout is a sure indication that the input syntax is incorrect − generally as a result of a
missing semi−colon or bracket/brace pair.

The layout of a C program in cmode is controlled by the C−mode variables. The use of tab characters
to create the required indentation is determined by the setting of the buffers tab(2m) mode. If disabled
tab characters are used wherever possible.

SEE ALSO

buffer−mode(2), global−mode(2), tab(2m), $c−brace(5), $c−case(5), $c−contcomm(5),
$c−continue(5), $c−margin(5), $c−statement(5).

MicroEmacs '02

cmode(2m) 1225

command−apropos(2)

NAME

command−apropos − List commands involving a concept

SYNOPSIS

command−apropos "string" (C−h a)

DESCRIPTION

command−apropos compiles a list of all commands with string in their name, also giving their
current key bindings.

EXAMPLE

To find all of the commands with "command" in their name space then issue the command "C−h a
command" which generates a list of commands such as:−

abort−command "C−g"
 "esc C−g"
 "C−x C−g"
command−apropos "C−h a"
command−complete
execute−named−command "esc x"
help−command "C−h C−c"
ipipe−shell−command "esc \\"
list−commands "C−h c"
pipe−shell−command "esc !"
 "esc @"
 "C−x @"
shell−command

SEE ALSO

describe−bindings(2).

MicroEmacs '02

command−apropos(2) 1226

command−wait(2)

NAME

command−wait − Conditional wait command

SYNOPSIS

n command−wait

DESCRIPTION

When a +ve argument n is given command−wait waits for n milliseconds before returning, this wait
cannot be interrupted. If a −ve argument is given, command−wait waits for −n milliseconds but the
command will return if the user interrupts with any input activity (i.e. presses a key).

When no argument is given command−wait loops getting and processing events (user input, screen
updates etc) until either the calling commands .wait command variable is undefined or set to false (0).
This more complex use of the command is used when a main macro must wait and process input until
an exit criteria has been met, the input is best processed by setting the $buffer−input(5) variable to a
second macro. The macro gdiff(3) uses this command in this way.

EXAMPLE

The following macro code will display a message on the screen for a fixed 5 seconds:

16 screen−poke 10 10 0 "Hello World!"
5000 command−wait

Similarly the following macro code will display a message for up to 5 seconds or till the user presses
a key:

16 screen−poke 10 10 0 "Hello World!"
−5000 command−wait

SEE ALSO

ml−write(2), $buffer−input(5).

MicroEmacs '02

command−wait(2) 1227

comment−line(3)

NAME

comment−line − Comment out the current line
uncomment−line − Uncomment current line

comment−to−end−of−line − Extend comment to end of line
comment−restyle − Reformat the current comment

comment−start − Start a new comment
comment−end − End the current comment

SYNOPSIS

n comment−line
n uncomment−line

comment−to−end−of−line
comment−restyle

comment−start
comment−end

DESCRIPTION

The action of the comment commands are file type specific (comments in C are /* ... to ...
*/ where as MicroEmacs macro file comments are ; ... to the end of line) so the
commands must be configured for each file type (see the NOTES section below). The configuration is
automatically performed by almost all the standard file hooks released with MicroEmacs by the file
hook so these commands should be fully functional.

comment−line comments out the current and next n−1 lines (default when n is omitted is to comment
out just the current line). The cursor is then moved to the start of the next line. uncomment−line
behaves differently depending on whether the file type terminates a comment with an end token or
simply by the end of the line. If an end token is used then uncomment−line removes the current and
next n comments. If the end of line is used uncomment−line removes the first comment on the
current and next n−1 lines.

comment−to−end−of−line inserts comment−pads (see NOTES) up−to the $fill−col(5) and then
terminates the comment with the comment−end string. comment−restyle reformats the text within
the comment, filling text lines to the $fill−col and regenerating any boxing and divide lines.

comment−start opens a new "*comment*" buffer which is configured for writing a text comment,
the user can then type in the comment with all the benefits of MicroEmacs in a plain text editor. Once

MicroEmacs '02

comment−line(3) 1228

the comment is complete use the comment−end command to insert the comment into the source file,
this comment is locally bounded to "C−c C−c". The styling of the comment is controlled by the
comment−flag setting (see NOTES).

NOTES

Consider the structure of a box comment to be as follows:

<comment−start><comment−pad><comment−pad><comment−pad><comment−box−right>
<comment−box−left> COMMENT TEXT ... COMMENT TEXT <comment−box−right>
<comment−box−left> COMMENT TEXT ... COMMENT TEXT <comment−box−right>
<comment−box−left><comment−pad><comment−pad><comment−pad><comment−end>

The comment commands are configured by the single file hook command variable
.fhook−<type>.comment where <type> is the file type label. The structure of the variable is a list
with the following format:

 |<comment−start>|<comment−end>|<comment−pad>|<comment−box−left>|...
 ...<comment−box−right>|<comment−flags>|

Where | is the list divide character. The <comment−flags> are a list of character flags which are
defined as follows:

b

Box format required, i.e. create right edge using <comment−box−right>.

f

Footer line required.

F

Fill footer line with <comment−pad> strings.

h

Header line required.

H

Fill header line with <comment−pad> strings.

j

Enable Justify mode in *comment* buffer. EXAMPLE

The following comment is the standard C setting:

MicroEmacs '02

comment−line(3) 1229

set−variable .fhook−c.comment "|/*|*/|*| * | * |f|"

This can be used to create comments of the form:

/* comment−line comments out the current and next n−1 lines (default
 * when n is omitted is to comment out just the current line). The
 * cursor is then moved to the start of the next line.
 *
 * uncomment−line behaves differently depending on whether the file
 * type terminates a comment with an end token or simply by the end
 * of the line.
 */

A box style comment can be generated by changing the <comment−flags> form f to bfFhH,
producing:

/***
 * comment−line comments out the current and next n−1 lines (default *
 * when n is omitted is to comment out just the current line). The *
 * cursor is then moved to the start of the next line. *
 * *
 * uncomment−line behaves differently depending on whether the file *
 * type terminates a comment with an end token or simply by the end *
 * of the line. *
 ***/

SEE ALSO

File Hooks.

MicroEmacs '02

comment−line(3) 1230

compare−windows(2)

NAME

compare−windows − Compare buffer windows, ignore whitespace.
compare−windows−exact − Compare buffer windows, with whitespace.

SYNOPSIS

n compare−windows
compare−windows−exact

DESCRIPTION

compare−windows compares the textural content of ALL the current windows from their current
cursor position. These commands are generally used to locate the next difference in the windows
displayed. Returns TRUE if the buffers of the windows do not differ from the current position to the
end of the file (inclusive), else returns FALSE setting the cursor of each buffer to the first point of
difference.

The default mode of operation ignores white−space, a numeric argument n of zero (0) then an exact
white−space match is performed.

compare−windows−exact is a macro short cut for 0 compare−windows, forcing a white space
comparison.

SEE ALSO

diff(3), diff−changes(3), gdiff(3).

MicroEmacs '02

compare−windows(2) 1231

compile(3)

NAME

compile − Start a compilation process

SYNOPSIS

n compile "compile−command"

DESCRIPTION

compile gets and executes the compile command using a pipe execution (incremental pipe on UNIX
platforms), loading the output into a buffer called "*compile*", with go to error parsing using the
command get−next−line(2). The default compile execution is set by variable %compile−com(5), the
error parsing is setup using the command add−next−line(2).

Before the compile command is executed save−some−buffers(2) is executed to allow the user to
ensure that all relevant buffers are saved. If an argument is given to compile then it is passed on to
this command, so if an argument of 0 is given, all buffers are automatically saved.

NOTES

compile is a macro defined in tools.emf.

SEE ALSO

add−next−line(2), %compile−com(5), get−next−line(2), save−some−buffers(2), grep(3).

MicroEmacs '02

compile(3) 1232

copy−region(2)

NAME

copy−region − Copy a region of the buffer

SYNOPSIS

copy−region (esc w)

DESCRIPTION

copy−region copies all the characters between the cursor and the mark set with the set−mark(2)
command into the kill buffer (so they can later be yanked elsewhere).

If the last command also entered text into the kill buffer (or the @cl(4) variable is set to one of these
commands) the copy−region text is appended to the last kill.

USAGE

To copy text from one place to another, using the copy−region command, the following operations
are performed:

Move to the beginning of the text you want to copy.♦
Set the mark there with the set−mark (esc−space) command.♦
Move the point (cursor) to the end of the text.♦
Use copy−region to copy the region you just defined. The text will be saved in the kill buffer.
(If you accidentally delete the text use yank (C−y) immediately or undo (C−x u) to restore
the text).

♦

Move the point to the place you want the text to appear.♦
Use the yank (C−y) command to copy the text from the kill buffer to the current point.♦

Repeat the last two steps to insert further copies of the same text.

NOTES

Windowing systems such as X−Windows and Microsoft Windows utilize a global windowing kill
buffer allowing data to be moved between windowing applications (cut buffer and clipboard,
respectively). Within these environments MicroEmacs '02 automatically interacts with the windowing
systems kill buffer, the last MicroEmacs '02 copy−region entry is immediately available for a paste
operation into another windowing application.

SEE ALSO

MicroEmacs '02

copy−region(2) 1233

exchange−point−and−mark(2), kill−region(2), set−mark(2), yank(2).

MicroEmacs '02

copy−region(2) 1234

count−words(2)

NAME

count−words − Count the number of words in a region

SYNOPSIS

count−words (esc C−c)

DESCRIPTION

count−words Counts the number of words between the set−mark(2) position and the current cursor
position. The command also gives statistics on the number of characters and the average characters
per word. The output appears on the message line in a format such as:−

54 Words, 345 Chars, 8 Lines

$result(5) is set to the same output string.

SEE ALSO

$result(5), buffer−info(2), set−mark(2).

MicroEmacs '02

count−words(2) 1235

create−callback(2)

NAME

create−callback − Create a timer callback

SYNOPSIS

n create−callback "command"

DESCRIPTION

create−callback creates a timer based callback command. The given command is called back in n
milliseconds time. This can be used by the user to monitor system events (such as incoming mail).
The command is called only once, but if the command creates a callback of itself a loop is created.

If a −ve argument n is given any pending callback for command is cancelled.

EXAMPLE

The following example creates a callback that is invoked every 10 minutes.

define−macro Example−callback
 ml−write "It was 10 minutes since you last saw me!"
 600000 create−callback Example−callback
!emacro
Example−callback

NOTES

A call−back cannot interrupt while MicroEmacs is active, instead the call−back is delayed until
MicroEmacs becomes inactive. MicroEmacs is considered to be inactive when it is waiting for user
input, this could be during the execution of another macro. If a command or macro requires no user
input then once execution has started, it cannot be interrupted by a call−back macro.

The resolution of the clock is platform dependent, some platforms limit the minimum timer period to
10 milliseconds.

MicroEmacs does not guarantee to service the callbacks within any set time constraints, the resultant
callback intervals may be of a slightly different duration than requested.

When a callback macro is executed, the key given by @cck(4) is "callback. If the current buffer
has a $buffer−input(5) command set, this command will be called instead of the callback command
with @cc and @cck set appropriately. It is the responsibility of the input macro to deal with the

MicroEmacs '02

create−callback(2) 1236

callback.

SEE ALSO

$auto−time(5), define−macro(2).

MicroEmacs '02

create−callback(2) 1237

create−frame(2)

NAME

create−frame − Create a new frame

SYNOPSIS

n create−frame

DESCRIPTION

create−frame creates a new frame for the current MicroEmacs session. MicroEmacs support the
creation of 'internal' multiple frames on all platforms and 'external' frames on windowing platforms
(such as Windows and XTerm). An external frame creates a new OS window so both the existing
frame and the new frame are visible, whereas an internal frame uses the same OS window or console
which means that the existing frame is hidden and the new frame takes its place.

The numeric argument n can be used to define which type of frame is to be created. If an argument of
1 is given (the default argument) an external frame will be created, whereas an internal frame will be
created if an argument of 0 is given.

NOTES

Internal frames can only be accessed via the next−frame(2) command, external frames can usually be
accessed via the OS as well.

MicroEmacs is not multi−threaded in that only one frame can be active at any one time (the
complexity of being able to run a command in one frame while editing in another would rapidly lead
it away from the 'Micro' status). This means that if a command is left active (such as a search) in one
frame and the focus is changed to another the input is 'sent' to the frame with the active command and
the message '[NOT FOCUS]' will appear in the message−line of the frame with the OS focus.

create−frame may be useful in macros that rely on a window layout, this is because they can
preserve the users current window layout by creating and new internal frame in which to run.

SEE ALSO

delete−frame(2), next−frame(2).

MicroEmacs '02

create−frame(2) 1238

crlf(2m)

NAME

crlf − File's line feed style

SYNOPSIS

crlf Mode

c − mode line letter.

DESCRIPTION

When enabled crlf indicates that a line feed should be written out in the MS−DOS style of '\r\n'.
When clear then a UNIX style of '\n' should be used.

NOTES

This mode only effects the style in which the buffer is written if auto(2m) mode is enabled.

SEE ALSO

auto(2m), ctrlz(2m), save−buffer(2), find−file(2), $buffer−fmod(5).

MicroEmacs '02

crlf(2m) 1239

crypt(2m)

NAME

crypt − Encrypted file mode

SYNOPSIS

crypt Mode

Y − mode line letter.

DESCRIPTION

crypt mode enables encrypted files to be loaded and saved for security purposes. The key can be set
at any time using the command set−encryption−key(2). Warning, take care if setting this as a global
mode, it can have side−effects.

The encryption algorithm is a Beaufort Cipher with a variant key. This is reasonably difficult to
decrypt. When you write out text, if crypt mode is active and there is no encryption key,
MicroEmacs '02 will ask:

Encryption String:

Type in a word or phrase of at least five and up to 128 characters for the encryption to use. If you look
at the file which is then written out, all the printable characters have been scrambled. To read such a
file later, use find−cfile(3) to load ciphertext files, you will be asked the encryption key before the file
is read.

SEE ALSO

buffer−mode(2), find−cfile(3), global−mode(2), set−encryption−key(2).

MicroEmacs '02

crypt(2m) 1240

sh(9)

SYNOPSIS

*sh − UNIX shell files

FILES

hkshell.emf − UNIX shell file hook definition

EXTENSIONS

.sh − Bourne shell file

.ksh − Korn shell file

.csh − C−Shell file

.zsh − Z−Shell file

.login − Shell user login file

.profile − Shell user profile

.tcshrc − T−Shell start up file

MAGIC STRINGS

#![\t]*/.*sh

MicroEmacs '02 recognizes the magic string on the first line of the file used to locate the executable. The shell
files may be extension less and are still recognized. Note that this is the typical method of identifying shell
files and will recognize other files not mentioned above i.e. bash shells. DESCRIPTION

The shell file type template provides simple hilighting of the shell files.

BUGS

None reported.

There is a heavy bias towards Bourne, Korn and Zsh shells. The author is not a csh shell user so has
probably missed a lot of csh features.

SEE ALSO

fvwm(9).

MicroEmacs '02

sh(9) 1241

Supported File Types

MicroEmacs '02

sh(9) 1242

ctags(3f)

NAME

ctags − Generate a C tags file

SYNOPSIS

me "@ctags" [−v%tag−option=<flags>] [files]

DESCRIPTION

The start−up file ctags.emf may be invoked from the command line to generate a tags file for C
and C++ source and header files.

Given a list of files a tags file tags is generated in the current directory, which may be used by the
find−tag(2) command. This is a good alternative on Microsoft platforms where a utility such as
ctags(1) is not typically available. If no files are specified the default file list is "./", i.e. process the
current directory. If a directory name is given (such as the default "./") all C and C++ source and
header files within the directory will be processed.

The value of variable %tag−option is used to control the tag generation process, its value <flags>
can contain any number of the following flags:

a

Append new tags to the existing tag file, note that if also using flag 'm' multiple 'tags' to the same item
may be created.

m

Enable multiple tags. This enables the existence of 2 tags with the same tag name, but typically with
different locations. See help on find−tag(2) for more information on multiple tag support.

r

Enables recursive mode, any sub−directory found within any given directories will also be processed.

v

Add global variables to the tag file. (i.e. variables marked with extern).

e

Add enumerated variables to the tag file (i.e. enum members).

MicroEmacs '02

ctags(3f) 1243

s

Add structure, type definitions and classes to the tag file (i.e. stuct, typedef and class).

The generated tags file includes #define and C++ class names.

NOTES

This function is invoked from menu

Tools −> C Tools −> Create Tags File

when the user requests a tags file to be generated.

The user setup file "myctags.emf" is executed by ctags during start−up, this file can be used to
over−ride any of the ctags configuration variables (see below).

The following variables are set within "ctags.emf" and are used to control the process:−

%tag−option

Tags options flag, default value is "". See above for more information.

%tag−filemask

A list of source file masks to be processed when a directory is given, default value is
":*.[cC]:*.cpp:*.cc:*.h:*.hpp:".

%tag−ignoredir

A list of directories to be ignored when recursive option is used, default value is ":SCCS/:CVS/:".

These variables can be changed using the −v command−line option or via the "myctags.emf" file

SEE ALSO

find−tag(2), start−up(3), c(9).

MicroEmacs '02

ctags(3f) 1244

ctrlz(2m)

NAME

ctrlz − File's termination style

SYNOPSIS

ctrlz Mode

z − mode line letter.

DESCRIPTION

When enabled ctrlz indicates that an MS−DOS style 'ctrl−z' file termination character should be
written out. When clear, a UNIX style of no termination character should be used.

NOTES

This mode only effects the style in which the buffer is written if auto(2m) mode is enabled.

SEE ALSO

auto(2m), crlf(2m), save−buffer(2), find−file(2), $buffer−fmod(5).

MicroEmacs '02

ctrlz(2m) 1245

cvs(3)

NAME

cvs − MicroEmacs CVS interface
cvs−add − MicroEmacs CVS interface − add file
cvs−checkout − MicroEmacs CVS interface − checkout files and directories
cvs−commit − MicroEmacs CVS interface − commit changes
cvs−diff − MicroEmacs CVS interface − diff changes
cvs−gdiff − MicroEmacs CVS interface − graphical diff changes
cvs−log − MicroEmacs CVS interface − log changes
cvs−remove − MicroEmacs CVS interface − remove file
cvs−resolve−conflicts − MicroEmacs CVS interface − resolve conflicts
cvs−state − MicroEmacs CVS interface − list state of directory files
cvs−update − MicroEmacs CVS interface − update directory files

SYNOPSIS

cvs

cvs−add
cvs−checkout
cvs−commit
cvs−diff
cvs−gdiff
cvs−log
cvs−remove
cvs−resolve−conflicts
cvs−state
cvs−update

DESCRIPTION

The cvs and sub−commands provide MicroEmacs with an interface to cvs(1). CVS is a version
control system; using it, you can record the history of your source file modifications. CVS is licensed
under the GNU General Public License and is freely available on the Internet, see the documentation
provided with CVS for more information on its features and use.

The MicroEmacs cvs command opens up a modified file−browser(3) with an additional
"*cvs−console*" window. The "*files*" window includes additional columns showing the
CVS state, revision and repository date. The functionality of the file−browser is the same as a
non−CVS folder with the exception that additional CVS item controls are located in the mouse
context menu (opened by clicking the right mouse button in the *files* buffer). This menu item
opens another sub−menu providing access to the following items:

MicroEmacs '02

cvs(3) 1246

Checkout files

Checks out a file or directory from the repository into the current directory. The file or directory is
specified by typing the name into a dialog which is opened when this option is selected. This runs the
command "cvs checkout <file>".

Update files

Updates the currently selected files, files are selected by clicking the left button to the left of the
required file name. Multiple files may be selected by 'dragging' a hilight region over the required files.
This runs the command "cvs update <files>".

Commit files

Commits any changes made to the selected files back to the CVS repository. This runs the command
"cvs commit <files>".

Diff files

Displays any differences between the selected files and the CVS repository version in the
cvs−console window. This runs the command "cvs diff <files>".

Log files

Displays the CVS logs for the selected files in the *cvs−console* window. This runs the command
"cvs log <files>".

Status files

Displays the CVS status for each of the selected files in the *cvs−console* window. This runs the
command "cvs status −v <files>".

Add files

Adds the selected files to the CVS repository. Note this command only performs the local add, a CVS
commit is required to make the addition permanent. This runs the command "cvs add <files>".

Remove files

This command is deliberately not implemented as its far to dangerous! Instead it opens a dialog
informing the user to use the cvs−remove command instead.

Graphical diff

This command opens a gdiff(3) window showing the differences between the currently selected file
and the CVS repository version. Note this command only works with a single file.

Resolve conflicts

MicroEmacs '02

cvs(3) 1247

This command may be used to resolve merge conflicts created by a CVS update operation. The
command opens a gdiff(3) window showing the areas of conflict allowing the user to select the
correct version and saving the resultant version back to the local file. Note this command only works
with a single file.

Clear cvs console

Clears the *cvs−console* buffer.

The cvs−add command adds the current buffers file to the repository. Note that this command only
performs the local addition, a CVS commit is required to make the addition permanent.

The cvs−checkout command checks out a file or directory from the repository into the current
directory. The user specifies the file on the message line.

The cvs−commit command commits any changes made to the currently buffer's file (including
additions) to the repository. The user is prompted for a commit log message.

The cvs−diff command opens a *cvs−diff* window displaying the differences between the current
buffer's local file and repository version. If the current buffer is a directory list it will list all the
differences found in all files within the directory.

The cvs−gdiff command opens a gdiff(3) window displaying the differences between the current
buffer's local file and repository version.

The cvs−log command opens a *cvs−log* window displaying the CVS log of the current buffer's file.

The cvs−remove command removes the current buffer's file from the repository − PLEASE NOTE
THIS CAN LEAD TO LOST DATA!!! This command only performs the local removal; as it deletes
the buffer and file the cvs−commit command cannot be used to commit the removal to the CVS
repository. Instead the main cvs file−browser menu or cvs(1) itself must be used.

The cvs−resolve−conflicts command may be used to resolve any conflicts created by CVS when the
current buffer's file is updated. The command opens a gdiff window displaying the areas of conflict,
the user may then select the correct version in each case and save the resultant new version over the
local file.

The cvs−state command opens a *cvs−state* window listing the state of any file in the current
directory which is not up−to−date. Note that unlike most cvs sub commands this command executes
over all files in the current buffer's file directory.

The cvs−update command updates all files in the current directory, the output being reported to a
new *cvs−update* window. Note that unlike most cvs sub commands this command executes over all
files in the current buffer's file directory.

NOTES

cvs and sub−commands are macros defined in file cvs.emf.

MicroEmacs '02

cvs(3) 1248

By default MicroEmacs's cvs commands skip all files ignored by cvs(1). This is configured by the
variable .cvs.filter, defining this variable to 0 disables this special filtering.

SEE ALSO

file−browser(3).

MicroEmacs '02

cvs(3) 1249

gdb(3)

NAME

gdb − GNU Debugger
dbx − UNIX Debugger

SYNOPSIS

gdb "program−name" "additional−args"
dbx "program−name" "additional−args"

DESCRIPTION

gdb and dbx provide an editor interface to the GNU and native system debuggers, respectively. On
running either command then an interactive shell window is opened to the debugger command line
interface. MicroEmacs then interprets the information from the debugger interface and opens files and
hilights the current line as required. The current line is maintained while single stepping through the
code.

Buffers opened and referenced by the debugger have the key F9 bound to setting a break point.

NOTES

gdb and dbx are macros defined in file hkipipe.emf.

SEE ALSO

perldb(3), ipipe−shell−command(2).

MicroEmacs '02

gdb(3) 1250

define−help(2)

NAME

define−help − Define help information

SYNOPSIS

define−help "string" ["section"]

Free form text

!ehelp

DESCRIPTION

define−help provides a mechanism to define help information for commands and variables within
macro files. The command allows user defined macros to be documented with help information that is
accessible from the command line via the normal help commands such as help−item(2).

The help information is typically embedded in the macro file with the macro command that it is
documenting. When the macro file is loaded then the help information is loaded and integrated into
the existing help database.

string is the name of the item that is being defined, section defines what section the item belongs to.
Following is a table of standard MicroEmacs '02 sections:

1 MicroEmacs command line arguments.
2 Built−in commands.
2m MicroEmacs buffer modes.
3 Macro commands.
4 Macro language commands.
5 MicroEmacs variables.
8 MicroEmacs file formats.

When section is omitted is defaults to the general section which is usually used for the higher level
help pages.

Text following the define−help line contains the help information, this is a free form text area that is
reproduced when the help information is requested. The end of the text area is delimited by a !ehelp
construct. The help text is usually displayed using a special hilighting scheme to control the colors
and hyper−text links to other help pages. As a result the text may contain escape ('^[') key sequences,
see ehf(8) for more information on the format.

EXAMPLE

MicroEmacs '02

define−help(2) 1251

The following example is a define−help representation for the paragraph−to−line(3) macro.

define−help "paragraph−to−line" "3"

^[cENAME^[cA

 paragraph−to−line − Convert a paragraph to a single line
$a

^[cESYNOPSIS^[cA

 n paragraph−to−line

^[cEDESCRIPTION^[cA

 paragraph−to−line reduces each of the next n paragraphs of text to a
 single line. This is used to prepare a document to go into a word
 processor environment where end of line marks represent paragraph marks.

^[cENOTES^[cA

 This command is a macro defined in format.emf.

^[cESEE ALSO^[cA

 ^[ls^[lm^[cGfill−paragraph(2)^[cA^[le.

!emacro

SEE ALSO

ehf(8), help−item(2), define−macro(2), help−command(2), help−variable(2).

MicroEmacs '02

define−help(2) 1252

define−macro(2)

NAME

define−macro − Define a new macro

SYNOPSIS

n define−macro macro−name

Macro body
!emacro DESCRIPTION

define−macro starts the definition of an macro named macro−name, only used within macro files or
buffers. After the above header line, the body of the macro is added, one command or expression on a
line. The macro definition is completed by the !emacro directive.

The numeric argument n, specified as zero, defines the macro as private such that it does not appear
on a command completion list. A zero argument is generally used on helper macro's that form part of
a larger macro. If the argument is omitted, or non−zero, then the macro appears in the command
completion list.

See execute−file(2) for a complete definition and examples of the MicroEmacs '02 macro language.

Once the macro has been defined, it becomes indistinguishable from a standard MicroEmacs '02
command, i.e. execute−named−command(2) (esc x) can be used to execute the macro and
global−bind−key(2) can be used to globally bind the command to a key combination.

There are no restrictions on the number of macros that may be defined, provided that the name space
is managed properly. Consideration must be given as to when any additional macros that are created
are loaded into MicroEmacs '02. We usually like start−up to be rapid and macros are loaded as and
when requested by the user, or by the buffer hooks as new files are loaded (see add−file−hook(2) and
define−macro−file(2)).

User defined macros may be documented with on−line help by including a define−help(2) construct
within the macro file.

EXAMPLE

The following are two standard macros provided with MicroEmacs '02. The first is a macro called
clean, this strips trailing white space from the ends of lines in a file and removes blank lines from the
end of the file.

define−macro clean
 ;

MicroEmacs '02

define−macro(2) 1253

 ; Prepare to clean up file.
 ; Remember line & magic mode
 set−variable #l0 $window−line
 set−variable #l1 ¬ &bmod magic
 !if #l1
 1 buffer−mode "magic"
 !endif
 ;
 ; Get rid of trailing white space on EOL
 beginning−of−buffer
 replace−string "[\t]+$" "\\0"
 beginning−of−buffer
 replace−string "[]+\t" "\t"
 ;
 ; Strip trailing blank lines.
 end−of−buffer
 backward−line
 !while &and &gre $window−line 1 &sequal @wc "\n"
 kill−line
 backward−line
 !done
 ;
 ; Clean up − restore buffer modes etc.
 ; Move back to starting line & restore original magic mode
 !force goto−line #l0
 !if #l1
 −1 buffer−mode "magic"
 !endif
 screen−update
 ml−write "Cleaned up file."
!emacro

The second example converts all of the <tab> characters in the file to their <SPACE> character
equivalent.

;
; tabs−to−spaces.
; Convert all of the tabs to spaces.
define−macro tabs−to−spaces
 ; Remember line
 set−variable #l0 $window−line
 beginning−of−buffer
 !force search−forward "\t"
 !while $status
 set−variable #l1 $window−acol
 backward−delete−char
 &sub #l1 $window−acol insert−space
 !force search−forward "\t"
 !done
 goto−line #l0
 screen−update
 ml−write "[Converted tabs]"
!emacro

Both of these commands are available from the command line, they are indistinguishable from the
built in commands.

MicroEmacs '02

define−macro(2) 1254

Macros may also be nested, as shown in the next example, this macro contains a define−macro
within itself, when executed the macro creates another macro dynamically − dynamic macros are
generally given a prefix of % and are highlighted differently in describe−bindings(2).

The following example is taken from the alarm(3) macro, executing alarm the user is prompted for a
message, and the time interval before the alarm expires in hours and minutes. It then creates a new
macro with a callback so that the new macro will be called at the correct time.

!if &seq %alarm−numb "ERROR"
 set−variable %alarm−numb 0
 set−variable %osd−alarm &pinc %osd 1
!endif

define−macro alarm
 set−variable %alarm−numb &add %alarm−numb 1
 set−variable #l0 &cat "%alarm−" %alarm−numb
 !force set−variable #l2 @3
 !if ¬ $status
 set−variable &ind #l0 @ml "Message"
 set−variable #l1 @ml "Hours"
 set−variable #l2 @ml "Minutes"
 !else
 set−variable &ind #l0 @1
 set−variable #l1 @2
 !endif
 set−variable #l1 &mul 60000 &add &mul 60 #l1 #l2
 define−macro #l0
 !bell
 set−variable #l0 &add &len &ind @0 10
 osd %osd−alarm 0 "bat" 9 3
 osd %osd−alarm 1 ""
 osd %osd−alarm 2 "c" "ALARM"
 osd %osd−alarm 3 ""
 osd %osd−alarm 4 "" &ind @0
 osd %osd−alarm 5 ""
 osd %osd−alarm 6 "Bcf" " OK " f void
 %osd−alarm osd
 !emacro
 #l1 create−callback #l0
!emacro

SEE ALSO

Refer to !return(4) and !abort(4) for details macro termination.

!emacro(4), add−file−hook(2), define−macro−file(2), define−help(2), describe−bindings(2),
execute−file(2), execute−named−command(2), global−bind−key(2), insert−macro(2),
start−kbd−macro(2).

MicroEmacs '02

define−macro(2) 1255

define−macro−file(2)

NAME

define−macro−file − Define macro file location

SYNOPSIS

define−macro−file "file−name" ["macro−name" "macro2−name" ...]

DESCRIPTION

Macros are loaded as late as possible using an on−demand mechanism, this speeds up the load time of
MicroEmacs '02, it also keeps the startup file clean since macros are not defined within the start−up
file. Only when the user first executes a macro defined via define−macro−file is the file loaded, the
macro becomes defined and is executed. Subsequent calls to the macro will not reload the file as the
macro will now be fully defined.

define−macro−file binds macros (macro−name ...) to a file name (file−name). This operation
informs MicroEmacs '02 which file should be loaded when macro−name is first executed. The
macro−name arguments may be omitted if the file contains only one exported macro which has the
same name as file−name.

Alternatively the macro file may contain many macros all of which can be defined by a single call to
define−macro−file, listing all macros on the same line after the file−name. If a macro−name is given
then the default macro file−name is not created, if a macro of that name does exist it must be added to
the macro−name list.

EXAMPLE

The following definitions are found in the me.emf start−up file:−

0 define−macro−file utils ascii−time regex−forward regex−backward
define−macro−file format clean sort−lines−ignore−case tabs−to−spaces ...
define−macro−file cvs cvs cvs−state cvs−update cvs−commit cvs−log ...
define−macro−file abbrev expand−abbrev−handle expand−iso−accents ...
define−macro−file misc symbol check−line−length alarm time
define−macro−file search replace−all−string query−replace−all−string
define−macro−file tools compile grep rgrep which diff diff−changes
define−macro−file hkdirlst file−browser file−browser−close
define−macro−file comment comment−line uncomment−line comment−to−end−of−line
define−macro−file spell spell−word spell−buffer spell−edit−word find−word
define−macro−file games Metris Patience Triangle Mahjongg Match−It
define−macro−file buffstp buffer−setup buffer−help buffer−tool
define−macro−file fattrib file−attrib
define−macro−file osd osd−main
define−macro−file gdiff

MicroEmacs '02

define−macro−file(2) 1256

define−macro−file calc
define−macro−file draw

Hilighting a number of entries as examples; macro file calc is defined with no macro definition, the
macro is assumed to be calc. The file tools.emf contains multiple macros compile, grep, diff and
diff−changes; all can be defined by a single define−macro−file entry.

NOTES

Macro files are searched for in the current directory and along the $search−path(5).♦
The macro file is not loaded unless a binding has been defined using define−macro−file.♦
Any other macros that exist in the file−name macro file become defined when the entry point
macro is loaded and are available for use. This is potentially useful as a single entry macro
may be defined using define−macro−file, when invoked other helper macros become
available.

♦

SEE ALSO

add−file−hook(2), define−macro(2), $search−path(5), start−up(3).

MicroEmacs '02

define−macro−file(2) 1257

del(2m)

NAME

del − Flag buffer to be deleted

SYNOPSIS

del Mode

d − mode line letter.

DESCRIPTION

This mode cannot be set globally and is used to flag that the buffer is to be deleted. The state of the
mode is displayed in the output of list−buffers(2), if the first column is a 'D' the mode is set, otherwise
it is not. Only the execute command in list−buffers(2) (bound to 'x') uses this flag to actually delete
the buffer.

SEE ALSO

list−buffers(2), save(2m).

MicroEmacs '02

del(2m) 1258

delete−blank−lines(2)

NAME

delete−blank−lines − Delete blank lines about cursor

SYNOPSIS

delete−blank−lines (C−x C−o)

DESCRIPTION

delete−blank−lines deletes all the blank lines before and after the current cursor position. Note that
the deleted lines are not added to a kill buffer.

SEE ALSO

delete−indentation(3), clean(3), kill−line(2).

MicroEmacs '02

delete−blank−lines(2) 1259

delete−buffer(2)

NAME

delete−buffer − Delete a buffer

SYNOPSIS

n delete−buffer "buffer−name" (C−x k)

DESCRIPTION

delete−buffer disposes of buffer buffer−name in the editor and reclaim the memory. This does not
delete the file that the buffer was read from.

If the buffer has been edited and its name does not start with a '*' then the user is prompted as to
whether the changes should be discarded. Also if the buffer has an active process running in it then
confirmation is sort from the user before the process is killed.

The argument n can be used to change the default behavior of delete−buffer described above, n is a bit
based flag where:−

0x01

Enables loss of work checks (default). These include a check that the buffer has not been modified, if so the
user is prompted. Also if a process is running then user must confirm that the process can be killed. If this flag
is not supplied then the buffer is killed without any user prompts (useful in macros). SEE ALSO

next−buffer(2).

MicroEmacs '02

delete−buffer(2) 1260

delete−dictionary(2)

NAME

delete−dictionary − Remove a spelling dictionary from memory

SYNOPSIS

n delete−dictionary ["dictionary"]

DESCRIPTION

delete−dictionary removes the given dictionary from memory, where n is a bitwise flag determining
the removal mode, defined as follows:−

0x01

Prompt the user before loosing any changes (except to the ignore dictionary).

0x02

Delete all the dictionaries other than the ignore dictionary.

0x04

Delete the ignore dictionary.

If the argument does not have bit 0x02 or 0x04 set, which specify the dictionaries to be deleted, the
user is prompted for the "dictionary". The default argument is 1.

NOTES

The ignore dictionary is a temporary dictionary that exists in memory for duration of the MicroEmacs
session; the dictionary holds words that have been ignored during any previous spell checks (see
spell(2)). All of the words that have been ignored may be discarded with:−

4 delete−dictionary

i.e. esc 4 esc x delete−dictionary.

SEE ALSO

spell−buffer(3), add−dictionary(2), save−dictionary(2), spell(2).

MicroEmacs '02

delete−dictionary(2) 1261

delete−frame(2)

NAME

delete−frame − Delete the current frame

SYNOPSIS

n delete−frame

DESCRIPTION

delete−frame deletes the current frame.

SEE ALSO

create−frame(2), next−frame(2).

MicroEmacs '02

delete−frame(2) 1262

delete−indentation(3)

NAME

delete−indentation − Join 2 lines deleting white spaces

SYNOPSIS

n delete−indentation

DESCRIPTION

delete−indentation deletes all white characters between the beginning of the current line and the end
of the previous line, including the line−feed. If the current line is not empty then a space is inserted to
divide the two lines now joined.

If a positive argument n is given then the process is repeated n times. Note that the deleted characters
are not added to a kill buffer.

NOTES

delete−indentation is a macro defined in format.emf.

SEE ALSO

delete−blank−lines(2), clean(3), kill−line(2).

MicroEmacs '02

delete−indentation(3) 1263

delete−window(2)

NAME

delete−window − Delete the current window
delete−other−windows − Delete other windows

SYNOPSIS

n delete−window (C−x 0)
n delete−other−windows (C−x 1)

DESCRIPTION

delete−window attempts to delete the current window (remove window from the screen), retrieving
the lines for use in the window adjacent to it. The command fails if there is no other window or if the
current window is protected from deletion (see $window−flags(5)). The deletion protection can be
overridden by giving the command a numerical argument n of 2.

The window deletion policy is determined by the formation of the windows displayed on the screen.
The bias is for the previous window (above) the current window to be merged when split vertically,
and for the left window to be merged when split horizontally.

delete−other−windows deletes all of the other windows, the current window becomes the only
window, using the entire available screen area. Windows can be protected from deletion by using the
$window−flags variable, giving the command a numerical argument n of 2 overrides this protection.

SEE ALSO

set−position(2), grow−window−vertically(2), resize−window−vertically(2),
split−window−horizontally(2), split−window−vertically(2), $window−flags(5).

MicroEmacs '02

delete−window(2) 1264

delete−registry(2)

NAME

delete−registry − Delete a registry tree

SYNOPSIS

delete−registry "root"

DESCRIPTION

delete−registry deletes a registry node root from the registry, any children belonging to the node are
also deleted.

DIAGNOSTICS

delete−registry fails if root does not exist.

SEE ALSO

get−registry(2), list−registry(2), read−registry(2), set−registry(2), erf(8).

MicroEmacs '02

delete−registry(2) 1265

delete−some−buffers(2)

NAME

delete−some−buffers − Delete buffers with query

SYNOPSIS

n delete−some−buffers

DESCRIPTION

delete−some−buffers cycles through all visible buffers (buffers without mode hide(2m) set) and
prompts the user [y/n] as to whether the buffer should be deleted. A y response deletes the buffer, a n
response retains the buffer.

If a y response is given, the buffer has been edited, and its name does not start with a '*' then the user
is prompted as to whether the changes should be discarded. Also if the buffer has an active process
running in it then confirmation is sort from the user before the process is killed.

The argument n can be used to change the default behavior of delete−some−buffers described above,
n is a bit based flag where:−

0x01

Enables all checks (default). These include the initial y/n prompt on each buffer, the buffer has not been
modified check, if so the user is prompted. Also if a process is running then user must confirm that the process
can be killed. If this flag is not supplied then all visible buffers are killed without any user prompts (useful in
macros). SEE ALSO

delete−buffer(2), next−buffer(2), hide(2m).

MicroEmacs '02

delete−some−buffers(2) 1266

describe−bindings(2)

NAME

describe−bindings − Show current command/key binding

SYNOPSIS

describe−bindings (C−h b)

DESCRIPTION

describe−bindings pops up a window with a list of all the named commands, and the keys currently
bound to them. Each entry is formatted as:

keyCode........... command

describe−bindings is buffer context sensitive and shows the bindings for the currently active buffer
(i.e. the buffer that is active when the command is invoked). The resultant command list is divided
into three sections as follows:

Buffer Bindings

The bindings for the active buffer when describe−bindings was invoked. These are the buffer
bindings set by buffer−bind−key(2).

Ml Bindings

The message line bindings as set by ml−bind−key(2).

Global Bindings

Global binding of keys as set by global−bind−key(2). EXAMPLE

The following is an example of the displayed output from describe−bindings. This was invoked
while editing buffer m2fun038.2 which is the Nroff file for this manual page; the local bindings for
the buffer are all Nroff related.

Buffer [m2cmd038.2] bindings:

 "C−c C−s" nroff−size
 "C−c C−r" nroff−roman
 "C−c C−b" nroff−bold
 "C−c C−i" nroff−italic
 "C−c C−c" nroff−mono
 "C−c C−o" nroff−para

MicroEmacs '02

describe−bindings(2) 1267

 "esc o" nroff−para
 "esc q" nroff−para
 "C−c b" nroff−bold−block
 "C−c i" nroff−italic−block
 "C−c C−h" nroff−swap−hilight
 "C−c &" nroff−add−padding
 "C−x &" nroff−remove−padding
 "C−c C−p" nroff−prev
 "C−mouse−drop−1" nroff−tag

Ml bindings:

 "esc esc" tab

Global bindings:

 "C−a" beginning−of−line
 "C−b" backward−char
 "C−c" 4 prefix
 "C−d" forward−delete−char
 "C−e" end−of−line
 "C−f" forward−char
 "C−g" abort−command
 "C−h" 3 prefix
 "C−i" insert−tab
 "C−k" kill−line
 "C−l" recenter
 "C−m" newline
 "C−n" forward−line
 "C−o" insert−newline
 "C−p" backward−line
 "C−q" quote−char
 "C−r" isearch−backward
 "C−s" isearch−forward
 "C−t" transpose−chars
 "C−u" universal−argument
 "C−v" scroll−down
 "C−w" kill−region
 "C−x" 2 prefix
 "C−y" yank
 "C−z" scroll−up
 "C−_" undo
 "A−e" file−browser
 "A−r" replace−all−string
 "esc C−c" count−words
 "esc C−f" goto−matching−fence
 "esc C−g" abort−command
 "esc C−i" goto−matching−fence
 "esc C−k" global−unbind−key
 "esc C−n" change−buffer−name
 "esc C−r" query−replace−string
 "esc C−v" scroll−next−window−down
 "esc C−w" kill−paragraph
 "esc C−z" scroll−next−window−up
 "esc space" set−mark
 "esc !" pipe−shell−command
 "esc $" spell−word
 "esc ." set−mark
 "esc /" execute−file

MicroEmacs '02

describe−bindings(2) 1268

 "esc <" beginning−of−buffer
 "esc >" end−of−buffer
 "esc ?" help
 "esc @" pipe−shell−command
 "esc [" backward−paragraph
 "esc \\" ipipe−shell−command
 "esc]" forward−paragraph
 "esc ^" delete−indentation
 "esc b" backward−word
 "esc c" compile
 "esc d" forward−kill−word
 "esc e" set−encryption−key
 "esc f" forward−word
 "esc g" goto−line
 "esc i" tab
 "esc k" global−bind−key
 "esc l" lower−case−word
 "esc m" global−mode
 "esc n" forward−paragraph
 "esc o" fill−paragraph
 "esc p" backward−paragraph
 "esc q" fill−paragraph
 "esc r" replace−string
 "esc t" find−tag
 "esc u" upper−case−word
 "esc v" scroll−up
 "esc w" copy−region
 "esc x" execute−named−command
 "esc y" reyank
 "esc z" quick−exit
 "esc ~" −30 buffer−mode
 "esc A−r" query−replace−all−string
 "C−x C−a" set−alpha−mark
 "C−x C−b" list−buffers
 "C−x C−c" save−buffers−exit−emacs
 "C−x C−d" change−directory
 "C−x C−e" execute−kbd−macro
 "C−x C−f" find−file
 "C−x C−g" abort−command
 "C−x C−h" hunt−backward
 "C−x C−i" insert−file
 "C−x C−l" lower−case−region
 "C−x C−o" delete−blank−lines
 "C−x C−q" rcs−file
 "C−x C−r" read−file
 "C−x C−s" save−buffer
 "C−x C−t" transpose−lines
 "C−x C−u" upper−case−region
 "C−x C−v" view−file
 "C−x C−w" write−buffer
 "C−x C−x" exchange−point−and−mark
 "C−x C−y" insert−file−name
 "C−x C−z" shrink−window−vertically
 "C−x #" filter−buffer
 "C−x (" start−kbd−macro
 "C−x)" end−kbd−macro
 "C−x /" isearch−forward
 "C−x 0" delete−window
 "C−x 1" delete−other−windows

MicroEmacs '02

describe−bindings(2) 1269

 "C−x 2" split−window−vertically
 "C−x 3" next−window−find−buffer
 "C−x 4" next−window−find−file
 "C−x 5" split−window−horizontally
 "C−x 9" find−bfile
 "C−x <" scroll−left
 "C−x =" buffer−info
 "C−x >" scroll−right
 "C−x ?" describe−key
 "C−x @" pipe−shell−command
 "C−x [" scroll−up
 "C−x]" scroll−down
 "C−x ^" grow−window−vertically
 "C−x `" get−next−line
 "C−x a" goto−alpha−mark
 "C−x b" find−buffer
 "C−x c" shell
 "C−x e" execute−kbd−macro
 "C−x h" hunt−forward
 "C−x k" delete−buffer
 "C−x m" buffer−mode
 "C−x n" change−file−name
 "C−x o" next−window
 "C−x p" previous−window
 "C−x q" kbd−macro−query
 "C−x r" search−backward
 "C−x s" search−forward
 "C−x u" undo
 "C−x v" set−variable
 "C−x w" resize−window−vertically
 "C−x x" next−buffer
 "C−x z" grow−window−vertically
 "C−x {" shrink−window−horizontally
 "C−x }" grow−window−horizontally
 "C−h C−c" help−command
 "C−h C−i" help−item
 "C−h C−v" help−variable
 "C−h a" command−apropos
 "C−h b" describe−bindings
 "C−h c" list−commands
 "C−h d" describe−variable
 "C−h k" describe−key
 "C−h v" list−variables
 "backspace" backward−delete−char
 "delete" forward−delete−char
 "down" forward−line
 "end" end−of−buffer
 "esc" 1 prefix
 "f1" menu
 "home" beginning−of−buffer
 "insert" 141 buffer−mode
 "left" backward−char
 "mouse−drop−1" mouse−drop−left
 "mouse−drop−2" yank
 "mouse−drop−3" menu
 "mouse−pick−1" mouse−pick−left
 "mouse−pick−2" void
 "mouse−pick−3" void
 "page−down" scroll−down

MicroEmacs '02

describe−bindings(2) 1270

 "page−up" scroll−up
 "redraw" screen−update
 "return" newline
 "right" forward−char
 "tab" tab
 "up" backward−line
 "S−backspace" backward−delete−char
 "S−delete" forward−delete−char
 "S−tab" backward−delete−tab
 "C−down" 5 forward−line
 "C−left" backward−word
 "C−mouse−drop−1" mouse−control−drop−left
 "C−mouse−pick−1" set−cursor−to−mouse
 "C−page−down" scroll−next−window−down
 "C−page−up" scroll−next−window−up
 "C−right" forward−word
 "C−up" 5 backward−line
 "A−down" 1 scroll−down
 "A−left" 1 scroll−left
 "A−right" 1 scroll−right
 "A−up" 1 scroll−up
 "esc backspace" backward−kill−word
 "esc esc" expand−abbrev
 "C−c g" grep

Note that both internal commands and macro commands are shown in the list.

SEE ALSO

buffer−bind−key(2), command−apropos(2), describe−key(2), describe−variable(2),
global−bind−key(2), list−commands(2), ml−bind−key(2).

MicroEmacs '02

describe−bindings(2) 1271

describe−key(2)

NAME

describe−key − Report keyboard key name and binding

SYNOPSIS

describe−key (C−x ?)

DESCRIPTION

describe−key allows a key to be typed and it will report the name of the command bound to that key
(if any) and the internal key−code. This command is useful when trying to locate the identity of
keyboard keys for binding.

NOTES

describe−key is also bound to C−h k.

SEE ALSO

command−apropos(2), global−bind−key(2), describe−bindings(2), describe−variable(2).

MicroEmacs '02

describe−key(2) 1272

describe−variable(2)

NAME

describe−variable − Describe current setting of a variable

SYNOPSIS

describe−variable (C−h v)

DESCRIPTION

describe−variable describes the current setting of the given variable (%, : and $ variables), returning
ERROR if the variable is undefined. If a $ variable is not found then it is tested for an environment
variable, i.e.

describe−variable $PATH

returns your environment $PATH setting. This is the easiest and best way of determining the current
platform from within a Macro file.

The returned value of any undefined variable is the string ERROR.

NOTES

Completion is enabled on the command line for variable names.

SEE ALSO

describe−key(2), help−variable(2), set−variable(2).

MicroEmacs '02

describe−variable(2) 1273

describe−word(3)

NAME

describe−word − Display a dictionary definition of a word

SYNOPSIS

describe−word "word"

DESCRIPTION

describe−word can be used to interface to an external dictionary to get a definition of a given word.
The interface has two modes of interface, the first simply launches an external program which
provides the definition in its own user interface, e.g. MS Bookshelf. The second interface launches an
external program which prints out the definition to stdout, MicroEmacs can then pull out the
definition and display it in describe−word's own GUI.

When executed describe−word will use the current word under the cursor as the initial word or will
prompt the user if the cursor is not in a word.

When describe−word's dialog is used the information presented is defined as follows:

Word

The word being defined, the entry can be edited and the new word will be automatically looked−up
when the edit is completed.

Insert

The effect of this button is dependent on where describe−word was executed. If executed from the
Meaning button within the spell checker the Word entry is changed to the current word. When
executed outside the spell checker the definition of the current word is inserted into the current buffer.

Exit

Closes the dialog.

Main definition box

Displays the definition of the current word. The user can select a new word to describe by clicking the left
mouse button on any word within the current definition. NOTES

describe−word is a macro implemented in word.emf.

MicroEmacs '02

describe−word(3) 1274

Due to the size and availability of dictionaries etc. MicroEmacs is released without describe−word set
up, the user must setup it up.

describe−word must be setup for each required language as follows:

1)

A command−line interface to a dictionary of the required language must be found. This could
simply be a text file containing one word definition per line and using grep(1) as the
command−line interface. In this example the text file could take the following form:

A () The first letter of the English...
Aam (n.) A Dutch and German measure of liquids...
Aardvark (n.) An edentate mammal...
.
.

The grep command−line interface required to look−up the word "aardvark" would be:

grep −i "^aardvark (" words.txt

The output produced from this will be the single line giving the required definition. A second
common interface would be executing an external dictionary program typically using a
command−line option to specify the word to define, e.g.:

mydict −d "aardvark"

2)

The MicroEmacs language name must be found, this can be done by first using user−setup(3) or
spell−buffer(3) to ensure that the current language is set the the require one and then running
describe−word. The command will probably fail, but before it does it will set the variable
.describe−word.lang, use the command describe−variable(2) to get the value of this variable,
this value is the internal language name. For example, when the current language is American or
American (Ext) the language name is american.

3)

To execute the command−line interface the variable
.describe−word.<language>−command must be set to the command−line required to
obtain a word definition with the string "%s" used in place of the word and "%%" using in
place of a single "%". For the first example in (1) above the following would be required:

set−variable .describe−word.american−command ...
 ... "grep −i \"^%s (\" /tmp/words.txt"

For the second example:

set−variable .describe−word.american−command "mydict −d \"%s (\""

4)

MicroEmacs '02

describe−word(3) 1275

Only required for the second mode, for use with describe−word's own GUI, the setting of another
variable is required, the presence of this variable determines which mode is to be used.

The variable .describe−word.<language>−search must be set to a regex search
pattern which will match the required definition(s) in the command out put, the first group
("\(...\)") must enclose the required definition, again "%s" can be used in place of the
word and "%%" for a single "%". describe−word simply uses regex−forward(3) repeatedly to
find all definitions of the current word, it then uses the value of the variable @s1(4) to get the
individual definitions. For example for the first example the following is required:

set−variable .describe−word.american−search "^\(%s (.*\)\n"

Note that the word being defined should be kept in the definition if possible as the spell rules
are used to look−up base words when a derivitive of a word is not found, therefore the word
being defined may not be clear (e.g. deactivate can be derived from activate but their
meanings are very different). Also long text lines are automatically wrapped by the GUI.

The required variables should be added to the user setup file.

SEE ALSO

spell−buffer(3).

MicroEmacs '02

describe−word(3) 1276

dir(2m)

NAME

dir − Buffer is a directory listing

SYNOPSIS

dir Mode

D − mode line letter.

DESCRIPTION

This mode can not be set and is used to indicate that the buffer is a directory listing, created by the
find−file(2) command when the file name given is a directory.

SEE ALSO

find−file(2).

MicroEmacs '02

dir(2m) 1277

directory−tree(2)

NAME

directory−tree − Draw the file directory tree

SYNOPSIS

n directory−tree ["directory"]

DESCRIPTION

directory−tree creates or manipulates a view of the file systems directory structure. The command is
quite complex to use directly so is largely used but macros such as file−browser(3).

The argument n is a bit based flag which is used to control the command, where the bits have the
following meaning:−

0x01

If set, the focal directory of the command is set by the given "directory" argument. Otherwise the
argument is not required and the command must be executed within the "*directory*" buffer; the
current line sets the focal directory.

0x02

Specifies that the current line in resultant "*directory*" window should be set to the focal directory. If
this bit is not set then the current line will be the last selected directory, or if none have been selected,
the first line in the buffer.

0x04

Specifies that any evaluations required during the commands operation should be performed. Without
this flag an open operation on a directory which has not previously been evaluated will not be perform
an evaluation and the results will likely be incomplete.

0x08

Specifies that the current focal directory should be opened. This means that sub−directories within the
current focal directory will also be drawn in the directory tree.

0x10

Specifies that the current focal directory should be closed. This means that sub−directories within the
current focal directory will not be drawn in the directory tree.

MicroEmacs '02

directory−tree(2) 1278

0x20

Specifies that the current focal directory's open state should be toggled. This means that if the
sub−directories are currently hidden they will now be drawn and vice−versa.

0x40

When specified any directory opened will be re−evaluated, ensuring the accuracy of the information.

0x80

Enables a recursive behavior, for example if this flag was specified with the open then not only will
the focal directory be opened, but all of it's children, and their children etc. Note that if the Evaluation
flag is not specified then only the already evaluated directories can be opened.

directory−tree creates a new buffer "*directory*" and draws the known directory tree. Every drawn
directory is preceded by a character flag giving the user an indication of the directory state, where:

?

Directory has not been evaluated.

−

Directory has been evaluated and is visible.

+

Directory has been evaluated but is currently hidden.

Directories which have been evaluated and found to have no children use the '−' $box−chars(5)
instead of a '−' character.

On UNIX platforms, if a directory is a symbolic link to another directory, the link name is given after
the directory name.

EXAMPLE

The best example of the use of directory−tree is file−browser(3) which can be found in hkdirlst.emf.

SEE ALSO

file−browser(3), $box−chars(5).

MicroEmacs '02

directory−tree(2) 1279

display−matching−fence(3)

NAME

display−matching−fence − Display the matching bracket

SYNOPSIS

n display−matching−fence

DESCRIPTION

display−matching−fence draws the fence (or bracket) pairing the one the cursor is currently over. A
fence is considered to be one of the following:

{...} (...) [...]

If the matching fence is currently being drawn (i.e. it is visible) both fences are drawn in the 'Normal'
Matching Fence scheme (see scheme−editor(3)). If the matching fence is not currently visible the
cursor is temporarily moved to the match fence for $fmatchdelay(5) milliseconds before returning to
the starting position, the fences are hilighted using the Matching Fence 'Current' scheme. The
matching fence delay can be interrupted by pressing any key. If the fence cannot be matched the fence
is hilighted using the 'Select' scheme which is usually a bold red color.

The numeric argument n passed to the command is a bitwise flag where each bit is defined as follows:

0x01

Display fence (if not set nothing is done).

0x02

Use set−position id '\x85' instead of '\x84' (for internal use).

0x04

Don't Jump when matching fence is off screen.

0x08

Jump when closing a fence and its pair is off screen (for internal use).

0x10

Always jump to matching fence when closing a fence (for internal use).

MicroEmacs '02

display−matching−fence(3) 1280

0x20

Give preference to closing fence to left of cursor rather than character under the cursor (for internal use).
NOTES

This macro is used by the Fence Display setting of user−setup(3), the macro is bound to the
idle−pick event using some of the more obscure numeric argument flags.

SEE ALSO

goto−matching−fence(2), user−setup(3), scheme−editor(3), $fmatchdelay(5).

MicroEmacs '02

display−matching−fence(3) 1281

display−white−chars(3)

NAME

display−white−chars − Toggle the displaying of white characters

SYNOPSIS

display−white−chars

DESCRIPTION

display−white−chars toggles the displaying of white characters in the main display. By default white
characters, space tab and new−lines, are represented with invisible characters such as one or more ' 's
for spaces and tabs and text moving to the next line for new−lines. The user can make this characters
become 'visible' using this function.

When this function is first called it toggle enables the displaying of these characters, other characters
are drawn in their place to make them visible. A subsequent call will disable the displaying of them.

NOTES

display−white−chars is a macro implemented in misc.emf and uses bit 0x80000 of the
$system(5) variable.

The displaying of white characters can be enabled or disabled at start−up using user−setup(3).

This feature may be more confusing on some terminals due to the lack of characters available for
displaying the white characters. The characters used when displaying white characters are defined in
the variable $window−chars(5).

SEE ALSO

$system(5), user−setup(3), $window−chars(5).

MicroEmacs '02

display−white−chars(3) 1282

txt(9)

SYNOPSIS

txt, doc − Plain text document file

FILES

hkdoc.emf − Plain text hook definition

EXTENSIONS

.txt − ASCII plain text file

.doc − ASCII plain text document file

DESCRIPTION

The doc file type template handles the hilighting and text formating of a plain text file. Within the text
document justification and word wrapping are typically enabled. The template allows the user to
format text as left, right, center or no justification.

Auto Layout

The automatic layout of the text is restricted to justification and wrapping and the detection of
bulleted lists. fill−bullet(5) may be used to determine the character set used for bullet points, on
encountering a bullet the left−hand justification might be modified.

Formatting rules

The default mode of operation is automatic mode which attempts to retain the document style
whenever a paragraph is re−formatted. This allows rapid entry of text into a reasonable format with
no special formating character embedded in the text.

The automatic formatting rules used by fill−paragraph(2) in an automatic text mode are
defined as follows:−

Text on column 0

Text appearing in the first column is always assumed to be left justified, and non−wrapping,
provided that the text does not extend to the fill column. This is typically used for headers and
addresses.

Text on right edge

MicroEmacs '02

txt(9) 1283

Text ending at the right edge (the fill−col(5)), which commences from more that 50% of the
page width is assumed to be right justified, non−wrapping. Typically used for addresses.

Text centered

Text which is centered on the page is assumed to be centered, this is non−wrapping.

Indented

All other text, not covered by the cases above is assumed to be available for filling. In this case the
text is filled by the paragraph and left/right justification is applied.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−h − Help information on current mode.
C−c C−s − Spell the buffer.
C−c C−b − Fill both; perform left and right justification on the margins.
C−c C−b − Fill center; center the text on the current line.
C−c C−l − Fill left; fill the text on the paragraph (ragged right edge).
C−c C−r − Fill right; place text on right margin.
C−c C−o − Reduce a paragraph to a single line.
C−c a − Move to automatic formatting mode (default).
C−c l − Change mode to left formating
C−c r − Change mode to right formating
C−c r − Change mode to both formating
C−c c − Change mode to center formating
C−c n − Change mode to no formating

NOTES

To move text to a word processor then it is advised that all paragraphs are reduced to single lines,
leading white space should be deleted (any possibly blank lines) and then import to the word
processor. This saves considerable time as the word processor styles may be applied without handling
spaces and band end of line characters.

MAGIC STRINGS

−!− document −!−

MicroEmacs specific tag, recognizes the file as a plain text document. No hilighting of the document
is performed.

−!− document; sectioned −!−

MicroEmacs '02

txt(9) 1284

MicroEmacs specific tag, recognizes the file as a document that contains sections. A crude section
hilighting is enabled as follows:−

Lines commencing with > are assumed to be comments, typically used at the head of the
document .

> −!− document; sectioned −!−
>
> Author: My Self
> Created: 11/11/97
> Modified: <211197.1003>
> Location: /xx/yy/zz.doc

All lines commencing with start (*) are assumed to be bullet lists. Bullet is hilighted.

All lines commencing with [a−zA−Z]) or [0−9]) are assumed to be minor sections. The
section number is hilighted. e.g.:

a) text
1) text

All text in single or double quotes is hilighted, assumed to be literal text. and are hilighted i.e.
This is a "double quote" or 'a' single quote.

Lines commencing with underscore (_) are hilighted to the end. typically used as demarcation
breaks or for section underlining

−!− Document; pseudo−code −!−

The document contains pseudo code, and the pseudo code is hilighted. The pseudo−code tokens are
defined as follows:−

// introduces a comment to the end of the line.

Command words comprise:−

BEGIN, BREAK, CASE, CLEAR, CONTINUE, DO, DONE, ELIF, ELSE, END, ENDIF, FOR,
FUNCTION, GOTO, IF, ONEVENT, ONINTERRUPT, PROCEDURE, REPEAT, RETURN,
SET, SWITCH, THEN, TO, UNTIL, WHILE,

Pseudo logical operators include

AND, FALSE, MOD, NOT, OR, TRUE, XOR,

−!− document; sectioned; pseudo−code −!−

A combination of both of the above. BUGS

The automatic mode sometimes mistakes an indented paragraph for a centered paragraph. This only

MicroEmacs '02

txt(9) 1285

typically occurs when the first line of the paragraph is not filled to the right. When the formatting
error occurs, simply pad the line out so that it extends past the fill column and re−apply the
formatting.

Unfortunately there is nothing that can be done to alleviate this problem, but it occurs infrequently.

SEE ALSO

fill−col(5), fill−paragraph(2), spell−buffer(3).

Supported File Types

MicroEmacs '02

txt(9) 1286

dos2unix(3f)

NAME

dos2unix − Convert DOS format files to UNIX format files

SYNOPSIS

me "@dos2unix" <files>

DESCRIPTION

The start−up file dos2unix.emf may be invoked from the command line as a filter to convert all
files in MS−DOS (or Windows) format into the correct UNIX format.

Each file specified on the command line is interrogated and the line ending modified to UNIX.

SEE ALSO

start−up(3), auto(2m), crlf(2m), ctrlz(2m).

MicroEmacs '02

dos2unix(3f) 1287

draw(3)

NAME

draw − Simple line drawing utility

SYNOPSIS

draw

DESCRIPTION

draw provides a simple way of drawing lines into the current buffer, this has a variety of uses such as
drawing tables. draw copies the current buffer into a temporary buffer and then allows the user to
draw using simple commands until the user either aborts, discarding any changes, or exits insert the
changes back into the buffer.

The keys for draw are defined as follows:−

esc h

Display a help dialog.

up, down, left, right

The cursor keys (or any other keys bound the the same commands) will move the cursor, drawing in
the current mode.

d

Change the current mode to draw (default), cursor movement will result in drawing in the current
style.

e

Change the current mode to erase, cursor movement will result in erasing to spaces.

m

Change the current mode to move, no drawing is performed with cursor movement.

u

Change the current mode to undo, cursor movement will result in undoing the character to the original
or a space.

MicroEmacs '02

draw(3) 1288

−

Sets the current horizontal line drawing style to use '−'s (default).

=

Sets the current horizontal line drawing style to use '='s.

C−g

Abort − changes are lost.

return

Exit, inserting any changes into the current buffer. NOTES

draw is a macro defined in draw.emf.

MicroEmacs '02

draw(3) 1289

eaf(8)

NAME

eaf − MicroEmacs abbreviation file format

SYNOPSIS

<pattern> <insertionString>
<pattern> <insertionString>
<pattern> <insertionString>
<pattern> <insertionString>

DESCRIPTION

The MicroEmacs '02 abbreviation file, typically given the extension .eaf, defines a set of shorthand
expansion strings which are used by the command expand−abbrev(2). buffer−abbrev−file(2) defines
the abbreviation file.

The abbreviation file line based, with one abbreviation per line, with no intervening blank lines. Each
line comprises of two columns, the first column <pattern> identifies the source pattern to be
expanded, the second column <insertionString> defines the replacement text. The two text columns
are separated by a space character.

When expand−abbrev(2) is invoked and the expansion <pattern> is recognized, then <pattern> is
deleted from the buffer and replaced with <insertionString>.

The fields are defined as follows:−

<pattern>

The source pattern to be expanded. The data commences in text column 0 and spans to the first white
space character (SPACE or tab). The pattern may not include any white space characters.

<insertionString>

The replacement string exists from the first non−white space character following the
<pattern> to the end of the line. The replacement string may include special tokens,
delimited by a backslash ('\') character which are interpreted as follows:−

\b Move cursor backwards

A positioning control. Allows the cursor to be moved backwards 1 character.

\d Delete tab backwards

MicroEmacs '02

eaf(8) 1290

Back tab. Deletes a tab character backwards.

\m"<string>" Macro execution

Takes the remainder of the line as a keyboard macro definition. The macro string is generated
using insert−macro(2) and must be contained in double quotes. When invoked the keyboard
macro is executed and the appropriate text is inserted into a buffer. This is typically only used
for more complex operations.

\p Position

The resultant position of the cursor following the expansion. If the cursor position is not
specified, the cursor is placed at the end of the expansion string by default.

\r Carriage Return (Newline)

A newline in the replacement text. Note while indent(2m) is enabled a sequence a single "\r"
retains the indent on the next line, however a sequence of two "\r\r" characters does not retain
the tab position and returns the cursor to the start of the second line. If blank lines are
required retaining tab positioning then a keyboard macro string should be used instead. (see
"\m" above).

\t Tab

A tab character in the replacement text. EXAMPLE

The following example provides abbreviations for the 'C' programming language, found in file c.eaf.
All cursor positions in the examples are shown by <@>.

#i #include <\p>\r
#d #define \p
if if(\p)\r{\r\r}\r
ef else if(\p)\r{\r\r}\r
el else\r{\r\p\r}\r
wh while(\p)\r{\r\r}\r
sw switch(\p)\r{\rcase :\rdefault :\r}\r

Given that the abbreviation file has been declared then expansion of:

#d<@> => #define <@>

if<@> => if(<@>)
 {

 }

sw<@> => switch(<@>)
 {
 case :
 default :
 }

MicroEmacs '02

eaf(8) 1291

Note, in all of the examples, the abbreviation replacement strings specify a resultant cursor position,
typically where the next edit will take place.

The macros may alternatively be defined using keyboard macros. The aforementioned macros could
have been re−written with the following definitions which are equivalent:−

#i \m"#include <\CX\CAP>\CM\CXaP\CX)"
#d \m"#define \CX)"
if \m"if(\CX\CAP)\CM{\CM}\CXaP\CX)"
ef \m"else if(\CX\CAP)\CM{\CM\CM}\CM\CXaP\CX)"
el \m"else\CM{\CM\CX\CAP\CM}\CM\CXaP\CX)"
wh \m"while(\CX\CAP)\CM{\CM\CM}\CM\CXaP\CX)"
sw \m"switch(\CX\CAP)\CM{\CMcase :\CMdefault:\CM}\CM\CXaP\CX)"

Within a macro, the cursor positioning is generally achieved by setting a mark where the resultant
cursor is to be positioned (see set−mark(2)), when the macro is finished then an
exchange−point−and−mark(2) is initiated to move the cursor to the correct position; alternatively a
sequence of cursor movements may be used.

The "\b" and "\d" are typically used for positioning the cursor on subsequent lines. "\d" is the inverse
of "\t". Consider the following Pascal definition for an else, begin and end sequence:−

el else\rbegin\r\t\p;\r\dend;

with indent(2m) mode enabled generates:−

 else
 begin
 <@>;
 end;

Similarly the "\b" is typically used when indent(2m) is enabled, but when the tab spacing is known.
Consider the following example used in the MicroEmacs '02 .emf files to define a help entry. In this
case the indent is known to be 5 characters. Hence to move the cursor back 5 characters then a
sequence of \b's are used:−

!h def .. \rSEE ALSO\r <cross references>\r\b\b\b\b\b!ehelp

the expansion in this case is:−

define−help "<@>"

...

SEE ALSO
 <cross references>
!ehelp

FILES

The default abbreviation files are located in the MicroEmacs '02 home directory.

MicroEmacs '02

eaf(8) 1292

User's may specify their own abbreviation files by shadowing the home directory file with their own
file located in a personal MicroEmacs '02 directory. See $MEPATH(5).

SEE ALSO

expand−abbrev(2), buffer−abbrev−file(2), global−abbrev−file(2), iso−accents−mode(3).

MicroEmacs '02

eaf(8) 1293

edf(8)

NAME

edf − MicroEmacs spelling dictionary file

SYNOPSIS

lsdmenus.edf
user.edf

DESCRIPTION

The spelling dictionary files are given the extension .edf. These are binary files read by MicroEmacs
'02 and cannot be edited directly.

MicroEmacs '02 is supplied with a dictionaries for various languages. It is recommended that these
dictionaries are not modified, a personal dictionary is used and modified instead.

A personal dictionary, user.edf, is automatically created in the users directory for additional spelling
information.

FILES

The standard dictionary files lsdm<language><country>.edf are located in the MicroEmacs '02
home directory.

User's may create their own dictionary files by shadowing the home directory file with their local
dictionary(s) located in a personal MicroEmacs '02 directory. See $search−path(5).

SEE ALSO

spell(2), add−dictionary(2), $search−path(5).

MicroEmacs '02

edf(8) 1294

edit(2m)

NAME

edit − Buffer has be changed

SYNOPSIS

edit Mode

e − mode line letters.

DESCRIPTION

edit mode indicated that the buffer has been edited. Many commands and typing 'edit' the current
buffer, automatically setting this mode. Commands which save these edits, such as save−buffer(2),
automatically remove this mode.

A '*' character, 3 characters from the left on the mode line is used to indicate that this mode is set, see
$mode−line(5). list−buffers(2) also displays the state of this mode in its output, as a '*' in the second
column.

When this mode is set and undo(2m) mode is enabled, the undo(2) command can be used to undo all
edits and the removal of this mode.

SEE ALSO

save−buffer(2), undo(2), list−buffers(2), $mode−line(5), undo(2m).

MicroEmacs '02

edit(2m) 1295

edit−dictionary(3)

NAME

edit−dictionary − Insert a dictionary in a buffer
restore−dictionary − Save dictionary user changes

SYNOPSIS

edit−dictionary "dictionary"
restore−dictionary

DESCRIPTION

edit−dictionary dumps the contents of "dictionary" into the temporary buffer "*dictionary*", if this
buffer already exists then edit−dictionary simply swaps to this buffer. This enables the user to
correct and prune the words in any dictionary. The given dictionary must have already been added as
a main dictionary using add−dictionary(2).

The format of the created buffer is one word on each line, each word takes one of the following 3
forms:

xxxx − Good word xxxx with no spell rules allowed
xxxx/abc − Good word xxxx with spell rules abc allowed
xxxx>yyyy − Erroneous word with an auto−replace to yyyy

Executing restore−dictionary in a buffer created by edit−dictionary will first call
delete−dictionary(2) to remove the original dictionary from memory. It then uses add−dictionary(2) to
create a new dictionary with the same name and then uses spell−add−word(3) to add all the words in
the current buffer into the new dictionary.

restore−dictionary does not save the new dictionary.

NOTES

edit−dictionary and restore−dictionary are macros defined in file spellutl.emf. They are not
defined by default so spellutl.emf must be executed first using execute−file(2).

SEE ALSO

spell−add−word(3), add−dictionary(2), save−dictionary(2), delete−dictionary(2).

MicroEmacs '02

edit−dictionary(3) 1296

ehf(8)

NAME

ehf − MicroEmacs help file

SYNOPSIS

!<helpTag>
<Text Description>
...
|<helpId>
<Text Description Line>
...
$?
...
<Text Description>
!<helpTag>
!<helpTag>
<Text Description>
...

DESCRIPTION

The on−line help information is retained in the file me.ehf, this is an ASCII text file which holds all
of the on−line help information. The help file comprises of formatted text <Text Description> which
is literally displayed to the user when help information is requested. Each text description is delimited
into pages with a !<helpTag> which identifies the block of text with a help label.

The !<helpTag> is placed before the text description and is identified by a exclamation mark (`!')
placed at the beginning of the line. The <helpTag> is the identifying name used by the help system
and takes the following form:

LSSNNNN...

Where:

L

Is the length of the "NNNN..." name which must be matched, a value of ' ' indicates that the whole
name must be matched, otherwise the value must be in the range '1' − '9' indicating the number of
characters to be match.

SS

MicroEmacs '02

ehf(8) 1297

Is the section number of the page, the first character should be a numeric (i.e. '3' for a macro) and the
second is an optional section letter. A value of ' ' indicates no section number and/or letter.

NNNN...

The page name, the length is unlimited but must be on one line.

Multiple <helpTag>'s may be associated with a common text description by proceeding a block of
text with multiple tags, each on a separate line, with no intervening non−tag lines (i.e. lines that do
not commence with !).

The <Text Description> that follows is the text associated with the tag. When the help system is
invoked with the tag then the text is displayed. There are 2 types of internal command lines, lines
starting with a '|' indicate that the following line should only be displayed if the requested help page
is <helpId>, where <helpId> is the the name used in the <helpTag>. This is a useful mechanism for
pages with multiple <helpTag>s.

Lines which contain just "$?" are MicroEmacs command lines where ? can be:

a

For a command help page display any global key bindings, for variables display its current value.

MicroEmacs uses a special hilighting scheme to control color schemes and hyper−text links, the
special embedded tags all start with and escape character (0x1b or '^[') and are defined as follows:

^[c?

Tag used to change color where ? can be:

A white, used for main text.
B red, used for underlining.
C green, used for italic font.
D cyan, used for bold font.
E light yellow, used for a header.
F light red, used for and image link.

^[s?

Tag used to change hilighting scheme where ? can be:

A Normal ehf hilight.
B MicroEmacs macro (or emf) hilighting.
Note that other tags can only be used in the normal ehf hilighting scheme.

^[ls<link>^[lm<name>^[le

Used to create hyper−links, <link> is the help link name which can be omitted if it is the same as <name>.
<name> should not contain any other tags, it is automatically displayed in the magenta color scheme.

MicroEmacs '02

ehf(8) 1298

NOTES

When the help system is invoked for the first time, me.ehf is loaded into internal memory and
fragmented into labeled pages using the <helpTag> information. Hence, any edits made to me.emf
are not visible in the help system until the next session.

Macros and alike may add additional help information to the internal help database at run−time using
the define−help(2) command.

The help hilighting is applied to the help buffer from the hilighting macro's defined in hkhelp.emf.
The hilighting is NOT part of the help file.

Special hilighting keys may be included in me.ehf provided that they are interpreted by the help
hilighting defined in hkehf.emf.

<Text Description> lines cannot commence with !, | or $ in the first column.

EXAMPLE

The following help entry defines the help for global−mode(2), add−global−mode(3) and
delete−global−mode(3). It uses most features mentioned, namely multiple link names, color and
scheme changes and several hyper−text links:

! 2 global−mode
! 3 add−global−mode
! 3 delete−global−mode
^[cE^[cENAME ^[cE^[cA

|global−mode
 global−mode − Change a global buffer mode
|add−global−mode
 add−global−mode − Set a global buffer mode
|delete−global−mode
 delete−global−mode − Remove a global buffer mode
$a

^[cE^[cESYNOPSIS ^[cE^[cA

 ^[cCn^[cA ^[cDglobal−mode^[cA "^[cCmode^[cA" (^[cDesc m^[cA)
 ^[cDadd−global−mode^[cA "^[cCmode^[cA"
 ^[cDdelete−global−mode^[cA "^[cCmode^[cA"

^[cE^[cEDESCRIPTION ^[cE^[cA

 ^[cDglobal−mode^[cA changes the state of one of the hereditary
 global modes. A buffer's modes are initialized to the global
 modes when first created. This command is very useful in changing

MicroEmacs '02

ehf(8) 1299

 some of the default behavior such as case sensitive searching (see
 the example below). See ^[ls^[lmOperating Modes^[le for a full list
 and description of modes. Also see ^[ls^[lmbuffer−mode(2)^[le for a
 full description of the use of the argument ^[cCn^[cA.

 The ^[ls^[lminfo(2)^[le command gives a list of the current global
 and buffer modes.

 ^[cDadd−global−mode^[cA and ^[cDdelete−global−mode^[cA are macros
 defined in me3_8.emf which use global−mode to add or remove a global
 mode. They are defined for backward compatibility and for ease of
 use; they are simple macros, add−global−mode is defined as follows:
^[sB
 define−macro add−global−mode
 ; Has the require mode been given as an argument, if so add it
 !force 1 global−mode @1
 !if ¬ $status
 ; No − use 1 global−mode to add a mode
 !nma 1 global−mode
 !endif
 !emacro

^[sA

^[cE^[cEEXAMPLE ^[cE^[cA

 The following example globally disables ^[ls^[lmexact(2m)^[le and
 ^[ls^[lmmagic(2m)^[le modes, if these lines are copied to the user
 setup file then are searches will be simple and case insensitive by
 default:
^[sB
 −1 global−mode "exact"
 −1 global−mode "magic"

^[sA

^[cE^[cENOTES ^[cE^[cA

 Globally adding ^[ls^[lmbinary(2m)^[le and ^[ls^[lmcrypt(2m)^[le
 modes is strongly discouraged as any file loaded would be assigned
 these modes. Instead the use of commands ^[ls^[lmfind−bfile(3)^[le
 and ^[ls^[lmfind−cfile(3)^[le are recommended.

 ^[ls^[lmauto(2m)^[le, ^[ls^[lmautosv(2m)^[le, ^[ls^[lmbackup(2m)^[le,
 ^[ls^[lmexact(2m)^[le, ^[ls^[lmmagic(2m)^[le, ^[ls^[lmquiet(2m)^[le,
 ^[ls^[lmtab(2m)^[le and ^[ls^[lmundo(2m)^[le modes are present on all
 platforms by default. On Windows and DOS platforms ^[ls^[lmcrlf(2m)^[le
 is also present and on DOS ^[ls^[lmctrlz(2m)^[le is also present.

^[cE^[cESEE ALSO ^[cE^[cA

 ^[ls^[lmOperating Modes^[le, ^[ls^[lmbuffer−mode(2)^[le,
 ^[ls^[lmfind−bfile(3)^[le, ^[ls^[lmfind−cfile(3)^[le,
 ^[ls^[lminfo(2)^[le.

MicroEmacs '02

ehf(8) 1300

FILES

The help file me.ehf is located in the MicroEmacs '02 home directory.

SEE ALSO

define−help(2), $MEPATH(5).

MicroEmacs '02

ehf(8) 1301

ehf(9)

SYNOPSIS

ehf − MicroEmacs '02 help file

FILES

hkehf.emf − MicroEmacs '02 help file.

EXTENSIONS

.ehf, *help*

DESCRIPTION

The ehf file type template performs the hilighting of the help file. The ehf file is a computer generated
file and uses special embedded text markers to indicate the required color scheme.

The macro file includes special macros to locate help information.

SEE ALSO

help(2).

Supported File Types

MicroEmacs '02

ehf(9) 1302

ehftools(3f)

NAME

ehftools − Generate a MicroEmacs help file

SYNOPSIS

me "@ehftools" *.htm

DESCRIPTION

The start−up file ehftools.emf may be invoked from the command line to generate a
MicroEmacs help file from a set of HTML files (with the extension .htm).

The MicroEmacs documentation suite of tools has not been officially released as part of the
distribution. For reference, the sequence of operations that are performed from the command line or
shell script are:−

make meehf.hts
hts2html −l .htm meehf.hts
mv me.htm me/1.htm
cd me
me "@ehftools" *.htm

NOTES

The nroff to HTML generator leaves the special markers <!−− XI: %s −−> in the generated
HTML code which contain the hypertext link information.

SEE ALSO

start−up(3), ehf(8).

MicroEmacs '02

ehftools(3f) 1303

emf(8)

NAME

emf − MicroEmacs macro file

SYNOPSIS

DESCRIPTION

The MicroEmacs '02 macro files are ASCII text files, given the file extension .emf. A number of
special macro files exist as follows:−

me.emf

The start−up macro file. This file is the first macro file to be invoked and is used to bootstrap
MicroEmacs '02 into the correct configuration.

hk<name>.emf

Macro files prefixed with hk generally denote File Hook macro files which are automatically invoked
when known file types are loaded.

<logname>.emf

The users start−up configuration file, typically used to configure the environment with the users
preferences.

*term.emf

Platform specific configuration files, used to configure the environment for a specific platform.

Macro files may be any name, the more prominent macro files are:−

color.emf

Color definitions for the buffers.

mouse.emf

Mouse interaction macros.

osd.emf

OSD Menu configuration file. FILES

MicroEmacs '02

emf(8) 1304

The default start−up file me.emf is located in the MicroEmacs '02 home directory.

User's may create their own start−up and files in their local MicroEmacs '02 directory. The users
start−up file is called $LOGNAME.emf, and may be used to execute other macro files defined by the
user.

SEE ALSO

File Hooks, emftags(3f), $MEPATH(5), execute−file(2).

MicroEmacs '02

emf(8) 1305

emf(9)

SYNOPSIS

emf − MicroEmacs '02 Macro File

FILES

hkemf.emf − MicroEmacs '02 Macro File hook definition
emf.etf − Template file

EXTENSIONS

.emf − MicroEmacs '02 Macro File

DESCRIPTION

The emf file type template handles the hilighting of the MicroEmacs '02 macro files.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, comments, strings and characters of the
language to be differentiated and rendered in different colors.

Auto Layout

The indentation mechanism is enabled which performs performs automatic layout of the text.
restyle−region(3) and restyle−buffer(3) are available to reformat (re−layout) selected sections of the
buffer, or the whole buffer, respectively.

Tags

A C−tags file may be generated within the editor using the Tools −> Emf−Tools −> Create Tag File.
find−tag(2) takes the user to the file using the tag information.

Folding and Information Hiding

Generic folding is enabled within the emf files. The folds occur about define−macro and !emacro
text located on the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3)

MicroEmacs '02

emf(9) 1306

(un)folds the current region.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.
C−c esc esc − Command complete.
A−C−i − Restyle the current region.
f2 − (un)fold the current region
f3 − (un)fold all regions

BUGS

No bugs reported

SEE ALSO

emftags(3f), find−tag(2), fold−all(3), fold−current(3), indent(2), restyle−buffer(3), restyle−region(3),
time(2m).

Supported File Types

MicroEmacs '02

emf(9) 1307

emftags(3f)

NAME

emftags − Generate a MicroEmacs macro tags file

SYNOPSIS

me "@emftags" [−v%tag−option=<flags>] [files]

DESCRIPTION

The start−up file emftags.emf may be invoked from the command line to generate a tags file for
MicroEmacs macro files, emf(8).

Given a list of files a tags file tags is generated in the current directory, which may be used by the
find−tag(2) command. If no files are specified the default file list is "./", i.e. process the current
directory. If a directory name is given (such as the default "./") all MicroEmacs macro files within
the directory will be processed.

The value of variable %tag−option is used to control the tag generation process, its value <flags>
can contain any number of the following flags:

a

Append new tags to the existing tag file, note that if also using flag 'm' multiple 'tags' to the same item
may be created.

m

Enable multiple tags. This enables the existence of 2 tags with the same tag name, but typically with
different locations. See help on find−tag(2) for more information on multiple tag support.

r

Enables recursive mode, any sub−directory found within any given directories will also be processed.
NOTES

This function is invoked from menu

Tools −> Emf Tools −> Create Tags File

when the user requests a tags file to be generated.

MicroEmacs '02

emftags(3f) 1308

The user setup file "myemftags.emf" is executed by emftags during start−up, this file can be used
to over−ride any of the emftags configuration variables (see below).

The following variables are set within "emftags.emf" and are used to control the process:−

%tag−option

Tags options flag, default value is "". See above for more information.

%tag−filemask

A list of source file masks to be processed when a directory is given, default value is ":*.emf:".

%tag−ignoredir

A list of directories to be ignored when recursive option is used, default value is ":SCCS/:CVS/:".

These variables can be changed using the −v command−line option or via the "myemftags.emf"
file

SEE ALSO

find−tag(2), start−up(3), emf(8).

MicroEmacs '02

emftags(3f) 1309

start−kbd−macro(2)

NAME

start−kbd−macro − Start/stop recording keyboard macro end−kbd−macro − Stop recording keyboard
macro

SYNOPSIS

start−kbd−macro (C−x ()
end−kbd−macro (C−x))

DESCRIPTION

A keyboard macro is a short hand way to repeat a series of characters. In effect, a recording is made
of the sequence of keys that you hit while defining a keyboard macro. The recording is started with
start−kbd−macro and ended with end−kbd−macro. The recording is then repeated whenever you
execute the keyboard macro using execute−kbd−macro(2).

Since it is key−strokes that are being saved, you can freely intermix commands and text to be inserted
into the buffer.

You can save a keyboard macro for later using the name−kbd−macro(2) command, which saves the
keyboard macro as a named macro. Otherwise if you start another keyboard macro recording session,
the previously defined macro is lost. So make sure that you are done with the current keyboard macro
before defining another one. If you have a series of commands that you would like to record for later
use, insert−macro(2) can be used to insert the macro into a text file and can be reloaded using the
execute−file(2) or execute−buffer(2) commands.

Recording commences with start−kbd−macro (C−x () and terminates when an end−kbd−macro
(C−x) is encountered.

NOTES

Once start−kbd−macro has been executed, the mouse is disabled until end−kbd−macro is executed.
This is because the mouse events cannot be successfully recorded in macros. The main menu can still
be used, but only via the keyboard bindings and hot−keys (note that the layout of the menu may
change).

SEE ALSO

execute−kbd−macro(2), insert−macro(2), kbd−macro−query(2), name−kbd−macro(2).

MicroEmacs '02

start−kbd−macro(2) 1310

erf(8)

NAME

erf − MicroEmacs registry file

SYNOPSIS

; Comment to the end of the line
<command> ::= "<identifier>" [= "<string>"][{ <command> }] *

DESCRIPTION

MicroEmacs '02 registry files are ASCII text files, given the file extension .erf. The registry file is a
simple syntax that allows an identifier to be associated with a string. The identifiers are unique and
allow a string value to be found when a search for a identifier is made. The string component is
optional.

The syntax allows the identifier's to be hierarchically nested, children of the identifier node are
enclosed in a set of curly braces { ... }. The enclosure itself comprises a number of identifiers, which
may have their own enclosures, and so on.

The backslash character `\' is the escape character, the following sequences of escape character are
recognized:−

\\ − Literal backslash
\" − Double quote (used within a quoted string)
\n − New line character.
\t − Tab character.

The semi−colon character `;' introduces a comment which exists to the end of the line.

EXAMPLE

The following is an example of a registry file:−

; −!− erf −!−
; Comment on this line
"dos"
{
 "file−ignore" = "~ ./ .o"
 "font" = "85"
 "mail−dir" = "c:/mail/"
 "mail−send" = "echo from \"%f\" file \"%o\""
 "mail−src" = "c:/mail/jon"
 "nested"="value"

MicroEmacs '02

erf(8) 1311

 {
 "foo"="bar"
 }
}

The history file username.erf is a good example of the use of the registry. This file retains historical
session information in The history registry file is automatically written at the end of a editing session
when the editor is closed down (or may be saved explicitly using save−history(2)).

Every user should have their own personal history file in their personal MicroEmacs directory. The
history file is located from the MicroEmacs '02 search path defined by $MEPATH(5), and is named
by the environment variable $LOGNAME(5).

NOTES

The registry files are not currently written with a backup.♦
Special care should be taken when editing registry files when they are loaded into
MicroEmacs. It is recommended that the registry file is not loaded as a registry item when
editing the registry text file.

♦

To edit the history registry file within MicroEmacs then the following sequence of steps should be
followed:−

Save the current history save−history(2).♦
Load the history registry file username.erf.♦
Edit the file.♦
Save edits back to the file.♦
Re−install the history read−history(2). This flushes the current session history and restores it
from the file. The new edits should now be in the registry.

♦

Examine the loaded registry using list−registry(2).♦

SEE ALSO

list−registry(2), read−history(2), read−registry(2), save−history(2), save−history(2), $MEPATH(5).

MicroEmacs '02

erf(8) 1312

erf(9)

SYNOPSIS

erf − MicroEmacs '02 registry file

FILES

hkerf.emf − MicroEmacs '02 registry file.

EXTENSIONS

.erf, *registry*

DESCRIPTION

The erf file type template performs the hilighting of the registry file.

Hilighting

The hilighting features allows components of the language to be differentiated and rendered in
different colors.

Auto Layout

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3) and
restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the whole buffer,
respectively. SEE ALSO

list−registry(2).

Supported File Types

MicroEmacs '02

erf(9) 1313

etf(8)

NAME

etf − MicroEmacs template file format

SYNOPSIS

<Free Form Text>

DESCRIPTION

The MicroEmacs '02 template file, typically given the extension .etf, is a file template for a new file
and defines common text that is automatically included when a new file is created.

The file inclusion is usually performed by macro etfinsrt(3), called from the File Hooks. The template
file has no specific format, although etfinsrt replaces key strings with relevant information.

EXAMPLE

The template file is inserted with the file hooks. If a file hook is called with an argument of 0 then the
buffer has been created and the template file is inserted.

define−macro fhook−c
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 ; Is it an include h file or a c file?
 !if &seq &mid $buffer−bname &rsin "." $buffer−bname 1 "h"
 etfinsrt "h"
 !else
 etfinsrt "c"
 !endif
 !endif
 1 buffer−mode "cmode"
 1 buffer−mode "time"
 .
 .
!emacro

See etfinsrt(3) for more information on how the template file is located and inserted into the buffer.

The default MicroEmacs '02 'C' mode template is defined as follows, but may be replaced with any
other text:−

/* −*− C −*− **
 *
 * Copyright $YEAR$ $COMPANY_NAME$.
 * All Rights Reserved

MicroEmacs '02

etf(8) 1314

 *
 *
 * System :
 * Module :
 * Object Name : m8fil001.8
 * Created By : $USER_NAME$
 * Created : $ASCII_TIME$
 * Last Modified : <000719.1013>
 *
 * Description
 *
 * Notes
 *
 * History
 *
 **
 *
 * Copyright (c) $YEAR$ $COMPANY_NAME$.
 *
 * All Rights Reserved.
 *
 * This document may not, in whole or in part, be copied, photocopied,
 * reproduced, translated, or reduced to any electronic medium or machine
 * readable form without prior written consent from $COMPANY_NAME$.
 *
 **/

static const char rcsid[] = "@(#) : Id";

FILES

The default template files are located in the MicroEmacs '02 home directory.

User's may specify their own template files by shadowing the home directory file with their own file
located in a personal MicroEmacs '02 directory. See $MEPATH(5).

SEE ALSO

File Hooks.
etfinsrt(3), &find(4).

MicroEmacs '02

etf(8) 1315

exact(2m)

NAME

exact − Searching and sorting case sensitivity

SYNOPSIS

exact Mode

E − mode line letter.

DESCRIPTION

exact mode sets the searching and line sorting commands to case sensitive when enabled (case
insensitive when disabled). See search−forward(2) and sort−lines(2).

SEE ALSO

buffer−mode(2), global−mode(2), search−forward(2), sort−lines(2).

MicroEmacs '02

exact(2m) 1316

exchange−point−and−mark(2)

NAME

exchange−point−and−mark − Exchange the cursor and marked position

SYNOPSIS

exchange−point−and−mark (C−x C−x)

DESCRIPTION

exchange−point−and−mark moves the cursor to the current marked position (see set−mark(2)) in
the current window and moves the mark to where the cursor was. This is very useful in finding where
a mark was, or in returning to a position previously marked.

SEE ALSO

set−mark(2), copy−region(2).

MicroEmacs '02

exchange−point−and−mark(2) 1317

execute−buffer(2)

NAME

execute−buffer − Execute script lines from a buffer
execute−line − Execute a script line from the command line

SYNOPSIS

execute−buffer "buffer−name"
execute−line ["command−line"]

DESCRIPTION

execute−buffer executes script lines in the named buffer buffer−name. If the buffer is off screen and
an error occurs during execution, the cursor is left on the line causing the error.

execute−line executes a in script line entered from the command line. Typically this is used in
macros.

SEE ALSO

execute−file(2), execute−string(2), execute−named−command(2).

MicroEmacs '02

execute−buffer(2) 1318

execute−file(2)

NAME

execute−file − Execute script lines from a file

SYNOPSIS

n execute−file "file" (esc /)

DESCRIPTION

execute−file executes script lines from the given file n times in succession, this is the normal way to
execute a MicroEmacs '02 script. The command prompts for a file name, and will then search for
<file>[.emf] in the search path. If the file is found then the file is loaded and the buffer is executed n
times.

SEE ALSO

execute−buffer(2), execute−line(2), execute−named−command(2), execute−string(2).

MicroEmacs '02

execute−file(2) 1319

execute−kbd−macro(2)

NAME

execute−kbd−macro − Execute a keyboard macro

SYNOPSIS

n execute−kbd−macro (C−x e)

DESCRIPTION

execute−kbd−macro executes a keyboard macro. The entire sequence of recorded key−strokes is
repeated starting at the current point. The result is exactly as if you were retyping the sequence all
over again. A numeric argument n prefixing the execute−kbd−macro command repeats the stored
key−strokes n times.

Keyboard macros are recored with start−kbd−macro(2); recording is terminated with
end−kbd−macro(2).

SEE ALSO

end−kbd−macro(2), kbd−macro−query(2), name−kbd−macro(2), start−kbd−macro(2).

MicroEmacs '02

execute−kbd−macro(2) 1320

execute−named−command(2)

NAME

execute−named−command − Execute a named command

SYNOPSIS

n execute−named−command "command−string" esc x

DESCRIPTION

execute−named−command command prompts the user for the name of a command to execute and
then executes the command n times. MicroEmacs '02 offers command completion and history
facilities, see ml−bind−key(2).

SEE ALSO

execute−buffer(2), describe−bindings(2), ml−bind−key(2).

MicroEmacs '02

execute−named−command(2) 1321

execute−string(2)

NAME

execute−string − Execute a string as a command

SYNOPSIS

n execute−string "string"

DESCRIPTION

execute−string executes the given string n times as if it is being typed. This is the writable format of
a keyboard macro, it can be placed in any emf file. Any characters may form the string (unprintables
as \xXX) and key−strokes that are bound to a command will execute that command. This command is
used by macros to store user defined keyboard macros.

EXAMPLE

The following example uses keyboard strokes with execute−string in a macro to format nroff(1) text
located between . commands:

define−macro nroff−para
 beginning−of−line
 !if ¬ &sequal @wc "."
 1 buffer−mode "magic"
 execute−string "\CXS^\\.\CM\CB\CM\CX\CH\CN\CM"
 −1 fill−paragraph
 execute−string "\CD\CX\CH\CN\CD\CXH\CB"
 !endif
 forward−line
!emacro

execute−string has the advantage that execution is very fast as the amount of parsing and decoding to
be performed is limited. The disadvantage is that you cannot quickly discern which operations are
being performed !!

NOTES

Try to avoid using named key, such as "up" and "return", as the keyboard macro equivalent is not
readable and is likely to change in future releases.

For this reason the following special abbreviations may be used

\E

MicroEmacs '02

execute−string(2) 1322

The "escape" key.

\N

The "return" key.

\T

The "tab" key.

\b

The backspace character (0x08).

\d

The delete character (0x7f).

\e

The escape character (0x1b).

\f

The form−feed character (0x0c).

\n

The carriage−return character (0x0a).

\r

The line−feed character (0x0d). SEE ALSO

buffer−abbrev−file(2), global−abbrev−file(2), insert−macro(2), name−kbd−macro(2),
start−kbd−macro(2).

MicroEmacs '02

execute−string(2) 1323

execute−tool(3)

NAME

execute−tool − Execute a user defined shell tool

SYNOPSIS

n execute−tool "tool−name"

DESCRIPTION

execute−tool launches a predefined shell tool, the tools are typically defined by the user−setup(3)
Tools page and executed using the MicroEmacs main Tools menu. See help on user−setup(3) for
more information on the basic facilities given by execute−tool.

If the numeric argument n is supplied it is used as the tool name to be executed, otherwise the
argument "tool−name" must be given.

A tool with a numeric name can be executed via a key binding, for example, to execute tool 3 (as
defined by user−setup) to 'C−3' add the following line to the user setup file:−

3 global−bind−key execute−tool "C−3"

NOTES

The registry entries for a tool must be located in registry directory
"/history/$platform/tool/tool−name" where $platform is the current setting of variable
$platform(5) and tool−name is the name of the tool as given to the command. The following registry
entries are used:−

name

The name of the tool as displayed in the user−setup Tools dialog and the Main Tools menu. This is
only used for tools 0 to 9.

command

The command−line to be launched when the tool is executed, the following special tokens
may be used in the command−line which are substituted at execution:−

%ff

The current buffer's full file name, including the path.

MicroEmacs '02

execute−tool(3) 1324

%fp

The current buffer's file path.

%fn

The current buffer's file name without the path.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the file name does
not have an extension.

Note that "%ff" is always the same as "%fp%fn" and "%fp%fb%fe". If any of these tokens
are used, the tool will fail to execute if the current buffer does not have a file name.

flag

A bit based flag setting the tool characteristics, where:−

0x01

Enable current buffer saving.

0x02

Enable prompt before saving current buffer.

0x04

Enable all edited buffers saving.

0x08

Enable prompt before saving an edited buffer.

0x10

Enable output capturing.

0x20

Enable concurrent running, not available on all platforms, see variable $system(5).

bname

MicroEmacs '02

execute−tool(3) 1325

The name of the buffer to be used if the output is captured. The following special tokens may
be used in the buffer name which are substituted at execution:−

%fn

The current buffer's file name without the path, set to the buffer name if the current buffer
does not have a file name.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension. Set to
the buffer name if the current buffer does not have a file name.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the current buffer
does not have a file name or it does not have an extension.Note that "%fn" is always the same as
"%fb%fe". Default buffer name when this field is left empty is "*command*", or "*icommand*" if
Run Concurrently is enabled.

If more than 10 tools are required (maximum number definable by user−setup) or names are
preferred, it is recommended that the user−setup dialog is used to define the tool and then use the
registry copy utility bound to 'c' in a list−registry(2) buffer.

SEE ALSO

user−setup(3), ipipe−shell−command(2), pipe−shell−command(2), shell−command(2), system(5).

MicroEmacs '02

execute−tool(3) 1326

exit−emacs(2)

NAME

exit−emacs − Exit MicroEmacs

SYNOPSIS

n exit−emacs

DESCRIPTION

Exit MicroEmacs back to the operating system. If no argument n is given and there are any unwritten,
changed buffers, the editor prompts the user to discard changes. If an argument is specified then
MicroEmacs exits immediately.

NOTES

All buffers with a name starting with a '*' are assumed to be system buffers (i.e. *scratch*) and are
not saved.

SEE ALSO

quick−exit(2), save−buffers−exit−emacs(2).

MicroEmacs '02

exit−emacs(2) 1327

expand−abbrev(2)

NAME

expand−abbrev − Expand an abbreviation

SYNOPSIS

expand−abbrev

DESCRIPTION

expand−abbrev expands an abbreviation to an alternate form. The abbreviation must be an
alpha−numeric string and the cursor must be one position to the right of the abbreviation (which must
not be alpha−numeric) when this command is called. If the abbreviation is found, it is deleted and the
alternate form is inserted leaving the cursor at the end of the insertion unless \p is used. If not found,
a space is inserted.

SEE ALSO

buffer−abbrev−file(2), global−abbrev−file(2), expand−abbrev−handle(3), eaf(8).

MicroEmacs '02

expand−abbrev(2) 1328

expand−abbrev−handle(3)

NAME

expand−abbrev−handle − Expand an abbreviation handler

SYNOPSIS

expand−abbrev−handle (esc esc)

DESCRIPTION

expand−abbrev−handle pulls together all forms of abbreviation expansion into a single command so
that it can be bound to a single key. The abbreviation must be an alpha−numeric string and the cursor
must be one position to the right of the abbreviation (which must not be alpha−numeric) when this
command is called. The command attempts to expand the abbreviation using the following commands
in turn:

expand−abbrev(2)

Uses a buffer specific and global abbreviation files, if set, to look up the abbreviation. The
use of the abbreviation file can be disabled using buffer−setup(3).

expand−iso−accents(3)

Expands ISO accent letter if the expansion mode is enabled via either the user−setup(3)
General Page or by using the iso−accents−mode(3) command.

expand−look−back(3)

Looks for a word starting the same in the current buffer's last 100 lines, this can be enabled in
the user−setup(3) General page.

Buffer specific expansion

Executes a buffer specific abbreviation expansion if the current buffer's file hook supports
abbreviation expansion.

Word expansion

If the current buffer does not support file type specific expansion and Word Expansion is
enabled via the user−setup(3) General page (Dict'n setting) expansion is attempted using
the expand−word(3) command which expands the current partial word using the dictionary of
the user's current language; warning − this can be slow!

MicroEmacs '02

expand−abbrev−handle(3) 1329

The command exits after first command to successfully expand or if none expand the command fails.
See the help in the individual expansion commands for more help.

SEE ALSO

user−setup(3), expand−abbrev(2), expand−iso−accents(3), expand−look−back(3), expand−word(3).

MicroEmacs '02

expand−abbrev−handle(3) 1330

expand−iso−accents(3)

NAME

expand−iso−accents − Expand an ISO accent
iso−accents−mode − Enable/disable ISO accent expansion short−cut mode

SYNOPSIS

expand−iso−accents
n iso−accents−mode

DESCRIPTION

expand−iso−accents provides a facility to enter a plain text representation of an ISO accent and then
to expand it into a proper ISO accented character. For example:−

`a => small a, grave accent
^a => small a, circumflex accent
'a => small a, acute accent
"a => small a, umlaut
~a => small a, tilde
.a => small a, ring
14 => fraction, one−quater
12 => fraction, one−half
34 => fraction, three−quaters
ae => ae ligature
sz => small sz ligature, German.
+− => plus or minus (math.)
co => copyright
rg => registered trademark
tm => trade mark
oe => small oe ligature
/o => small o, slash

The expand−iso−accents can be called directly to expands the ISO abbreviated character sequence
into it's ISO ASCII character equivalent. The command looks at the 2 characters to the left of the
cursor and tries to find a matching abbreviation, if found the 2 characters are removed, replaced by
the single ISO character.

The more typical way of using this feature is by enabling its use in the abbreviation handler which is
usually bound to "esc esc ". It can be enabled by either by using the iso−accents−mode command
or, for a more permanent installation, from the user−setup(3) => General => Abbrev Expansion
settings.

MicroEmacs '02

expand−iso−accents(3) 1331

When using the iso−accents−mode command, if a numeric argument n is given (the value is not
used) then the ISO accent expansion is installed locally into the current buffer. If n is omitted then
expansion is enabled/disabled globally (across all buffers).

expand−iso−accents is the macro command that This is by default bound to . If an ISO character is
not located then expand−abbrev(2) is invoked to try a standard abbreviation.

NOTES

iso−accents−mode and expand−iso−accents are implemented as macros in the file abbrev.emf,
the repertoire of expansions may be enhanced by editing this file.

Unlike the general expand−abbrev(2) command which attempts to expand the current word,
expand−iso−accents only considers the last two characters regardless of whether they are word
characters or start a word. Therefore the general expand−abbrev command cannot be used to
implement a similar feature.

SEE ALSO

expand−abbrev−handle(3), buffer−abbrev−file(2), expand−abbrev(2), expand−look−back(3),
expand−word(3).

MicroEmacs '02

expand−iso−accents(3) 1332

expand−look−back(3)

NAME

expand−look−back − Complete a word by looking back for a similar word

SYNOPSIS

expand−look−back

DESCRIPTION

expand−look−back attempts to complete the word at the current position by looking backward for
another word which starts the same. If such a word is found within 100 lines of the current cursor
position the current partial word is replaced with the word found.

expand−look−back is automatically invoked from the expand−abbrev−handle(3) macro in response
to an expansion command, it is only invoked if enabled in the user−setup(3) => General => Abbrev
Expansion => Lookbk setting is enabled.

NOTES

expand−look−back is a macro implemented in abbrev.emf.

The user−setup configuration simply sets the macro variable .expand−look−back.on to TRUE,
i.e.:

set−variable .expand−look−back.on 1

It may be subsequently disabled by setting the variable back to 0.

SEE ALSO

expand−abbrev−handle(3), user−setup(3).

MicroEmacs '02

expand−look−back(3) 1333

expand−word(3)

NAME

expand−word − Complete a word by invocation of the speller

SYNOPSIS

expand−word

DESCRIPTION

expand−word attempts to complete the word at the current position through the use of the current
language dictionary. The user is presented with a list of endings for the given word portion. These
may be selected with the cursor or mouse.

expand−word is automatically invoked from the expand−abbrev−handle(3) macro in response to an
expansion command, it is only invoked if enabled in the user−setup(3) => General => Abbrev
Expansion => Dict'n setting is enabled.

NOTES

expand−word is a macro implemented in abbrev.emf.

The user−setup configuration simply sets the macro variable .expand−word.on to TRUE, i.e.:

set−variable .expand−word.on 1

It may be subsequently disabled by setting the variable back to 0.

SEE ALSO

expand−abbrev−handle(3), spell−buffer(3), find−word(3).

MicroEmacs '02

expand−word(3) 1334

f(9)

SYNOPSIS

f, f77, f90 − Fortran files

FILES

hkf90.emf − Fortran hook definition
f90.etf − Fortran 90 template file.
f.etf − Fortran (77) template file.

EXTENSIONS

.f − Fortran file

.f77 − Fortran 77 file

.f90 − Fortran 90 file

DESCRIPTION

The f90 file type templates provide simple hilighting of Fortran 77 and Fortran 90 files, the template
provides minimal hilighting of both language syntaxes, which are overloaded into the same file.

The major difference between the file types, apart from the new reserved words, is the comments. In
Fortran 90 comments are introduced with !, while the other types use a c in column 0.

BUGS

The Fortran hilight file is in it's infancy and a number of it's tokens may be misplaced.

SEE ALSO

Supported File Types

MicroEmacs '02

f(9) 1335

fence(2m)

NAME

fence − Auto fence matching mode

SYNOPSIS

fence Mode

f − mode line letter.

DESCRIPTION

fence mode can be used to enable or disable the automatic displaying of and open fence when the
corresponding closing fence is typed. When the mode is enabled and the closing fence is typed the
cursor is temporarily move to the position of the opening fence. The duration of the move can be
controlled by the $fmatchdelay(5) variable; any user input interrupts the display.

If cmode(2m) is also enabled the search algorithm used is 'C' aware and if a matching fence is not
found then the bell is rung as a warning. If cmode is not enable any closing fence which cannot be
matched is ignored.

NOTES

The following characters are considered closing fences:

})]

These are match with the following opening fences respectively:

{ ([

SEE ALSO

$fmatchdelay(5), cmode(2m), goto−matching−fence(2).

MicroEmacs '02

fence(2m) 1336

file−attrib(3)

NAME

file−attrib − Set the current buffers system file attributes

SYNOPSIS

file−attrib

DESCRIPTION

file−attrib opens a dialog enabling the user to change the system properties of the current buffer's
file. Top of the dialog give the current buffer name and its file name. The Save Changes button
writes the current buffer out with any current edits and changes to its file attributes. The Ok button
closes the file−attrib dialog, any changes made to the file attributes will be applied next time the
buffer is written.

The type allow the changing between UNIX, MS Windows and DOS text file formats. UNIX has a
single new line character ('\n') where as Windows and Dos have a double new line character
('\r\n'). Also a Dos text file is terminated with a C−z (0x1A) character which the other two do not.
These attribute are set in MicroEmacs by using buffer modes crlf(2m) and ctrlz(2m).

The central part of the dialog contains system dependent attributes which are defined as follows:

UNIX Platforms

Allow the setting of user, group and global, read, write and execute permissions, see man pages on
chmod(1) for more information. This is a front end to setting the variable $buffer−fmod(5).

Win32 Platforms

Allow the setting of MS Windows file attributes, i.e. read−only, hidden, archive etc. Note that the
directory attribute is displayed but cannot be altered. This is a front end to setting the variable
$buffer−fmod(5).

DOS Platform

Allow the setting of MS Dos file attributes, i.e. read−only, hidden, archive etc. Note that the directory
attribute is displayed but cannot be altered. NOTES

file−attrib is a macro implemented in fattrib.emf.

SEE ALSO

MicroEmacs '02

file−attrib(3) 1337

find−file(2), write−buffer(2), crlf(2m), ctrlz(2m), $buffer−fmod(5).

MicroEmacs '02

file−attrib(3) 1338

file−browser(3)

NAME

file−browser − Browse the file system file−browser−close − Close the file−browser
file−browser−swap−buffers − Swap between file−browser windows

SYNOPSIS

file−browser (f10)
file−browser−close
file−browser−swap−buffers

DESCRIPTION

file−browser can be used to browse around the file system. When first executed file−browser creates
2 buffers, "*directory*" displaying the directory structure and "*files*" listing the files in the
current directory with information on each file. file−browser displays these buffers side by side,
splitting the current window horizontally if required.

Once open the user can browse through the system using the following keys in the *directory*
buffer:

space

Selects the directory on the current line and up−dates the *files* buffer with the information on
this directory. This can also be done by clicking the left mouse button on the directory name.

return

Selects the directory on the current line, if open (sub−directories displayed) then closes it or if closed
it is opened. The *files* buffer is up−dated with the information on the directory. This can also be
done by clicking the left mouse button on the '+' or '−' symbol just before the directory name.

C−return

As with return expect sub−directories are recursively opened or closed, note that this could take
some time on large file systems. This can also be done by clicking the right mouse button on the '+' or
'−' symbol just before the directory name.

tab

Move to the *files* buffer.

delete

MicroEmacs '02

file−browser(3) 1339

Closes file−browser.

The following keys can be used in the *files* buffer:

return

If the current line is a directory, this because the current directory, updating both the *directory*
and *files* buffers. If the line is a file then it is opened using find−file(2). This can also be done
by clicking the left mouse button on the file name.

space

Toggles the tag state of the file on the current line, see x command. This can also be done by clicking
the left mouse button anywhere before the file name, or for multiple files drag a region with the left
mouse button.

X or x

Executes a shell−command(2) on all tagged files. The user is prompted for the command line
which can contain the following special tokens:

%p Full file name, including path.
%f The file name without the path.
As the shell−command is executed in the directory %f is safe to use in a command such as "del
%f".

D or d

Deletes all the tags in the buffer.

tab

Move to the *directory* buffer.

delete

Closes file−browser.

file−browser−swap−buffers swaps between the *directory* and *file* windows, making the
other the current window, this is usually locally bound to the tab key.

file−browser−close hides both the *directory* and *file* windows, closing the file−browser,
this is usually locally bound to the delete key.

SEE ALSO

directory−tree(2), find−file(2), shell−command(2).

MicroEmacs '02

file−browser(3) 1340

file−op(2)

NAME

file−op − File system operations command

SYNOPSIS

n file−op [(["from−file" "to−file"]) |

(["delete−file"]) | (["dir−name"])] DESCRIPTION

file−op can be used to perform numerous file system operations. The given argument n must be used
to determine the required operation, the value is a bit based flag denoting the operation as follows:

0x010

Log−off and close down the current ftp connect (not a file system operation but functionality was
required and it had to go somewhere).

0x020

When this bit is set the command functionality is changed to delete−file, the single argument
delete−file is deleted.

0x040

When this bit is set the command functionality is changed to move−file, the specified from−file is
moved to to−file.

0x080

When this bit is set the command functionality is changed to copy−file, the specified from−file is
copied to to−file.

0x100

When this bit is set the command functionality is changed to making a new directory, the specified
dir−name is the name of the new directory. A file or directory of the given name must not already
exist.

Only one operation can be performed per invocation. The following bits in the given argument n can
be used to effect the behaviour of these operations:

0x01

MicroEmacs '02

file−op(2) 1341

Enables validity checks, these include a check that the proposed file does not already exist, if so
confirmation of writing is requested from the user. Also MicroEmacs checks all other current buffers
for one with the proposed file name, if found, again confirmation is requested. Without this flag the
command will always succeed wherever possible.

0x02

Creates a backup of any file about to be deleted or over−written. Set help on $buffer−backup(5) for backup
file−name generation. NOTES

http files are not supported except as the source file when copying. ftp files are fully supported with
the restriction that the from and to files cannot both be url (http or ftp) files.

The command is used by file−browser(3) and ftp(3) which provides an easy to use interfaces for file
manipulation.

SEE ALSO

file−browser(3), ftp(3), find−file(2), write−buffer(2), $temp−name(5).

MicroEmacs '02

file−op(2) 1342

fileHooks(2)

FILE HOOKS

File hooks provide a mechanism to automatically invoke a set of macros for a given buffer type when
the following events occur:

Loading of a file into a buffer♦
Moving into a buffer (i.e. making a buffer current)♦
Moving out of a buffer (i.e. making another buffer current)♦
Deleting an active buffer♦

The file hook selection (see below) is performed on the file name / extension and on the textual
content of the buffer using add−file−hook.

Refer to Language Templates for a description of how the file hooks are used to define a new
template for a new text format.

The hook macros allow buffer modes and highlighting, applicable to the text type of the file, to be
applied to the buffer. In addition, the associated hook macros may be located in a separate file and are
loaded on demand when the file reading determines that a set of hook macros are required.

Consider a file hook definition of the form;

add−file−hook ".c .h" "fhook−c"

which binds the file hook fhook−c to any files that are loaded with the extension .c and .h. The
operations undertaken by MicroEmacs '02 are defined as follows when a file foo.c is loaded:−

Attempt to load file foo.c, if foo.c is not found then create a new buffer and assign file
name foo.c.

♦

If foo.c is found then load file into buffer. Search the first line(s) of the buffer for magic
hook text (add−file−hook with argument).

♦

If magic hook was not found then determine hook name from the file extension
(add−file−hook information).

♦

If a hook command is located, assign the file hook fhook−c to the buffer, assign the buffer
entry (begin) hook macro of bhook−c; assign a buffer exit hook of ehook−c.

♦

If the macro fhook−c is undefined then execute the macro file hkc.emf from the MicroEmacs
home directory in an attempt to load the macro. If the file myc.emf is defined, then the
modifications to the language template are applied after hkc.emf is loaded.

♦

If the macro fhook−c is (now) defined then foo.c is TEMPORARILY made the current
buffer and the file hook macro fhook−c is executed to completion and the previous current
buffer is restored. [TEMPORARY here implies that no buffer hooks are executed on the flip
in/out of foo.c].

♦

The current buffer is officially swapped to foo.c. At this point the ehook of the old current
buffer is executed (while its still current) and then foo.c is swapped in to become the
current buffer; the begin buffer hook bhook−cmode is then executed for foo.c (if it exists).

♦

MicroEmacs '02

fileHooks(2) 1343

If the user moves to another buffer execute the end hook macro ehook−cmode (if it exists)
and move to the new buffer, executing it's begin hook.

♦

If the user subsequently returns to buffer foo.c execute the previous buffers end hook
macro, set the current buffer to foo.c and execute the begin hook macro bhook−c (if it exists).

♦

If the user kills buffer foo.c, if foo.c is the current buffer then an alternative buffer is
made current, ehook and bhook executed as normal. If macro dhook−c is defined then
foo.c is TEMPORARILY made the current buffer and the delete hook macro dhook−c is
executed to completion and the previous current buffer is restored.

♦

The name of the file hook macro name is important, hook commands must commence with the text
fhook−mode where mode is an identifier for the operating mode. The name space is decomposed as
follows:−

The initial f is removed and replaced with b for the begin hook macro and e for the end hook
macro.

♦

When the fhook macro is undefined the mode component is removed and the file
hkmode.emf is executed from the MicroEmacs home directory in an attempt to define the
macro.

♦

The fhook− nomenclature may be omitted provided that the name is less than 6 characters, however
the file, begin and end hook macros MUST commence with f, b and e respectively. In addition the
macros must be defined as no auto file loading is performed.

Buffer Hook Variables

The macros bound to a buffer may be interrogated, the variables $buffer−fhook(5), $buffer−bhook(5),
$buffer−ehook(5) and $buffer−dhook(5) contain the names of any associated macro attached as a
macro hooks, defining the file, begin, end and delete hooks respectively. If a macro is not bound then
the empty string "" is returned. Setting the variables has the effect of defining the hook and is a
method by which the buffer hooks may be affected after the buffer has been loaded.

Determination of a new file

The file hook fhook−XXX numeric argument may be used to determine if the file associated with a
buffer is a new file created by the user, or an existing file. Typically this distinction is used to
determine whether a boiler template is added to the file or not. The macro argument @# is defined as
zero (0) if this is a new file that has been created, or non−zero otherwise.

The macro argument status is typically tested on entry to the macro as follows:−

define−macro fhook−mode
 !if ¬ @#
 ; This is a new file. Do new file things
 !else
 ; This is an existing file
 !endif
 ; Set up bindings
!emacro

MicroEmacs '02

fileHooks(2) 1344

An example of a generic hook file is given at the end of this section which elaborates on the file
hooks.

Begin and End hooks

The begin and end hooks are usually used to save and restore global states which require special
settings for a particular buffer type. This typically involves saving and restoring global variables
which are used by other buffers in a different configuration. For example the following is used to
reformat the time stamp string; the time stamp is a global variable $timestamp(5) and if it is changed
in one buffer, it must be restored ready for another. In this case the old time stamp is retained in a
local buffer variable whenever the buffer is entered, the time stamp is then modified for the buffers
requirements. On exit from the buffer the old time stamp format is restored to it's former state.

0 define−macro bhook−foo
 set−variable .timestamp $timestamp ; Save old time stamp.
 set−variable $timestamp "19%Y/%M/%D %h:%m:%s"
!emacro

0 define−macro ehook−foo
 set−variable $timestamp .bhook−foo.timestamp
!emacro

Note that in both cases the define−macro(2) invocation is defined as zero, this merely hides the macro
from the command line since both are private macros not normally invoked by the user.

FILE HOOK SELECTION

MicroEmacs '02 may be reconfigured to operate in different modes (referred to a Major Modes in
GNU emacs(1)) using the macro file hooks. The file hooks allow the working environment to be
customized for the editing of text of a particular sort, by importing text specific macros, key rebinding
and highlighting.

MicroEmacs '02, by default, loads a file into a buffer with default global modes with no highlighting.
There are no mode specific key bindings, variable settings, macros or highlights, buffer interaction
behaves in it's default state. The state of the buffer interaction may be modified through the use of the
buffer modes (see Operating Modes), for example the 'C' programming language cmode(2m) changes
the characteristics of the tab character and performs language specific indentation of statements.
When a text specific set of highlighting rules are applied to the buffer, the text becomes emphasized
through the use of color applied selectively to the text i.e. comments, keywords, strings are shown in
different colors, allowing them to be differentiated without studying the content.

Setting the operating mode of the buffer would be tedious to perform from the command line, instead
MicroEmacs '02 uses three different prioritized criteria to endeavor to select the correct operating
mode. The operating mode is applied to the buffer by execution of a set of file specific macros,
referred to a hook commands. The selection criteria of the hook commands is performed as follows,
ordered in lowest to highest priority:−

File Name

MicroEmacs '02

fileHooks(2) 1345

MicroEmacs '02 uses the filename and/or the file extension to select a start−up hook
command. File names and extensions are bound to a set of macro hooks in a space separated
list e.g.

add−file−hook "c cpp" "fhook−cmode"
add−file−hook "doc txt README" "fhook−doc"

The space separated list of names are interpreted as either file extensions or filenames. In this
case any file with the extension .c, .cpp is bound to a file hook called fhook−cmode e.g.
foo.c. Similarly files with the extension .doc or .txt are interpreted as plain text documents
and are bound to fhook−doc. e.g. foo.txt. The entry README that exists in the
documentation hook list may refer to a file README and also foo.README, both cases
invoke the document hook.

The file selection is the lowest priority selection criteria but usually satisfies most mode
selection requirements.

Magic Strings

There are cases when file extensions may be omitted from files, typically these files include
an identifier, or magic string, on the first line of the file which is used to identify the file to
the operating system or application e.g. shell scripts under UNIX. MicroEmacs '02
automatically interrogates the top of every file that is loaded to locate some form of
identification string. The identification strings are defined in a similar way to the file name
hooks, except instead of defining a file extension the location and text content of the identifier
is defined:

1 add−file−hook "#!/bin/sh" "fhook−shell"
1 add−file−hook "#!/usr/local/bin/wish" "fhook−tcl"

In this case, any file that commences with "#!/bin/sh" is interpreted as a shell script and
invokes the shell hook fhook−shell. Where the identifier does not appear on the first
non−blank line, the argument may be increased to the number of lines to be searched. Also it
the magic sting should be search for without exact(2m) mode then the argument should be
negated, e.g.

−4 add−file−hook "<html>" "fhook−html"

invokes fhook−html whenever "<html>", "<HTML>" etc. is found in the first 4 lines of a
file header, e.g.:

<!−− Comment line −−>
<HtMl>

A match on a string identifier is assigned a higher priority than the file extension. It is
recommended that magic strings are only used where there are no predefined file extensions,
or conflicts exist between files with the same extension containing data interpreted in a
different context.

MicroEmacs '02

fileHooks(2) 1346

Explicit Strings

The last method allows an explicit identifier string to be embedded into the text of the file
informing MicroEmacs '02 which mode it should adopt. GNU Emacs supports this (see
Major Mode in the GNU Emacs documentation) type of operation by insertion of strings of
the form:

−*− mode −*−

Where mode represents the major mode within GNU Emacs. The same format as used by
Magic Strings can be used to find and extract the mode, e.g.:

−1 add−file−hook "−[*!]−[\t]nroff.*−[*!]−" "fhook−nroff"

The definition would detect the GNU Emacs mode defined in an Nroff file e.g.

.\" −*− nroff −*− "

.TH man 1

.SH NAME

...

It should be stressed that the −*− syntax belongs to GNU Emacs and NOT MicroEmacs '02,
MicroEmacs '02 provides a mechanism to locate, extract and interpret the string. The −*−
syntax should only be applied to files if it is known that the mode is a GNU mode.

A MicroEmacs '02 specific string is also provided, defined as:

−!− mode−!−

where mode is an arbitrary string defined by add−file−hook. User defined modes may be
created and assigned to files with this syntax, this does not conflict with the GNU Emacs
command. For example to assign a new mode mymode to a file we would define the
following:−

−1 add−file−hook "−!−[\t]mymode.*−!−" "fhook−mymode"

Files containing a the following identifier would be loaded with mymode hook:

−!− mymode −!−
#
Last Modified: <120683.1014>

FILE HOOK SCRIPTS

The buffer hook files hkname.emf typically follow a standard layout, and are generally associated
with hi−lighting as follows, mode in this case is the name of the file mode associated with the file:−

!if &seq .hilight.mode "ERROR"

MicroEmacs '02

fileHooks(2) 1347

 set−variable .hilight.mode &pinc .hilight.next 1
!endif
;
; Define the hilighting
;
0 hilight .hilight.mode 1 $global−scheme
hilight .hilight.mode 2 "**" .scheme.comment
hilight .hilight.mode 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.mode 0 "'.'" .scheme.quote

hilight .hilight.mode 1 "if" .scheme.keyword
hilight .hilight.mode 1 "elif" .scheme.keyword
hilight .hilight.mode 1 "else" .scheme.keyword
...

; Reset the hilighting printer format and define the color bindings.
0 hilight−print .hilight.mode
hilight−print .hilight.mode "i" .scheme.comment
hilight−print .hilight.mode "b" .scheme.keyword .scheme.variable
hilight−print .hilight.mode "bi" .scheme.string .scheme.quote
...

; Define the indentation tokens
0 indent .hilight.mode 2 10
indent .hilight.mode n "if" 4
indent .hilight.mode s "elif" −4
indent .hilight.mode s "else" −4
indent .hilight.mode o "endif" −4
indent .hilight.mode n "while" 4
...

define−macro fhook−mode
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "mode"
 !endif
 set−variable $buffer−hilight .hilight.mode
 set−variable $buffer−indent .hilight.mode
 1 buffer−mode "time"
 1 buffer−mode "indent"
 buffer−abbrev−file "mode"
!emacro

The previous example shows how the fhook−mode numeric argument is used to determine if this is a
new file. If the argument @# is zero then this is interpreted as a new file, in this case a standard
template is inserted (from file mode.etf) and the generic strings such as $YEAR$ replaced with
construction information. The template is generally used for standard headers and skeleton text body.

In addition an abbreviation file mode.eaf (see eaf(8)) is bound to the buffer using the
buffer−abbrev−file(2) command and the buffer hi−lighting enabled by assignment of the
$buffer−hilight(5) variable.

MODIFYING FILE HOOKS

MicroEmacs '02

fileHooks(2) 1348

The standard hook files supplied with MicroEmacs '02 should not be modified, changes to the file
hooks may be applied using a separate macro file called myXXX.emf, this is automatically executed
after the hkXXX.emf file is executed.

The extended hook functions may be defined company wide, or by the user, to over−ride some of the
standard hook functions, or to extend the syntax of the base files with locally defined extensions. As
an example, consider the following file myc.emf which extends the basic hkc.emf file set of
hi−lighting tokens for the 'C' Language.

;;
;
; Created By : Steven Phillips
; Created : Thu Jun 18 15:34:05 1998
; Last Modified : <230798.0854>
;
; Description Extension hilighting for the 'C' language.
;
; Notes Define the locally defined 'C' library types and definitions
; as extensions to the 'C' programming language.
;
; History
;
;;

; MicroEmacs specific tokens
hilight .hilight.c 1 "LINE" .scheme.type
hilight .hilight.c 1 "BUFFER" .scheme.type
hilight .hilight.c 1 "WINDOW" .scheme.type
hilight .hilight.c 1 "REGION" .scheme.type
hilight .hilight.c 1 "KEYTAB" .scheme.type
hilight .hilight.c 1 "KILL" .scheme.type
hilight .hilight.c 1 "KLIST" .scheme.type
hilight .hilight.c 1 "HILNODE" .scheme.type
hilight .hilight.c 1 "HILNODEPTR" .scheme.type
hilight .hilight.c 1 "HILCOLOR" .scheme.type
hilight .hilight.c 1 "SELHILIGHT" .scheme.type
hilight .hilight.c 1 "VIDEO" .scheme.type
hilight .hilight.c 1 "VVIDEO" .scheme.type
hilight .hilight.c 1 "FRAMELINE" .scheme.type
hilight .hilight.c 1 "IPIPEBUF" .scheme.type
hilight .hilight.c 1 "DIRNODE" .scheme.type
hilight .hilight.c 1 "UNDOND" .scheme.type
hilight .hilight.c 1 "meVARLIST" .scheme.type
hilight .hilight.c 1 "meVARIABLE" .scheme.type
hilight .hilight.c 1 "meCMD" .scheme.type
hilight .hilight.c 1 "meAMARK" .scheme.type
hilight .hilight.c 1 "meABREV" .scheme.type
hilight .hilight.c 1 "meMACRO" .scheme.type
hilight .hilight.c 1 "meNARROW" .scheme.type
hilight .hilight.c 1 "meREGISTERS" .scheme.type
hilight .hilight.c 1 "meSTAT" .scheme.type
hilight .hilight.c 1 "osdITEM" .scheme.type
hilight .hilight.c 1 "osdDIALOG" .scheme.type
hilight .hilight.c 1 "osdCHILD" .scheme.type
hilight .hilight.c 1 "meSCROLLBAR" .scheme.type
hilight .hilight.c 1 "osdCONTEXT" .scheme.type
hilight .hilight.c 1 "osdDISPLAY" .scheme.type

MicroEmacs '02

fileHooks(2) 1349

hilight .hilight.c 1 "RNODE" .scheme.type
hilight .hilight.c 1 "REGHANDLE" .scheme.type
hilight .hilight.c 1 "meDIRLIST" .scheme.type
hilight .hilight.c 1 "meNAMESVAR" .scheme.type
hilight .hilight.c 1 "meDICTADDR" .scheme.type
hilight .hilight.c 1 "meSPELLRULE" .scheme.type
hilight .hilight.c 1 "meDICTWORD" .scheme.type
hilight .hilight.c 1 "meDICTIONARY" .scheme.type
hilight .hilight.c 1 "meMODE" .scheme.type

SEE ALSO

Operating Modes, Language Templates, add−file−hook(2), cmode(2m).

MicroEmacs '02

fileHooks(2) 1350

fill−paragraph(2)

NAME

fill−paragraph − Format a paragraph

SYNOPSIS

n fill−paragraph (esc o)

DESCRIPTION

fill−paragraph this takes all the text in the current paragraph (as defined by surrounding blank lines,
or a leading indent) and attempts to fill it from the left margin to the current fill column as defined by
$fill−col(5). When an argument n is supplied n paragraphs are filled. If n is positive then MicroEmacs
'02 performs indented filling (i.e. indentation for a bullet mark etc). If n is negative then indented
filling is disabled. If no argument n is supplied then the paragraph is filled and the point and mark
positions are retained. This allows paragraphs to be filled, whilst in the middle of the paragraph and
the word position is maintained.

If justify mode is enabled the variable $fill−mode(5) determines how the paragraph is filled (i.e. left,
right, both or center). The variable $fill−eos−len(5) determines the trailing space used after a period
(.) character (the trailing characters are specified by $fill−eos(5)), typically defined as 2.

A set of characters defined by $fill−bullet(5) enable bullet markers to be placed in the text at the
beginning of the paragraph causing the left margin to be moved to the right of the bullet. The search
depth for fill to locate a bullet character is defined by $fill−bullet−len(5). When the paragraph is
formatted and one of the bullet characters is encountered then the user is prompted as to whether the
paragraph should be indented following the marker or not. The point of indentation is shown with a
<<<< marker.

Filling is automatically disabled on paragraphs which start with characters in the $fill−ignore(5) set.

The simple text formatting is generally used for mail messages, ASCII text README files etc.

EXAMPLE

The following examples show how the text is formatted with indented filling enabled and both
justification enabled:−

This is regular text that is on the
margin

 This is a regular paragraph that is
 offset from the margin. Note how
 MicroEmacs '02 retains the indent.

MicroEmacs '02

fill−paragraph(2) 1351

 * With the introduction of one of
 the special characters, in this
 case a bullet, a format of the
 paragraph offsets the text from
 the bullet.

 1) Numbered lists are the same.
 Note that the paragraphs are all
 separated with a blank line.

 1. Numbered lists ending with a
 period.

 label − Or labeled lists, separated
 with a dash.

 > '>' might be an ignore
 > character so it skips the paragraph
 >
 > it is up to the user to
 > format these.

SEE ALSO

$fill−bullet(5), $fill−bullet−len(5), $fill−col(5), $fill−eos(5), $fill−eos−len(5), $fill−ignore(5),
$fill−mode(5), ifill−paragraph(3), paragraph−to−line(3).

MicroEmacs '02

fill−paragraph(2) 1352

filter−buffer(2)

NAME

filter−buffer − Filter the current buffer through an O/S command

SYNOPSIS

filter−buffer (C−x #)

DESCRIPTION

filter−buffer executes one operating system command, using the contents of the current buffer as
input, sending the results back to the same buffer, replacing the original text.

This would typically be used in conjunction with sort(1), awk(1) or sed(1) to translate the contents of
the buffer.

SEE ALSO

pipe−shell−command(2).

MicroEmacs '02

filter−buffer(2) 1353

find−bfile(3)

NAME

find−bfile − Load a file as binary data
find−cfile − Load a crypted file

SYNOPSIS

n find−bfile "file−name" (C−x 9)
n find−cfile "file−name"

DESCRIPTION

find−bfile and find−cfile provide a simple interface to loading files in binary(2m) and crypt(2m)
modes respectively. The numeric argument has the same effect as with the find−file(2) command
except the respective modes are always enabled. See documentation on the modes an find−file
command for more information.

NOTES

find−bfile and find−cfile are macros defined in file tools.emf.

The command find−file(2) is bound to key "C−x 9" with a numeric argument of 2, this is equivalent
to executing find−bfile with no argument.

SEE ALSO

find−file(2), binary(2m), crypt(2m).

MicroEmacs '02

find−bfile(3) 1354

next−buffer(2)

NAME

next−buffer − Switch to the next buffer
find−buffer − Switch to the next buffer

SYNOPSIS

n next−buffer (C−x x)
n find−buffer "buffer−name" (C−x b)

DESCRIPTION

next−buffer switches to the nth next buffer in the buffer list in the current window, the default n is 1,
if n is negative then the 0−nth previous buffer is selected. If 0 or a number greater than the number of
buffers is specified then the command fails.

find−buffer switches to buffer "buffer−name" in the current window. If the buffer does not exist and
a zero argument n is supplied then the command fails. If the buffer does not exist but no argument or
a +ve argument n is specified then a new buffer is created, at which point the file−hook is evaluated.

If a −ve argument n is given to find−buffer then the buffer will be hidden. Any window displaying
"buffer−name" will find another buffer to display. This functionality is often used with the hide(2m)
buffer mode. If a value of −1 is given then the buffer will not be hidden in a window whose
$window−flags(5) are set to lock the buffer to the window. If a value of less than −1 is given then the
buffer is hidden from all windows.

If the current buffer has an $buffer−ehook command set then this command is executed before the
new buffer is switched in. If the new buffer has a $buffer−bhook command set then this command is
automatically executed after the new buffer is switched in but before control returns to the user.

SEE ALSO

next−window−find−buffer(2), hide(2m).

MicroEmacs '02

next−buffer(2) 1355

find−file(2)

NAME

find−file − Load a file

SYNOPSIS

n find−file "file−name" (C−x C−f)

DESCRIPTION

find−file finds the named file file−name. If it is already in a buffer, make that buffer active in the
current window, otherwise attempt to create a new buffer and read the file into it.

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files.

Text files are usually thought of as named collections of text residing on disk (or some other storage
medium). In MicroEmacs '02 the disk based versions of files come into play only when reading into
or writing out buffers. The link between the physical file and the buffer is through the associated file
name.

MicroEmacs '02 permits full file names, i.e. you can specify:

MicroEmacs '02

find−file(2) 1356

disk:\directories\filename.extension

or (UNIX)

/directories/filename.extension

If the disk and directories are not specified, the current buffers disk/ directory is used. Several points
should be noted in respect to the methods that MicroEmacs utilizes in the handling of files:−

Without explicitly saving the buffer(s) to file, all edits would be lost upon leaving
MicroEmacs − you are asked to confirm whenever you are about to lose edits.

♦

MicroEmacs has a mechanism for "protecting" your disk−based files from overwriting when
it saves files. When instructed to save a file, it proceeds to dump the file to disk, making a
backup of the existing file when backup(2m) mode is enabled.

♦

Auto−saving files can be performed on edited buffers by setting the $auto−time(5) variable.
The file is saved in the same place with a '#' appended to the file name. This can be used
directly by the user or in the unlikely event of MicroEmacs crashing (or system crash), the
files are automatically recovered next time it is edited.

♦

If you do not wish to perform any edits but merely browse the file(s), add the view(2m) mode to the
buffer or ask for the file to be read in for viewing only.

RCS Support

If the file does not exist and the variable $rcs−file(5) is set then the existence of the RCS file is tested.
If the rcs file exists then it will be checked out using a command−line created from the variable
$rcs−co−com(5). If the check−out is successful then this file is loaded.

This raw interface for supporting file revision control systems has been adapted to support SCCS and
Visual Source Safe see help on variable $rcs−file for more information and examples.

HTTP Support

MicroEmacs supports http file loading, this is available by default on UNIX systems but must be
compiled in on win32 platforms (socket libraries not available on all win95 machines so cannot be
compiled in by default). When available a http file can be loaded by simply executing find−file and
giving the http file name, i.e. "http://user:password@address:port/file". Only the
http://, address and /file components are mandatory, the rest can usually be omitted. e.g.:

find−file "http://members.xoom.com/jasspa/index.html"

See help page on %http−proxy−addr(5) for information on HTTP proxy server support.

FTP support

MicroEmacs supports ftp file loading, this is identical to http except the prefix ftp:// is used as

MicroEmacs '02

find−file(2) 1357

opposed to http://. The user name and password defaults to guest in the absence of both these
fields. If the user name is supplied but not the password the password will be prompted for; this can
be useful as the password will not be stored or written to the history file. Connection is by default on
port 21.

find−file "ftp://<me>:<password>@members.xoom.com/jasspa/index.html"

See also ftp(3).

The progress of the FTP transfer, and the FTP commands issued, may be viewed in the
ftp−console buffer. This is popped up depending on the setting of the %ftp−flags(5) variable.

NOTES

The base name part (i.e. not the path) of file−name can contain wild−card characters compatible
with most file systems, namely:−

?

Match any character.

[abc]

Match character only if it is a, b or c.

[a−d]

Match character only if it is a, b, c or d.

[^abc]

Match character only if it is not a, b or c.

*

Match any number of characters.

If the name matches more than one file, a buffer will be created for each matching file. Note that these
are not the same wild−card characters used by regex.

For ftp and http then a ftp console window is opened up to show the progress of the transfer (when
configured), this is described in ftp(3).

SEE ALSO

auto(2m), binary(2m), crypt(2m), rbin(2m), time(2m), view(2m), buffer−mode(2), find−bfile(3),
ftp(3), $rcs−file(5), %ftp−flags(5), %http−flags(5), %http−proxy−addr(5), next−window−find−file(2),

MicroEmacs '02

find−file(2) 1358

read−file(2), save−buffer(2), view−file(2), write−buffer(2), file−op(2), file−attrib(3).

MicroEmacs '02

find−file(2) 1359

find−registry(2)

NAME

find−registry − Index search of a registry sub−tree.

SYNOPSIS

find−registry "root" "subkey" index

DESCRIPTION

find−registry performs an indexed search of a registry sub−tree allowing the caller to determine the
names of the children that exist as sub−nodes of the specified node. root and sub−key form the root
whose children are to be determined, subkey may be specified as the null−string ("") if an absolute
registry path is specified. index is a value from 0..n and identifies the index number of the child
node. The name of the child node is returned in $result(5) if one exists, otherwise an error status is
returned.

EXAMPLE

The following example comes from addrbook.emf and shows how find−registry is used to iterate
through entries in the address book. Note that find−registry is used with !force(4) and the $status(5)
of the call is tested to determine if the invocation succeeded.

!force find−registry "/AddressBook" "Names" #l0
!if $status
 set−variable #l1 $result
 76 insert−string "_"
 2 newline
 insert−string &spr "Section: %s" #l1
 newline
 ; Iterate through all of the entries.
 set−variable #l2 0

 !repeat
 !force #l2 ab−buffer
 !if $status
 set−variable #l2 &add #l2 1
 !endif
 !until ¬ $status
 set−variable #l0 &add #l0 1
 !goto next
!endif

SEE ALSO

MicroEmacs '02

find−registry(2) 1360

get−registry(2), list−registry(2), read−registry(2), set−registry(2), erf(8).

MicroEmacs '02

find−registry(2) 1361

find−tag(2)

NAME

find−tag − Find tag, auto−load file and move to tag position

SYNOPSIS

n find−tag "string" (esc t)

DESCRIPTION

find−tag finds the current or given tag (string) in a tags file and goes to the given point, loading the
file if necessary. The tag is either the current word under the cursor or a user supplied word if the
cursor is not in a word. The buffer containing the tag is popped up in another window and the cursor
moved to the tag in the new window.

A tags file is usually created by an external program (e.g. ctags(1)) which stores word references (or
tags) and the name of the file containing the tag, with a search string to go to its local. It is an
indexing system which is often used in programming.

The argument n can be used to change the default behavior of find−tag described above, n is a bit
based flag where:−

0x01

Use popup−window to display the tag in a different window (default) when this flag is not given the
current window is used to display the tag.

0x02

Disable the use of the current cursor position to determine the tag. Instead the tag must always be
supplied through "string".

0x04

Find the next definition of the last tag (multiple tag support). This feature can only be used if multiple
tag support is enabled (see flag 'm' of variable %tag−option(5)) and find−tag has already been
successfully executed. In this situation the last invocation of find−tag defines the current tag and
executing again with an argument of 4 will jump to the next definition of the current tag or return the
message "[No more "<current>" tags]".

The next tag is typically bound to M−C−t.

The tags file is, by default, assumed to reside in the current directory of the currently viewed file. The

MicroEmacs '02

find−tag(2) 1362

user variable %tag−option(5) may be specified with a value of 'r' (recursive) and 'c' (continue) flags,
which ascends the directory tree from the current directory and attempts to locate a recursively
generated tags file at a higher directory level. Recursive tag files are generally easier to maintain
where project source files are located in a number of project sub−directories, and enable the whole of
the project tree to be taggable.

Two user variables must be defined before find−tag will execute, if either %tag−file(5) or
%tag−template(5) are not defined the error message "[tags not setup]" is signaled.

NOTES

A tags file may be generated by MicroEmacs '02 from the menu (Tools−>XX Tools−>Create Tags
File). Alternatively a tags file may be generated by the ctags(1) utility. This is typically standard on
UNIX platforms. For Windows and DOS platforms then the Exuberant Ctags is recommended, this
is available from:−

http://darren.hiebert.com

A MicroEmacs '02 compatible tags file may be generated using the command line "ctags −N
−−format=1 ." cataloging the current directory. To generate tags for a directory tree then use
"ctags −NR −format=1 .". Refer to the Exuberant Ctags documentation for a more detailed
description of the utility.

SEE ALSO

%tag−file(5), %tag−option(5), %tag−template(5), generate−tags−file(3), ctags(1).

MicroEmacs '02

find−tag(2) 1363

spell−buffer(3)

NAME

spell−buffer − Spell check the current buffer
spell−word − Spell check a single word
spell−edit−word − Edits a spell word entry
find−word − Find a using spelling dictionaries

SYNOPSIS

spell−buffer
n spell−word ["word"] (esc $)
spell−edit−word ["word"]
find−word ["word"]

DESCRIPTION

MicroEmacs '02 provides an integrated spell checker with the following features:−

Different languages.♦
Dialog control of the speller.♦
Best guess capability.♦
Replace and Replace all, Ignore and Ignore All♦
Undo capability.♦
Adding new words and endings to speller.♦
Auto correct of commonly occurring mistakes.♦
Word finder, allows words to be searched with wild cards.♦

spell−buffer spell checks the current buffer, from the current position, to the end of the buffer. On
invocation, an osd(2) dialog is opened and any corrections are made through this interface. If an error
dialog opens instead the current language is not setup, please see the Language setting in
user−setup(3) and Locale Support.

The dialog provides the user with an interface from which a new spelling may be selected, in addition
new words may be added to the spelling dictionary. The dialog entries are defined as follows:−

Word

The word entry contains the erroneous word, this is presented in a text dialog box which may be
manually edited to correct. If the word is manually corrected, then it is spell checked prior to
insertion, and a new guess list is created. The user may elect to replace the word, take one of the
suggestions or re−edit the misspelled word.

Meaning

MicroEmacs '02

spell−buffer(3) 1364

The meaning button provides a convenient interface to describe−word(3) for looking up the meaning
of the current word. The Insert button within the describe−word dialog will replace the current word
in the spell−buffer.

Suggestions

The suggestions entry contains a list of suggestions as to the correct spelling of the word. The list is
ranked in order of the best match, typically the misspelled word appears at (or near) the top of the list,
unless the word is unknown or there are gross errors in the spelling. Selecting the word in the list with
a single click of the mouse selects the word as the replacement, the actual replacement is performed
by the Replace or Replace All buttons. Alternatively, double selecting a guess word replaces the
word.

Language

The language entry allows the user to select the current spelling language. The new language is
chosen from the dialog box. The language may be changed at any time during the spell operation and
is effective immediately. The Ext languages are extended dictionaries that contain additional words, it
is recommended that all spelling is performed with the extended dictionaries (where available).

Replace

The replace button is activated when a new word has been edited or selected as a candidate for
replacement. Selecting replace modifies the erroneous word in the buffer with the newly selected
word.

Replace All

The Replace All button is similar to the Replace button, except that it automatically replaces any
subsequent occurrences of the erroneous word with the newly selected word. The replacement words
are retained for the MicroEmacs edit session and are lost when the editor is closed.

Ignore

The ignore button requests that the speller ignore the erroneous word and continue to spell the buffer.

Ignore All

The Ignore All button is similar to the Ingore button, except that it automatically ignores the
erroneous word thereafter. The ignore words are retained for the MicroEmacs edit session and are lost
when the editor is closed.

Add

Add adds the current erroneous word to the dictionary, thereafter the word is recognized as a valid
word. Add should only be used for words which have no derivatives, it is generally better to add a
new word through the Edit interface where a new base word may be specified with it's derivatives.

Edit

MicroEmacs '02

spell−buffer(3) 1365

The Edit button executes spell−edit−word giving the current erroneous word. This allows new words
and auto−corrections to be defined as well as existing words to be altered, see full description below.

Find

The Find button executes find−word giving the current word as a starting seed. This allows the user
to search for the word using a simple search criteria, see full description below.

Undo Last

The undo Last button restores the user to the previous spelling so that it may be re−entered, any
replacement text that was made is restored to it's original spelling.

Exit

Exits the speller and returns the user to the buffer.

spell−word checks a single word which is either supplied by the user, or if an argument is given, the
word under (or to the left of) the cursor position. If the word is correct, a simple message−line
print−out is given, otherwise the main spell osd dialog is opened and the user may check the spelling
within the context of the spell dialog as described above.

The default key binding of "esc $" supplies an argument forcing spell−word to check the current
buffer word. spell−word is often used to check the spelling of a word outside of the context of the
editor (i.e. when working on paper, or when doing at that prize crossword !!).

spell−edit−word allows words in dictionaries to be altered as well as new words and
auto−corrections to be defined. On invocation, an osd dialog is opened and changes are made through
this interface, defined as follows:−

Word

The word entry to be changed or added. If spell−edit−word was executed via spell−buffer Edit
button, this will be set to the current word.

No word set

The word entry is empty, most of the functionallity will not be available until a word is entered.

New Word

To add a new word, the derivatives of the new word should be selected using the prefix and suffix
options. Note that not all derivatives are listed, only one example derivative of each spell rule is
given.

BE CAREFUL WITH THE CASE OF THE BASE WORD: new words that are entered
are case sensitive, as a general rule the word in the Word text box should be edited to it's
base form and should be presented in lower case characters (unless it is a proper name, in
which case it should be capitalized, or is an abbreviation or acronym when it might be upper

MicroEmacs '02

spell−buffer(3) 1366

case).

When the appropriate derivatives of the new word have been selected, it may be added to the
dictionary using the Add button. This adds the word to the users personal dictionary. Please
note that if there are numerous standard words missing then check that an extended dictionary
(designated by Ext in the language) is being used, the extended dictionaries more than double
the repertoire of words available.

Words added to the dictionary may be subsequently removed using the Delete button, typing
the existing word in the Word entry and selecting Delete button removes the existing word.

Auto−Correct

Selection of the Auto−Correct button allows a replacement word to be entered in the To text entry.
Selecting Add adds the automatic correction to the speller. Thereafter, whenever the erroneous word
is encountered the replacement word is always used to replace it, without user intervention.

Entering an exiting auto−correct word into the dialog and selecting Delete removes an
existing auto−correct entry.

Exit

Exits the Edit dialog.

find−word opens the word finder dialog. This allows the user to search for a word using a simple
search criteria. (This is ideal for cheating at crosswords !!). The word to be searched for is entered
into the Word Mask and may use wild cards * to represent any number of characters, ? to represent
an unknown character and [..] for a range of characters.

For example, searching for t?e?e presents the list theme, there and these. Searching for t*n lists all
of the words beginning with t and ending in n. See $find−words(5) for a full discription of the format
used by search engine.

The words that match are returned in the scrolling dialog, and may be selected with the mouse (or
cursor keys). The Insert button inserts the selected word into the current buffer or into the Word
entry if executed from the spell−buffer dialog. Note that the list presented is limited to 200 words,
selecting next gets the next 200 words, and so on. The Exit button exits the dialog.

NOTES

The words added to the speller during a MicroEmacs session are saved when the editor is closed. The
user is prompted to save the dictionary, if the dictionary is not saved then any words added are lost.

All ignore words accumulated during a spell session are lost when the editor is closed. In order to
retain ignore words, it is suggested that they are added to the personal dictionary rather than be
ignored.

MicroEmacs '02

spell−buffer(3) 1367

The personal spelling dictionary is typically called <user><type>.edf, and is stored in the default
user location. The dictionary names are specified in the user−setup(3) dialog.

find−word may claim to have found more words than are actually listed. The use of derivatives in the
spell algorithm allows a single word to be present several times. find−word counts each occurrence
but it is only listed once.

SEE ALSO

user−setup(3), Locale Support, osd(2), spell(2), describe−word(3), $find−words(5).

MicroEmacs '02

spell−buffer(3) 1368

find−zfile(3)

NAME

find−zfile − Compressed file support
zfile−setup − Compressed file support setup

SYNOPSIS

find−zfile "file−name"
zfile−setup "extension" "list−command" "cut−to"

"column" "file−end" "extract−command"
"remove−command" DESCRIPTION

find−zfile provides generic support for listing and extracting the contents of compressed files.
find−zfile also supports the extraction of the internal files into another buffer.

find−zfile must be configured for each compression format using zfile−setup. It relies on
command−line programs to generate content lists which are used to generate the main file listing, and
subsequently, the ability to extract individual files for file extraction support.

For basic content listing support the first 3 arguments must be given to zfile−setup. The first argument
"extension" is used as the compressed file id string. The compressed file type is derived from the file
extension, e.g. "zip" or "Z" for UNIX compressed files. The exact case of the extension is checked
first, followed by the lower case and upper case string.

The compressed file contents list is generated from executing the user supplied "list−command" and
dumping the output into the list buffer. The command is run from the directory containing the
compressed file and the following special tags may be used within the "list−command" which get
substituted as follows:−

%zb

The token is replaced with the compressed files base name, i.e. the file name without the path.

%zf

The token is replaced with the compressed files absolute file name, i.e. the file complete with the
path.

The head of the list output is often unwanted verbose printout, this can be automatically be removed
by the use of the "cut−to" argument. The argument, if supplied (not an empty string), must be a regex
search string matching the start of the required list. If found, all text before it is removed.

MicroEmacs '02

find−zfile(3) 1369

For single file extraction support the last 4 arguments must be specified by zfile−setup. The file to
extract is selected either by selecting the file name using the left mouse button or by moving the
cursor to the line containing the file name and pressing the "return" key.

find−zfile assumes that the file name starts at a fixed column number, specified with the "column"
argument. The end of the file name is obtained by searching for the regular expression "file−end"
string, the file name is assumed to end at the start of the search string match.

The file is then extracted by executing the supplied "extract−command" and then loading the
extracted file into a new buffer. The command is run from the system temporary directory (i.e.
"/tmp/" on UNIX or $TEMP on Windows etc.). The following special tags may be used within the
"extract−command" which get substituted as follows:−

%zb

The token is replaced with the compressed files base name, i.e. the file name without the path.

%zf

The token is replaced with the compressed files absolute file name, i.e. the file name complete with
the path.

%fb

The name of the file to be extracted.

The file is assumed to be extracted to the temp directory due to the way the command is run, this file
is then loaded into a new buffer. The temporary file should then be removed using the supplied
"remove−command" with is run from the temp directory, the "%fb" special tag may be used in the
command. This argument may be given as an empty string, thereby disabling the removal.

EXAMPLE

For zip file support the freely available unzip(1) command can be used, following is the list of
arguments with suitable entries:

extension zip
list−command unzip −v %zb
cut−to ^ Length
column 58
file−end $
extract−command unzip −o %zf %fb
remove−command rm %fb

For the zip file "/usr/jasspa/memacros.zip", after substitution the list command becomes "unzip −v
memacros.zip" which will be executed in the "/usr/jasspa/" directory. This will produce the
following form of output:

Archive: memacros.zip
 Length Method Size Ratio Date Time CRC−32 Name

MicroEmacs '02

find−zfile(3) 1370

 −−−−−− −−−−−− −−−− −−−−− −−−− −−−− −−−−−− −−−−
 565 Defl:N 258 54% 02−27−99 22:56 018a7f70 american.emf
 3409 Defl:N 872 74% 02−28−99 01:37 6a6f9722 americar.emf
 4201 Defl:N 772 82% 03−01−99 12:58 d4e3bc4a benchmrk.emf
 565 Defl:N 258 54% 02−27−99 22:56 dd394e24 british.emf
 3408 Defl:N 872 74% 02−28−99 01:37 32f3eeca britishr.emf
 7239 Defl:N 1923 73% 02−28−99 15:13 d408f0da calc.emf
 7292 Defl:N 2072 72% 01−23−99 12:49 5979d6b2 cbox.emf
 7104 Defl:N 1402 80% 02−28−99 15:13 6faf4fc5 cmacros.emf
 5967 Defl:N 1239 79% 02−13−99 16:38 27601523 ctags.emf
 1097 Defl:N 489 55% 02−16−99 10:58 53a55e36 dos.emf
 562 Defl:N 310 45% 01−16−98 07:54 ec24f65e dos2unix.emf
.
.
.

The top Archive line is not require, this is automatically removed by setting the "cut−to" to "^
Length" which matches the start of the next line.

For file extract, consider the file "ctags.emf", the first character 'c' is at column 58 and the first
character after the end of the file name is the end−of−line character ('\n') which is matched by the
regex string "$", hence the settings on "column" and "file−end". When this and the zip file name are
substituted into the extract−command, it becomes "unzip −o /usr/jasspa/memacros.zip
calc.emf" and is run from the "/tmp." directory. Note that the "−o" option disables any overwrite
prompts, these are not required as tests and prompting have already been performed by find−zfile.
The extracted file "/tmp/calc.emf" is then loaded into a new buffer.

The temporary file is removed by executing the substituted remove−command which becomes "rm
calc.emf" from the "/tmp/" directory.

For gzipped tar files, extension "tgz" the following setup can be used on UNIX platforms:

extension tgz
list−command unzip −v %zb
cut−to
column 43
file−end $
extract−command gunzip −c %zf | tar xof − %fb
remove−command rm %fb

For the tgz file "/usr/jasspa/memacros.tgz", this will produce the following listing:

tgz file: /usr/jasspa/memacros.tgz

rw−rw−r−− 211/200 565 Feb 27 22:56 1999 american.emf
rw−rw−r−− 211/200 3409 Feb 28 01:37 1999 americar.emf
rw−rw−r−− 211/200 4201 Mar 1 12:58 1999 benchmrk.emf
rw−rw−r−− 211/200 565 Feb 27 22:56 1999 british.emf
rw−rw−r−− 211/200 3408 Feb 28 01:37 1999 britishr.emf
rw−rw−r−− 211/200 7239 Feb 28 15:13 1999 calc.emf
rw−rw−r−− 211/200 7292 Jan 23 12:49 1999 cbox.emf
rw−rw−r−− 211/200 7104 Feb 28 15:13 1999 cmacros.emf
rw−rw−r−− 211/200 5967 Feb 13 16:38 1999 ctags.emf
rw−rw−r−− 211/200 1097 Feb 16 10:58 1999 dos.emf

MicroEmacs '02

find−zfile(3) 1371

rw−rw−r−− 211/200 562 Jan 16 07:54 1998 dos2unix.emf
.
.
.

NOTES

find−zfile and zfile−setup are macros defined in zfile.emf.

SEE ALSO

find−file(2).

MicroEmacs '02

find−zfile(3) 1372

fold−current(3)

NAME

fold−current − (un)Fold a region in the current buffer
fold−all − (Un)Fold all regions in the current buffer

SYNOPSIS

fold−current
fold−all

DESCRIPTION

MicroEmacs '02 provides a generic, albeit course, folding mechanism which is applied to some of the
well known file modes. The folding mechanism allows parts of the buffer to be scrolled up and
hidden, leaving a residue hilighting marker within the buffer indicating a folded region. A folded
buffer typically allows a summary of the buffer contents to be viewed within several windows, hiding
the detail of the buffer.

The folding mechanism uses well defined start and end markers which form part of the syntax of the
well known file mode. i.e. in 'C' this is the open and closed braces that appear on the left−hand margin
({ .. }). The intention is that the natural syntax of the text is used to determine the fold positions,
requiring no additional text formating or special text tags to be inserted by the user.

fold−current opens and closes a folded region within the buffer. If the current cursor position lies
between a start and end marker then the region between the start and end is folded out and hidden
from view, leaving a highlight marker in the buffer. If the fold already exists then, moving the cursor
to the folded line and invoking fold−current removes the fold marker and reveals the text.

fold−all opens and closes all folded regions within the buffer, if the current state is unfolded then all
of the start/end markers are located and their regions folded. Conversely, if the buffer is currently
folded and fold−all is invoked, then all folds are removed and the associated text revealed.

CONFIGURATION

In order to utilize the fold−current/all commands within a buffer, the start and end markers have to
be initialized for the syntactical contents of the buffer. This is performed within the hook function for
the buffer, using the hook−name. Buffer specific variables are defined within the context of the buffer
to configure that start and end fold handling. The buffer specific variables are defined as follows,
where xxxx is the file hook base name.

xxxx−fold−open

MicroEmacs '02

fold−current(3) 1373

A regular expression search string used to locate the start of the string. For speed the search string
should include a regular expression start or end of line character whenever possible. i.e. in C the open
is defined as "^{".

xxxx−fold−close

A regular expression search string used to locate the end of the string. For speed the search string
should include a regular expression start or end line character whenever possible. i.e. in C the close is
defined as "^}".

xxxx−fold−mopen

An integer value that denotes the number of lines to move in a forward or (−ve) backward direction
from the start line located by the search string to the position in the buffer to be folded. If default
value when mopen is omitted is 0, starting the fold from the search string line.

xxxx−fold−mclose

The relative displacement from the close fold line to the fold position, this is a positive or negative
displacement depending on where the fold is to be positioned.

xxxx−fold−mnext

Specifies the number of lines to advance before the next search is continued on the fold operation. This is only
used by fold−all. EXAMPLE

The following examples show how the fold variables are set up in each of the buffer modes.

C and C++

C and C++ fold on the open and close brace appearing in the left−hand margin. The fold variables are
defined in hkc/hkcpp.emf as follows:−

set−variable %c−fold−open "^{"
set−variable %c−fold−close "^}"

Given a 'C' function definition:−

static void
myfunc (int a, int b)
{
 /* Function body */
}

the folded version appears as follows:−

static void
myfunc (int a, int b)
}

MicroEmacs '02

fold−current(3) 1374

emf

MicroEmacs macro files emf support folding of macro definitions, the fold variables are defined in
hkemf.emf as follows:−

set−variable %emf−fold−open "^0? ?define−macro"
set−variable %emf−fold−close "^!emacro"
set−variable %emf−fold−mopen "1"

Given a macro definition:−

0 define−macro mymacro
; This is the body of the macro
; ... and some more ...
!emacro

the folded version of the macro is defined as:−

0 define−macro mymacro
!emacro

nroff

nroff is configured for manual pages only and folds between .SH and .SS sections, the hook
variables are defined as follows:−

set−variable %nroff−fold−open "^\.S[SH]"
set−variable %nroff−fold−close "^\.S[SH]"
set−variable %nroff−fold−mopen "1"
set−variable %nroff−fold−mnext "−1"

Given an nroff block of text defined as:−

.SH SYNOPSIS

.\" Some text

.\" Some more text

.SH DESCRIPTION

Then the folded version appears as:

.SH SYNOPSIS

.SH DESCRIPTION

tcl/tk

tcl/tk is configured to fold procedures. The fold variables are defined as:−

set−variable %tcl−fold−open "^proc "
set−variable %tcl−fold−close "^}"
set−variable %tcl−fold−mopen "1"

MicroEmacs '02

fold−current(3) 1375

Given a tcl procedure definition:−

proc tixControl:InitWidgetRec {w} {
 upvar #0 $w data

 tixChainMethod $w InitWidgetRec

 set data(varInited) 0
 set data(serial) 0
}

The folded version of the same section appears as:−

proc tixControl:InitWidgetRec {w} {
}

NOTES

fold−current and fold−all are macros implemented in fold.emf. The folding is performed using
the narrow−buffer(2) command.

fold−current may also be bound to the mouse using the user−setup(3). The typical binding is
C−mouse−drop−1.

SEE ALSO

File Hooks, user−setup(3), narrow−buffer(2).

MicroEmacs '02

fold−current(3) 1376

ftp(3)

NAME

ftp − Initiate an FTP connection

SYNOPSIS

ftp

DESCRIPTION

ftp initiates a File Transfer Protocol (FTP) connection to a remote host on the network. Using FTP,
editing of files may be performed in much the same way as on the local file system. Directory listings
may be retrieved and traversed using the mouse or cursor keys. Using the directory listing, files may
be transfered to/from the remote host to the local machine.

On issuing the command then a dialog is presented to the user which is used to open the connection.
The dialog entries are defined as follows:−

Registry File

The name of a MicroEmacs registry file which is used to store the FTP information. If a registry name
is provided then all FTP address information is stored in the registry file and saved for later sessions.
Be aware that password information is saved in this file as plain text if a password is entered into the
site information.

If the registry information is omitted then the information is not saved between sessions.

Site Name

An ASCII pseudo name for the remote host. The pull−down menu may be used to select existing sites
that have been previously entered.

Host Address

The address of the host, this may be an IP address (111.222.333.444) or a DNS name (i.e.
ftp.mysite.com).

User Name

The login name for the site. If this is omitted then guest is used by default.

Password

MicroEmacs '02

ftp(3) 1377

The password used to enter the site for the given login name. If the password is NOT supplied then
the user is prompted for the password when a transaction takes place. If the password is omitted and
left to promt then it is not stored in the registry.

Take note of the comments provided above regarding the password information.

Initial Host Path

The starting directory at the remote host. If this is omitted then the root directory ('/') is used by
default.

On selecting Connect then a FTP connection is opened and the initial directory appears as a directory
listing, if the initial path is a file then the file is loaded into the editor.

Thereafter the file may be edited within the editor as normal, on a write operation then the file is
written back to the host, via FTP.

On opening a FTP connection the progress of the transfer, and the FTP commands issued, may be
viewed in the *ftp−console* buffer. This buffer may automatically appear depending upon the
value of the %ftp−flags(5) variable.

NOTES

ftp is a macro implemented in ftp.emf. This uses the underlying command find−file(2) to
implement the FTP transfer.

FTP files can be directly loaded and edited using the standard file commands such as find−file(2).

The FTP addresses are retained in a registry file (see erf(8)). The registry file is automatically loaded
when MicroEmacs starts up each session. The current site information may be viewed using
list−registry(2) and is located at the following registry addresses:−

/url

Data value is file system location of the FTP registry file.

/url/ftp/<hostName>

The name of the host to which the connection is to be made.

/url/ftp/<hostName>/host

The name or IP address of the remote host

/url/ftp/<hostName>/user

The user name used to log into the remote host.

MicroEmacs '02

ftp(3) 1378

/url/ftp/<hostName>/pass

The user password to the remote host. If this entry is empty then the user is always prompted for the
password when the connection is made.

/url/ftp/<hostName>/path

The initial path at the remote site.

When a FTP connection is initiated then the connection (socket) remains open for a period of
approximately 4 minutes from the last transfer time, after that the connection is automatically closed
and is re−initiated if required again.

NOTE: For windows platforms then the resultant executable must be built with URL support
enabled, for UNIX platforms socket support is automatically enabled.

BUGS

Directory completion is not available when the current working directory is an FTP address. To work
around this from the command line, select <RETURN> to get a directory listing of the current
directory and select the file(s) from the directory to load.

SEE ALSO

%ftp−flags(5), erf(8), find−file(2), file−op(2), list−registry(2).

MicroEmacs '02

ftp(3) 1379

fvwm(9)

SYNOPSIS

fvwm, fvwmrc − FVWM Window manager configuration files

FILES

hkfvwm.emf − FVWM configuration file hook definition

EXTENSIONS

.fvwm, .fvwmrc − FVWM configuration file

MAGIC STRINGS

−!− fvwm −!−

The embedded fvwm string may be used with later versions of fvwm which use a different file extension to
force the hilighting of the file. DESCRIPTION

The fvwm file type template provides simple hilighting of the FVWM files, the template provides
minimal hilighting.

BUGS

None reported.

SEE ALSO

Supported File Types

MicroEmacs '02

fvwm(9) 1380

gdiff(3f)

NAME

gdiff − Command line graphical file difference

SYNOPSIS

me "@gdiff" "version1" "version2"

DESCRIPTION

MicroEmacs may be executed from the command line to invoke the Graphical Difference gdiff(3)
macro, showing the difference(s) between two files.

The editor is invoked in gdiff mode and shows the difference between the two files on the command
line.

NOTES

The macro is defined in file gdiff.emf.

SEE ALSO

gdiff(3), start−up(3).

MicroEmacs '02

gdiff(3f) 1381

generate−tags−file(3)

NAME

generate−tags−file − Generate a tags file

SYNOPSIS

n generate−tags−file ["tag−command"]

DESCRIPTION

The generate−tags−file command provides an interface to tag file generation. Typically the
"tag−command" argument will not be required as the current buffer will automatically configure
generate−tags−file on how tags are generated for the current buffer's file type. See the notes below
for more information on configuration.

generate−tags−file supports two different methods of tag generation, firstly via a MicroEmacs macro
file and secondly by an external shell command (such as ctags(1)). It is generally configured in the
current buffer's setup hook.

If a macro file is used a setup dialog is opened if an argument of 0 is given to generate−tags. This
dialog can be used to configure which type of tags are required and the starting directory (useful when
using recursive tags over a source tree). Note that not all tag types are available for all file types.

The generated tags file can then be used by the find−tag(2) command.

NOTES

generate−tags−file is a macro defined in file gentags.emf.

generate−tags−file can be configured in one of 2 ways:

When a MicroEmacs macro file (such as ctags.emf) is to be used, simply give the name of
the macro file to be run as the "tag−command" argument. Alternatively set the variable
.<$buffer−fhook>.tags to this name, e.g. for C files

 set−variable .fhook−c.tags "ctags"

Note the ".emf" extension is assumed.

When an external shell command is to be used, set the tag−command to the shell
command−line prefixed with a '!' character, for example to use ctags(1) try the following:

 set−variable .fhook−c.tags "!ctags *.c *h"

MicroEmacs '02

generate−tags−file(3) 1382

Note that the generate−tags dialog is not available in this mode of execution.

SEE ALSO

find−tag(2).

MicroEmacs '02

generate−tags−file(3) 1383

get−next−line(2)

NAME

get−next−line − Find the next command line

SYNOPSIS

get−next−line (C−x `)

DESCRIPTION

get−next−line is typically used in conjunction with the compile(3) and grep(3) commands to enable
the user to step through errors/locations one by one. The command looks for lines in the form defined
by add−next−line(2) in the order of definition. If a match is found the command attempts to find the
next error or warning found from the current location (See compile(3)). If the buffer was not found
then the next buffer set is searched for, and if found then the next expression from the cursor is
automatically located. The command fails if none of the buffers exist, or the end of the buffer is
reached.

SEE ALSO

$file−template(5), $line−template(5). add−next−line(2), compile(3), grep(3).

MicroEmacs '02

get−next−line(2) 1384

get−registry(2)

NAME

get−registry − Retrieve a node value from the registry.
set−registry − Modify a node value in the registry.

SYNOPSIS

get−registry "root" "subkey"
set−registry "root" "subkey" "value"

DESCRIPTION

get−registry retrieves the value of a node defined by root/subkey from the registry into the variable
$result(5).

The node name is specified in two components, typically required when iterating over a registry tree,
where the root component is static and the subkey is dynamic, subkey may be specified as the null
string ("") if an absolute registry path is specified.

set−registry adds (or modifies) a new value to the registry. root is the root of the new entry and
MUST exist or the call fails. subkey is the node name (or path) if the path does not exist then it is
created. value is the value to assign to the node.

DIAGNOSTICS

get−registry fails if the node does not exist, otherwise the registry string is returned in $result(5).

set−registry fails if the root node does not exist.

EXAMPLE

The following call

set−registry "/history" "foo/win32/printer" "foo−bar"

constructs a registry hierarchy of the form:−

"history" {
 "foo" {
 "win32" {
 "printer"="foo−bar";
 }
 }

MicroEmacs '02

get−registry(2) 1385

}

The value of the registry node may be retrieved using:−

get−registry "/history" "foo/win32/printer"

which would return "foo−bar".

SEE ALSO

find−registry(2), list−registry(2), read−registry(2), ®(4), erf(8).

MicroEmacs '02

get−registry(2) 1386

global−bind−key(2)

NAME

global−bind−key − Bind a key to a named command or macro
global−unbind−key − "Unbind a key from a named command or macro"

SYNOPSIS

n global−bind−key "command" "key" (esc k)
n global−unbind−key "key" (esc C−k)

DESCRIPTION

global−bind−key takes one of the named commands and binds it to a key. Thereafter, whenever that
key is struck, the bound command is executed. If an argument n is given then the bound command is
executed n times when the key is struck. (i.e. the command is passed the numeric argument 'n').

global−unbind−key unbinds (detaches) a user entered key sequence (i.e. C−x C−f) from any
command to which it may be bound. This does not work with buffer or message line key bindings, see
buffer−unbind−key(2) and ml−unbind−key(2). If an argument of 0 is given to global−unbind−key,
only a single key is obtained for the user, if the character is currently bound to the prefix command,
the prefix binding and any sub−bindings are removed. global−bind−key calls global−unbind−key
first if the key to be bound is already bound to something else.

If a −ve argument is given to global−unbind−key then all bindings are removed, caution − removing
all bindings interactively will render the current MicroEmacs session unusable. This can only be used
within macro development where new bindings are created immediately afterwards.

The global−bind−key command, currently bound to esc k, prompts the user for the named
command and the key to which it is to be bound. This help file gives a complete list of all built in
commands, and some useful macros, a complete list of all commands and macros can be obtained by
using the command completion (type esc xtab tab, see ml−bind−key(2)) or using the command
describe−bindings(2).

The mouse buttons are considered to be keys, there is a key for each button press and release event,
use describe−key(2) to get the binding key string.

The non−ASCII standard keys such as the cursor keys have 'standard' key names to make cross
platform binding support easy. Some systems such as termcap do not have fixed key−bindings, for
these key the users must use the command translate−key(2) to convert the system key binding to the
standard key binding.

Permanent changes are done indirectly through the me.emf file. This is a file that MicroEmacs '02
reads and executes (see execute−file(2)) during startup and hence results in the appearance of a

MicroEmacs '02

global−bind−key(2) 1387

permanent change in the key bindings. The syntax of commands in the me.emf file is described
under the execute−file command. Of principal concern here are the two commands global−bind−key
and global−unbind−key. The primary difference between the way parameters are passed to these
commands in the me.emf file is that the keys are not typed in directly (as in the control−I key when
you want C−i) but by symbolic names. Every key has a unique name which can be easily obtained
with the current binding by using the command describe−key(2).

See help on Key Names for a description of the symbolic naming system and a complete list of valid
key names. Also see Bindings for a complete list of default key bindings.

EXAMPLE

Alt P

global−bind−key "func" "A−p"

Control F2

global−bind−key "func" "C−f3"

Shift Alt Left Cursor

global−bind−key "func" "A−S−left"

Control Alt Delete

global−bind−key "func" "C−A−delete"

Note that binding Control−Alt−Delete is not recommended for MS−DOS systems for
obvious reasons.

NOTES

Some ASCII keys, such as <CR> (C−m), <tab> (C−i), <BACKSPACE> (C−h) have non−ASCII key
bindings, namely "return", "tab", "backspace" etc. this is to allow separate key−bindings for the real
"C−m" etc.

Be very careful in binding and unbinding keys since you could get into some very peculiar situations
such as being unable to abort out of a command (if you unbind CTRL−G or bind it to something else)
or recover from the bad binding/unbinding if you unbind execute−named−command(2) or the
global−unbind−key command. As long as you leave yourself the opportunity to do both of the last
two commands, you can recover from disastrous bindings/unbindings.

SEE ALSO

buffer−bind−key(2), buffer−unbind−key(2), describe−bindings(2), describe−key(2), ml−bind−key(2),
ml−unbind−key(2), translate−key(2).

MicroEmacs '02

global−bind−key(2) 1388

goto−alpha−mark(2)

NAME

goto−alpha−mark − Move the cursor to a alpha marked location

SYNOPSIS

goto−alpha−mark "?" (C−x a)

DESCRIPTION

goto−alpha−mark prompts user for an alpha character and sets the cursor position to the preset
location. Alpha marks are specified on a per buffer basis, thus the current buffer is not changed,
merely the current location in the buffer. The alpha mark must already be defined using
set−alpha−mark(2). This functionality is useful for rapidly returning back to locations in large files.

SEE ALSO

set−alpha−mark(2).

MicroEmacs '02

goto−alpha−mark(2) 1389

goto−line(2)

NAME

goto−line − Move the cursor to specified line

SYNOPSIS

n goto−line (esc g)
goto−line "num"

DESCRIPTION

goto−line moves the cursor to the specified line in the buffer. The user is prompted for the new line
number on the command line, which may be entered as a relative displacement ([+|−]number) from
the current position, or as an absolute line number (number). If the number is preceded by + or − then
this is treated as a relative displacement from the current line, otherwise it is an absolute line number.

If a +ve argument n is supplied, goto−line moves to this line, e.g. to move the cursor to line 240:

240 goto−line

A special case of goto−line is operative if an argument of 0 is supplied, argument "num" must also be
given as above except goto−line treats the line number or displacement as an absolute move, i.e.
includes narrowed out sections when calculating the new position. If the new line lies within a
narrowed out section (i.e. a section that has been hidden and is not visible on the screen) the narrow is
automatically expanded. See narrow−buffer(2) for more information on narrowing.

Supplying a −ve argument to goto−line results in an error.

NOTES

After successfully calling goto−line, variable $window−line(5) is set to the required line number.

SEE ALSO

goto−alpha−mark(2), goto−matching−fence(2), narrow−buffer(2), $window−line(5).

MicroEmacs '02

goto−line(2) 1390

goto−matching−fence(2)

NAME

goto−matching−fence − Move the cursor to specified line

SYNOPSIS

goto−matching−fence (esc C−f)

DESCRIPTION

goto−matching−fence moves the cursor to the opposing fence character of the character currently
under the cursor. The set of fence characters include [], {} and (). i.e. if the character under the
cursor is `{' then goto−matching−fence moves the cursor to the opening fence `}', and visa versa.

goto−matching−fence can also be used to move the cursor to matching C/C++ #if, #elif, #else
and #endif constructs, cycling through them in the given order.

When the fence(2m) buffer mode is enabled the matching open fence is automatically displayed when
the closing fence is typed. The length of time the matching fence is displayed for can be controlled by
the $fmatchdelay(5) variable.

SEE ALSO

fence(2m), $fmatchdelay(5), goto−line(2).

MicroEmacs '02

goto−matching−fence(2) 1391

set−position(2)

NAME

set−position − Store the current position
goto−position − Restore a stored position

SYNOPSIS

n set−position "label"
n goto−position "label"

DESCRIPTION

set−position stores current window, buffer, cursor and mark position information against the given
'label' (a single alpha−numeric character). goto−position takes the positional information stored
against the given 'label' and restores the window, buffer and cursor positions from those previously
set.

A call to set−position with the same label over−writes the previous stored information, a call to
goto−position does not alter the information and may be restored multiple times.

The numerical argument to set−position is used to define the information that is stored in the position
item. The argument is intrepreted as a bitmask, flagging what information is to be stored. The bit
mask is defined as follows:

0x001

Store the current window.

0x002

Store the current window's horizonal scroll (value of $window−x−scroll(5)).

0x004

Store the current window's current line horizonal scroll (value of $window−xcl−scroll(5)).

0x008

Store the current window's vertical scroll (value of $window−y−scroll(5)).

0x010

Store the current buffer.

MicroEmacs '02

set−position(2) 1392

0x020

Store the current window's current line using an alpha mark.

0x040

Store the current window's current line number (value of $window−line(5)).

0x080

Store the current window's current column offset (value of $window−col(5)).

0x100

Store the current window's mark line using an alpha mark.

0x200

Store the current window's mark line number (value of $window−line(5) when mark was set).

0x400

Store the current window's mark column offset (value of $window−col(5) when mark was set).

When n is not specified, the default value is 0x0bf, i.e. store all information required to return to the
window, buffer and cursor position.

The argument supplied to goto−position similarly interpreted as a bitmask, restoring the positional
information. When the numerical argument n is omitted the same default is used when omitted on the
store. On restoring a position, information stored during the call to set−position which is not
requested in corresponding goto is ignored, similarly information requested in a goto which was not
stored in the set is also ignored.

EXAMPLE

The following example shows the typical use of these commands:

set−position "a"
 .
 .
goto−position "a"

The following example stores the current position at the start of a macro sequence, if my−command
is not successful ($status equals 0) the original position is restored:

set−position "\x80"
!force my−command
!if &equ $status 0
 ; command failed, return to the original position
 goto−position "\x80"

MicroEmacs '02

set−position(2) 1393

!endif

Note '\x80' is interpreted as the character with the ASCII value of 0x80 which is a
non−alphanumeric character, this is permitted in macros to avoid using alphanumerics.

The following example shows how the current position can be restored after re−reading a file:

0xce set−position
read−file $buffer−fname @mna
; a numeric argument of 0xce is not
; required as this is the default
goto−position

NOTES

The position item may store and restore the current line by using an alpha mark or the line number.
The restrore strategy will determine what is required, as follows:−

The main benefit from using an alpha mark is that the position is maintained even when the buffer is
edited, for example if the position is stored at line 10 and a line is subsequently inserted at the top of
the buffer, if the line number was used then it would return back to the 10th line which is the old 9th
line whereas if an alpha mark were used it would correctly return to the 11th line, as expected.

The disadvantage of using an alpha mark is that it is only associated with that buffer. In some cases a
position may need to be restored in another buffer (e.g. when re−reading a buffer the original buffer
may be deleted first), in this situation the buffer line number must be used.

Commands set−window and goto−window, which simple stored and returned to the current window,
were replaced by set−position and goto−position in August 2000. The following macro
implementations can be used as a replacement:

define−macro set−window
 1 set−position "\x80"
!emacro

define−macro goto−window
 goto−position "\x80"
!emacro

SEE ALSO

set−alpha−mark(2), find−buffer(2), $window−x−scroll(5), $window−xcl−scroll(5),
$window−y−scroll(5), $window−line(5), $window−col(5).

MicroEmacs '02

set−position(2) 1394

grep(3)

NAME

grep − Execute grep command rgrep − Execute recursive grep command

SYNOPSIS

grep "expression files..." rgrep "expression" "base−path" "file−mask"

DESCRIPTION

grep executes the grep(1) command with the command line set by the %grep−com(5) variable and
the user supplied expression and file list files.... The output of the command is piped into the *grep*
buffer ready for the get−next−line(2) command to step through all matched lines. The syntax from the
grep output must be setup using add−next−line(2).

If an argument is given then a pipe−shell−command(2) is used instead of ipipe−shell−command(2),
this is useful when used in macros as it ensures that grep has finished before the command returns.

rgrep is simpler to grep in that it uses grep(1) to search for all occurrences of expression, but rgrep
also uses find(1) to search for expression in all files matching the file−mask in all directories from
base−path down.

NOTES

grep is a macro defined in tools.emf.

grep(1) must be executable on the system before grep or rgrep can function, find(1) must also be
available for rgrep to work.

EXAMPLE

The grep command is generally set up in the startup files as follows:−

;
; setup the next−error stuff including grep and compiling
;
set−variable $line−template "[0−9]+"
set−variable $file−template "[a−zA−Z:]*[0−9a−zA−Z_.]+"
;
; Definitions for GNU grep utility.
;
set−variable %grep−com "grep −n "
0 add−next−line "*grep*"

MicroEmacs '02

grep(3) 1395

add−next−line "*grep*" "%f:%l:"

SEE ALSO

grep(1), %grep−com(5), add−next−line(2), get−next−line(2), compile(3).

MicroEmacs '02

grep(3) 1396

help(2)

NAME

help − Help; high level introduction to help
help−command − Help; command information
help−variable − Help; variable information
help−item − Help; item information

SYNOPSIS

n help (esc ?)
help−command "command" (C−h C−c)
help−variable "variable" (C−h C−v)
help−item "item" (C−h C−i)

DESCRIPTION

The help commands provide a quick on−line help facility within MicroEmacs '02 without invoking a
third party documentation system (e.g. a browser such as Netscape(1) or winhelp(1)).

The on−line help is assisted by a set of macros which enable key words within the help buffers to be
located by either tagging (esc t) or by selection with the left mouse button. The tag mechanism
supports command completion.

help provides general help on the philosophy and functionality of MicroEmacs '02, if an argument n
of 0 is given to the command it changes the current buffer to the internal help buffer, typically named
"*on−line help*". This is a hidden system buffer used to store all the on−line help and can be
used for a variety of things. Note that access to this buffer must be via the help command, not
find−buffer and the help command will also ensure the system help file is loaded first.

help−command describes the purpose of the given command.

help−variable Describes the purpose of the given variable, similar to help−command, only for
variables.

help−item Describes the purpose of any given item, where item could be a command, variable or any
aspect of MicroEmacs '02.

FILES

The help files are ASCII text files located in the MicroEmacs '02 home directory. The files are
defined as follows:−

MicroEmacs '02

help(2) 1397

me.ehf − Help text file.
hkehf.emf − Help macros.

SEE ALSO

osd−help(3), command−apropos(2), describe−bindings(2), describe−key(2), list−commands(2),
list−variables(2).

MicroEmacs '02

help(2) 1398

hide(2m)

NAME

hide − Hide buffer

SYNOPSIS

hide Mode

H − mode line letter.

DESCRIPTION

This mode can only be set on a buffer and when enabled the buffer is effectively hidden from the user.
When set the buffer is hidden from the buffer completion list used by commands such as
find−buffer(2), the buffer is also ignored by commands list−buffers(2), save−some−buffers(2) and
delete−some−buffers(2).

SEE ALSO

find−buffer(2), list−buffers(2).

MicroEmacs '02

hide(2m) 1399

hilight(2)

NAME

hilight − Manage the buffer hilighting schemes

SYNOPSIS

0 hilight "hil−no" "flags" ["nol"] ["buffer−scheme" ["trunc−scheme"]]

hilight "hil−no" "type" "token" [["rtoken"]

[(["close" ["rclose"] "ignore"]) |

(["continue"]) |
(["b−hil−no"])]
"schemeNum"
hilight "hil−no" "0x200" "token"
hilight "hil−no" "0x400" "from−col" "to−col" "schemeNum"

−1 hilight "hil−no" "type" "token"

DESCRIPTION

The hilight command creates and manages the buffer hilighting, the process of creating a new
hilighting scheme is best described in File Language Templates. The command takes various forms as
defined by the arguments. Each of the argument configurations is defined as follows:−

Hilight Scheme Creation

0 hilight "hil−no" "flags" ["nol"] ["buffer−scheme" ["trunc−scheme"]]

With an argument of 0, hilight initializes or re−initializes the hilight scheme hil−no (1−255). Every
buffer has a hilight scheme, the default is 0 which means no hi−lighting and only the
$global−scheme(5) etc. are used. The hilighting scheme must be defined before use and is used to
specify how the buffer is to be hilighted. MicroEmacs '02 supports the following hilighting concepts:−

hilight string, a user specified string is hilighted in any color scheme.♦
Tokens, same as a hilight string except that the string must be enclosed in non alpha−numeric
characters.

♦

Start−of−line hilights, the start of the hilight must be the first non−white character of the
line.

♦

End−of−Line hilights, the hilight starts from the current position and continues until the end
of the line. Optionally, the hilight may continue onto the next line if the current line ends in a

♦

MicroEmacs '02

hilight(2) 1400

given string. A bracket may also be searched for within the line.
Bracket hilight, hi−lights from the current position until the closing bracket token is found.♦
Replace string , allows the hilight string to be replaced with a different user specified string.
(i.e. the displayed representation is different from the buffer contents)

♦

Terminals that cannot display color directly may still be able to take advantage of the hi−lighting. A
terminal that has fonts (i.e. Termcap) can use them in the same way using the add−color−scheme(2)
command. The hi−light scheme is also used in printing (see print−buffer(2)). If your terminal cannot
display color in any way, it is recommended that hi−lighting is disabled (except when printing) as it
does take CPU time.

The "hil−no" argument specifies which hi−lighting scheme is being initialized. Once a hilighting
scheme has been initialized, hi−light tokens can be added to it and it can be used by setting the current
buffer's $buffer−hilight(5) variable to "hil−no". The "flags" argument is a bit based flag setting global
hi−light characteristics, where:−

0x01

The hi−light scheme is case insensitive, i.e. the following tokens become equivalent:−

house == HOUSE == hOuSe

When the hilight scheme is attributed as case insensitive then the tokens must all be specified
in lower case.

0x02

Set a hi−light look−back. During the process of determining the window hilighting then the
hilight process has to determine whether the top of the window starts in a hi−light bracket or
not. The look−back command tries looking "nol" lines backwards for an open bracket. If an
open bracket is found then the top of the window is assumed to start with that bracket, else it
is assumed that the top of the window is not in a bracket. For example, in `C', a comment
starts with "/*" and ends with "*/" so if the hilight was initialized with

0 hilight 1 2 10 $global−scheme

of the following, only the first would begin hi−lighted which is correct (assuming the "/*" is
10 or less lines away).

 /* /*.........
 */
−−−−−−−−−−−−−−−− −−−−−−−−−−−−−−− −−−−−−−−−−−−−−− top of
 */ window

The optional argument "buffer−scheme" specifies the default scheme to use if there is no specific
hi−light, when omitted the value of $global−scheme(5) is used. The buffer−scheme is a reference to a
set of foreground and background color pairs previously defined with add−color−scheme(2). The last
argument "trunc−scheme" is also optional and specifies the line truncation scheme, when omitted the
value of $trunc−scheme(5) is used.

MicroEmacs '02

hilight(2) 1401

The hi−lighting scheme required is based on the type of file being edited and so is usually directly
related to the file extension, thus it can be automatically set using file hooks (see add−file−hook(2)).

Hilight Scheme Token Creation

hilight "hil−no" "type" "token" [["rtoken"]

[(["close" ["rclose"] "ignore"]) |

(["continue" ["rcontinue"]]) |
(["b−hil−no"])]
"schemeNum"
hilight "hil−no" "0x200" "token"
hilight "hil−no" "0x400" "from−col" "to−col" "schemeNum"

With the default argument of 1, hilight creates a hilight token to be used in hilight color scheme
identified by "hil−no" (1−255) (see the section on Hilight Scheme Creation for a overview of
hi−lighting). The second argument "type" specifies the token type and must always be specified, it
determines which other arguments required.

Typically the last argument, schemeNum, is also required. This identifies the color scheme to use
when hilighting the token, defining the foreground, background and selection color schemes. This is
an index generated from add−color−scheme(2). If the schemeNum argument is omitted the default
hilght color scheme is used.

The token "type" is a bit based flag of which 0, 1 or more of the bits may be set, the effect of the bits
are defined as follows:

0x001

The "token" must be surrounded by non−word characters (word characters are typically the
alpha−numeric characters), e.g. the following defines "if" as a token:

hilight 1 1 "if" .scheme.keyword

this hilights the 'if' in " if " but not in "aifa".

0x002

Color this to the end of the line, often used for comments etc. For example in MicroEmacs
macro language a ';' character signifies the rest of the line as a comment, hilighting is defined
as follows:

; this is a comment line
hilight 1 2 ";" .scheme.comment

0x004

MicroEmacs '02

hilight(2) 1402

This is a bracket token, the closing bracket string "close" and an ignore character "ignore"
must also be supplied. The ignore character indicates that when found it should ignore the
next character; this prevents an early end on bracket miss−match. For example, in C a '"'
character can be inserted into a string by 'protecting' it with a '\' character, such as "this is a
string with a \" in it". In this example the ignore character should be '\' so the mid string '"' is
correctly ignored, as follows:

hilight 1 4 "\"" "\"" "\\" .scheme.string

An empty value, "", effectively disables the ignore feature. If replacing bit 0x040 is set the
replacement close bracket "rclose" must be supplied.

0x008

The token has a continuation string, usually used with 0x02 but cannot be used with token
types 0x004 and 0x080. The argument "continue" must be supplied and if the replacing bit
0x040 is set the replacement continue string "rcontinue" must also be supplied. The best
example of its use can again be found in C; macros defined using the #define
pre−processor construct may be constructed on single or multiple lines. The macro continues
onto another line if the current line ends with a backslash '\' character, e.g.:

#define a_single_line_macro() printf("hello world\n")

#define a_four_lined_macro() \
do { \
 printf("hello world\n") ; \
} while(0)

This can be correctly hilighted with the pre−processor scheme using:

; use to−end−of−line (2) and continuation (8), i.e. 2+8=10
hilight 1 10 "#" "\\" .scheme.prepro

0x010

If this is an end of line token (0x002) then

The rest of the line is checked for any valid brackets.

Else if this is a bracket token (0x004) then

This is still searched for after an end of line token is found.

Else

Ignored

This feature enables the searching and hilighting of specific brackets contained within a
to−end−of−line scheme. For example, consider the following C code:

#define My_Token 0x01 /* This is a multi−lined comment

MicroEmacs '02

hilight(2) 1403

 * describing My_Token */

With the '#' pre−processor hilight (see bit 0x08 above) the #define line would all be hilighted
with the pre−process scheme, the comment would be missed causing incorrect hilighting of
the next line. Instead this feature may be used by both the pre−processor and comment hilight
tokens to correctly hilight the above example:

hilight 1 26 "#" "\\" .scheme.prepro
hilight 1 20 "/*" "*/" "" .scheme.comment

0x020

This token must be the first non−white character of the line.

0x040

The token (and closing bracket tokens) are to be replaced by the given replacement strings.
This is often utilized when displaying formated text such as MicroEmacs on−line help ehf(8)
pages, the output from UNIX man(1) etc. In MicroEmacs help pages, the start of bold text is
delimited with the character sequence "\C[cD" and ends with the character sequence
"\C[cA", e.g.

"the word \C[cDbold\C[cA is in \C[cDbold\C[cA"

Obviously the hilight delimiters should not appear so the character sequence may be correctly
drawn using a bracket token, starting with "\C[cD" and ending with "\C[cA", replacing
both with an empty string:

hilight 1 0x44 "\C[cD" "" "\C[cA" "" "" .scheme.bold

0x080

This is a branch token. When this token is found, the token (or the replace string) is colored using the
given color schemeNum and then the current hilighting scheme is changed to "b−hil−no" (which
MUST be defined by the time it is first used). The "b−hil−no" hi−light scheme should also contain a
branch token which branches back to "hil−no" or "0" (which branches to $buffer−hilight(5)). A
branch does not have to branch back to "hil−no", it may branch to any other hi−light scheme. The
branches are not stacked and there is no limit on the nesting.

0x100

The token must be at the start of the line.

0x200

This is an invalid token in its own right, which is used for optimizing a hi−lighting scheme.

This has the second highest precedence (see 0x400) and all other bits are ignored. Only the
first 3 arguments are required. For example, if there are 11 tokens starting with "delete−"
as with the hi−lighting of this buffer, then adding the token "delete−", while invalid in its

MicroEmacs '02

hilight(2) 1404

own right, means that "delete−" is only checked for once. This also reduces the size of the
internal hilighting tables so if the message "Table full" appears, the hilighting scheme should
be reduced by removal of the common components.

0x400

This is a column hilighting token, which allows absolute columns within a window to be hilighted
(irrespective of the contents). This bit takes precedence over all other bits and all other bits are
ignored. Column highlighting is a different concept to token in that it requires a "from−col" and a
"to−col" column positions and a line will be hilighted in the given scheme between these two
columns.

0x800

The flag is used with bracket tokens (0x04) and indicates that the bracket is typically contained on a
single line. This information is used by MicroEmacs in trying to avoid hilighting anomalies caused
when the start and end tokens of the bracket are the same (e.g. a string's start and end token is '"').
Problems arise when the bracket starts on one line and closes on a later line, even with a large
look−back, eventually the start bracket will become too far back and only the end bracket is found.
But as this is the same as the open token it is mistaken for an open bracket and the strings become out
of synch. This test can reset this if further down the file an open and close bracket is found on the
same line. For this to have any effect, the hilighting scheme must use look−back (flag 0x02 of
Hilight Creation).

Note that 0x004, 0x008 and 0x080 are mutually exclusive and more than 1 should not be set in
any one hilight token, if 2 or more are set the effect is undefined. Other than this there is no
restrictions placed on the types of token used, although strange combinations like 0x006 may lead to
unexpected results −− hopefully not a core dump, but not guaranteed !

The token and close token of brackets may contain a limited subset of regular expression tokens as
follows:−

^

When specified as the first character of the token, the token must be at the start of the line.

$

The token must be at the end of the line, must be the last character.

\{

Indicates the start of the hilighted part of the token, only one may be used per token. This token use is
different from regex.

\}

Indicates the end of the hilighted part of the token, only one may be used per token. The rest of the
token must be matched for it to be used but is not considered part of the token, i.e. hilighting

MicroEmacs '02

hilight(2) 1405

continues on the character immediately after the "\}", not at the end of the token. Similar to the \<
token, the length of the rest of the token must be fixed. This token use is different from regex.

\(.\)

Groups are supported in hilighting, but they must only enclose a single character, closures ('*', '?' and
'+') must come after the closure, i.e. use "\(.\)*", not "\(.*\)". Alternatives ("\|") are not supported.

.

Matches any character.

[...]

Matches a single buffer character to a range of characters, for example to hilight MicroEmacs
register variables (i.e. #g0−#g9, #p0−#p9, #l0−#l9) the following regex string may be
used:

hilight 1 1 "#[gpl][0−9]"

This matches a token which starts with a '#', followed by a 'g', 'p' or 'l' character and ends
with a numerical digit. If the user required the replacement (bit 0x40) of the "#" to "#register"
to aid readability, the replacement string some now needs to know whether the second
character was a 'g', 'p' or 'l' and which digit. Up to 9 groups ("\(.\)") can be use to store a
store a single search character, which can be used later in the search string and in the
replacement string by using the form "\#", where # is the range test number counting from the
left, e.g. for the given example use:

hilight 1 65 "#\\([gpl]\\)\\([0−9]\\)" "#register\\1\\2"

The content of the brackets ([...]) include a set of special short cuts and regular expression
syntax definitions as follows:−

[abc]

A list of characters.

[a−z]

A range of characters.

[−.0−9]

A combination of character lists and ranges.

[[:space:]]

A white space character. See set−char−mask(2) for a full description on MicroEmacs
character range support.

MicroEmacs '02

hilight(2) 1406

[[:digit:]]

A digit, 0−9.

[[:xdigit:]]

A hexadecimal digit, 0−9, a−f, A−F.

[[:lower:]]

A lower case letter, by default a−z.

[[:upper:]]

An upper case letter, by default A−Z.

[[:alpha:]]

A lower or upper case letter.

[[:alnum:]]

A lower or upper case letter or a digit.

[[:sword:]]

A spell word character.

[^...]

Matches all characters except the given range of characters, e.g. "[^[:space:]]".

\#

The same character which matched the #th group token. This functionality is best
explained using UNIX man(1) output as an example, to create a bold character 'X' it
produces "X\CHX" where \CH is a backspace character thereby overstriking the first
'X' with another creating a bold character. This can be checked for and simulated in
MicroEmacs using the following:

hilight 1 64 "\\(.\\)\CH\\1" "\\1" .scheme.bold

The use of "\1" in the search string ensures that the second character is the same as the first.
This is replace by a single character drawn in the bold scheme.

? + *

Matches 0 or 1, 1 or more and 0 or more of the previous character or character range respectively.

MicroEmacs '02

hilight(2) 1407

Following is a list of hilighting regular expression restrictions:

The number of characters to the left of a \{ and to the right of a \} token must be fixed, i.e. the
'?', '+' and '*' tokens cannot be used before this token. Consider the hilighting of a C function
name defined to be a token at the start of a line followed by 0 or more spaces followed by a
'('. The following hilight token looks valid but the variable space match is incorrect as it is to
the right of the \}:

hilight 1 0 "^\\w+\\}\\s−*(" .scheme.function

Instead either the space match must be include in the function token hilighting (which may
cause problems, particularly if printing with underlining) or by fixing the number of spaces as
follows:

; include the spaces in the function hilighting
hilight 1 0 "^\\w+\\s−*\\}(" .scheme.function
; or fix the number of spaces to 0, 1 ...
hilight .hilight.c 0 "^\\w+\\}(" .scheme.function
hilight .hilight.c 0 "^\\w+\}\\s−(" .scheme.function

The + and * tokens match the longest string and do not narrow, e.g. consider the hilighting of
a C goto label which takes the form of an alpha−numerical name at the start of a line followed
by a ':' character. The token "^.*:" cannot be used as . will also match and move past the
ending ':', ending only at the end of the line. As no narrowing is performed the final ':' in the
token will not match and the label will not be hilighted. Instead a character range which
excludes a ':' character must be used, e.g. "^[^:]*:".

A group should not be followed by a ? or * closure, it should either be a fixed single character
or followed by a + closure (in which case the last matching character is stored).

Following is a list of hilight type bit / token regex equivalents:

0x01

"[^word]\{????\}[^word]"

0x02

"????.*"

0x20

"^\s−*\{????" − (note that this is strictly incorrect as the \s−* is to the left of the \{, it is
correctly handled for the ease of use).

0x100

"^????" Hilight Scheme Token Deletion

MicroEmacs '02

hilight(2) 1408

−1 hilight "hil−no" "type" "token" With a −ve argument hilight deletes the given "token" from a
hi−light color scheme identified by "hil−no". The token "type" must also be specified to distinguish
between normal and column token types.

EXAMPLE

Example 1

Hilighting a MicroEmacs character given in hex form, checking its validity (i.e. "\x??" where ? is a
hex digit):

hilight 1 0 "\\x[[:xdigit:]][[:xdigit:]]" .hilight.variable

Hilighting a C style variable length hex number (i.e. "0x???"):

hilight 1 1 "0[xX][[:xdigit:]]+" .hilight.variable

Example 2

Replacing a quoted character with just the character (i.e. 'x' −> x)

hilight 1 64 "'\\(.\\)'" "\\1" %magenta

Example 3

The following example uses the branch hilighting feature to hilight each window line a different color
to its neighbors by cycle through 3 different color schemes:

0 hilight .hilight.line1 0 $global−scheme
 hilight .hilight.line1 0x80 "\\n" .hilight.line2 .scheme.no1
0 hilight .hilight.line2 0 .scheme.no1
 hilight .hilight.line2 0x80 "\\n" .hilight.line3 .scheme.no2
0 hilight .hilight.line3 0 .scheme.no2
 hilight .hilight.line3 0x80 "\\n" .hilight.line1 $global−scheme

Example 4

Simulate the hilighting from the output of a UNIX man page (taken from hkman.emf):

0 hilight .hilight.man 0 $global−scheme
; ignore
hilight .hilight.man 64 ".\CH" "" $global−scheme
; normal underline/italic
hilight .hilight.man 64 "_\CH\\(.\\)\\}[^\CH]" "\\1" .scheme.italic
hilight .hilight.man 64 "\\(.\\)\CH_\\}[^\CH]" "\\1" .scheme.italic
; bold − first is for nroff −man
hilight .hilight.man 64 "\\(.\\)\CH\\1\\}[^\CH]" "\\1" .scheme.bold
hilight .hilight.man 64 "_\CH_\CH_\CH_\\}[^\CH]" "_" .scheme.header

MicroEmacs '02

hilight(2) 1409

hilight .hilight.man 64 "\\(.\\)\CH\\1\CH\\1\CH\\1\\}[^\CH]" "\\1" .scheme.header
; bold underline
hilight .hilight.man 64 "_\CH_\CH_\CH_\CH_\\}[^\CH]" "_" .scheme.italic
hilight .hilight.man 64 "_\CH\\(.\\)\CH\\1\CH\\1\CH\\1\\}[^\CH]" "\\1" .scheme.italic

This replaces the complex nroff character string with a single hi−lighted character (don't believe me,
try it!).

NOTES

MicroEmacs hilight was written with speed and flexibility in mind, as a result the user is assumed to
know what they are doing, if not the effects can be fatal.

SEE ALSO

File Language Templates, $buffer−hilight(5), add−file−hook(2), add−color−scheme(2),
print−scheme(2), indent(2), $system(5), print−buffer(2).

MicroEmacs '02

hilight(2) 1410

ini(9)

SYNOPSIS

ini, hpj, reg, rgy − MS−Windows initialization and registry files

FILES

hkini.emf − MS−Windows initialization and registry files.

EXTENSIONS

.ini − MS−Windows Initialization File

.hpj − MS−Windows Help Project File

.reg − Registry File

.rgy − (Other) registry File

DESCRIPTION

The ini file type templates provide simple hilighting of MS−Windows initialization and registry files.
The file format is similar to a number of other registry type files which are also over−loaded into the
same template.

Hilighting

The template provides minimal hilighting , but allows the different components of the file to be
differentiated.

Folding and Information Hiding

Generic folding is enabled within the ini files. The folds occur about lines with leading square brackets [...[
located on the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds the
current region. BUGS

None reported.

SEE ALSO

bat(9).

Supported File Types

MicroEmacs '02

ini(9) 1411

html(9)

SYNOPSIS

html − HyperText Markup Language File.

FILES

hkhtml.emf − HyperText Markup Language file hook definition

EXTENSIONS

.htm, .html − HyperText Markup Language File.

.htp − [Special] Super HTML Preprocessor file.

.hts − [Special] Super HTML file.

MAGIC STRINGS

<html>

MicroEmacs '02 recognizes the magic string on any of the first 4 lines of the file. The HTML files may be
extension−less and are still recognized. DESCRIPTION

The html file type template provides simple hilighting of HTML files. Additionally, MicroEmacs '02
is capable of rendering simple HTML files (without graphic content) into the current buffer and
follow the hyper text links. The JASSPA HTML documentation may be viewed in this way.

General Editing

HTML files may be edited or processed and rendered into the buffer. The Use Author Mode option
in the buffer−setup(3) dialog determines the edit mode on loading a HTML file; when set to 'N' the
page is rendered, 'Y' and the raw HTML file is presented. The default state is 'Y'.

Hilighting

The hilighting features allow commands, variables, logical, preprocessor definitions, comments,
strings and characters of the language to be differentiated and rendered in different colors.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−h − Help information.

MicroEmacs '02

html(9) 1412

C−c C−a − Toggle the HTML author status.
html−spell−check−word − spell check the current word.

Rendered Mode

In the non−author mode, the HTML file is extracted and rendered to the buffer. The hypertext links
may be followed by selecting them with the mouse or using the <RETURN> key.

The rendered mode is typically used to check HTML text after it has been authored from the
editor. The rendered mode only caters for regular HTML 2.0 text. It does not handle tables or
frames etc. (use a browser).

Toggling between rendered and authoring mode, then the buffer should be killed as the
translation is only performed when the file is read.

The non−author mode can be permanently enabled by setting the Use Author Mode option in
the buffer−setup(3) dialog to 'N'. When set to N any HTML files loaded are automatically
processed, and rendered according to their HTML content.

NOTES

The print driver may be used to generate HTML from the contents of the buffer. Select the printer
destination as buffer, and HTML as the driver. The buffer being printed is converted to HTML and
dumped in the print buffer.

.hts and .htp are computer generated extended HTML files used in the MicroEmacs '02
documentation system.

BUGS

None reported.

SEE ALSO

print−buffer(2), buffer−setup(3).

Supported File Types

MicroEmacs '02

html(9) 1413

hunt−forward(2)

NAME

hunt−forward − Resume previous search in forward direction hunt−backward − Resume previous
search in backward direction

SYNOPSIS

n hunt−forward (C−x h)
n hunt−backward (C−x C−h)

DESCRIPTION

hunt−forward repeats the last search with the last search string in a forwards direction, from the
current cursor position. magic(2m) and exact(2m) modes are operational.

hunt−backward repeats the last search with the last search string in a backwards direction, as per
hunt−forward.

The numeric argument n is interpreted as follows:−

n > 0

The nth occurrence of the pattern is located.

n < 0

The first occurrence of the pattern is located in the next n lines. DIAGNOSTICS

The command returns a status of FALSE if no previous search string has been established, or if the
pattern could not be located (or nth pattern where n occurrences are requested). If the pattern is found
within the given search criteria the return status is TRUE.

SEE ALSO

exact(2m), isearch−forward(2), magic(2m), search−backward(2), search−forward(2),
Regular Expressions

MicroEmacs '02

hunt−forward(2) 1414

Installation(1)

INSTALLATION

This page describes introductory notes for the installation and setup of MicroEmacs '02.

Quick Install

The quickest way to install MicroEmacs without reading the rest of this document is to:−

Create a new directory i.e. me or microemacs.♦
Unpack the macros archive into this directory.♦
Unpack any spelling dictionaries into this directory.♦
Unpack the executable into this directory.♦
Run me from this directory.♦

On starting, use the mouse and configure the user from the menu bar:−

Help−>User Setup

This allows the user and screen settings to be altered. On becoming more accustomed to the editor
then a fuller installation may be performed.

Getting Help

See Contact Information for full contact information. A mail archive exists at:−

http://groups.yahoo.com/group/jasspa/

If you wish to participate in the list then you must first register by sending an empty mail
message body to:−

jasspa−subscribe@yahoogroups.com

You will then be able to mail any questions into the group. Registration is required in order to
prevent spam mailings from entering into the lists.

Distribution

MicroEmacs is distributed in the following files:−

Complete Installations

The Microsoft '95/'98/NT platforms may be installed using the Install Shield installation utility and
do not require the components specified in later sections.
jasspame.exe − '95/'98/NT Self Extracting Install Shield Installation

MicroEmacs '02

Installation(1) 1415

Executable Source Code

The source code release for MicroEmacs '02 contains makefiles (*.mak) for all supported platforms.
Microsoft '95/'98/NT makefiles contain options at the top of the makefile to enable/disable console
and URL support. mesrc.zip − Source code for all platforms
mesrc.tar.gz − Source code

Executable Images

medos.zip − DOS Executable
mewin32.zip − Windows 32' (95/98/NT) Executable
mewin32s.zip − Windows win32s (Win3.1/3.11) Executable
meirix6.gz − Silicon Graphics Irix 6 Executable
meaix43.gz − IBM's AIX 4.3 Executable
mehpux10.gz − Hewlett Packard HP−UX 10 Executable
mehpux11.gz − Hewlett Packard HP−UX 11 Executable
mesunos55.gz − Sun OS 5.5 Executable
mesunos56.gz − Sun OS 5.6 Executable
mesolx86.gz − Sun Solaris 2.6 Intel Platform Executable
melinux20.gz − Linux 2.0.0 Executable
mefreebsd.gz − Free BSD Executable

Help File Images (all platforms)

mewinhlp.zip − Windows Help file
mehtm.zip − HTML Help files for 8.3 file systems (.htm)
mehtml.tar.gz − HTML Help files (.html)

Macro File Images (all platforms)

memacros.zip − Macro files
memacros.tar.gz − Macro files

Spelling Dictionaries (all platforms)

One of the following base dictionaries is required for spelling. The extended dictionaries require the
base dictionary and are recommended for a more comprehensive spelling list. Other languages are
supported.

lsdmenus.zip − American rules and base dictionary.
lsdxenus.zip − American extended dictionary.
lsdmengb.zip − British rules and base dictionary.
lsdxengb.zip − British extended dictionary.
lsdmfifi.zip − Finnish rules and dictionary.
lsdmfrfr.zip − French rules and dictionary.
lsdmdede.zip − German rules and base dictionary.
lsdxdede.zip − German extended dictionary.
lsdmitit.zip − Italian rules and dictionary
lsdmplpl.zip − Polish rules and dictionary.

MicroEmacs '02

Installation(1) 1416

lsdmptpt.zip − Portuguese rules and dictionary.
lsdmeses.zip − Spanish rules and dictionary.

lsdmenus.tar.gz − American rules and base dictionary.
lsdxenus.gz − American extended dictionary.
lsdmengb.tar.gz − British rules and base dictionary.
lsdxengb.gz − British extended dictionary.
lsdmfifi.tar.gz − Finnish rules and dictionary.
lsdmfrfr.tar.gz − French rules and dictionary.
lsdmdede.tar.gz − German rules and base dictionary.
lsdxdede.gz − German extended dictionary.
lsdmitit.tar.gz − Italian rules and dictionary
lsdmplpl.tar.gz − Polish rules and dictionary.
lsdmptpt.tar.gz − Portuguese rules and dictionary.
lsdmeses.tar.gz − Spanish rules and dictionary.

NOTE: The binary versions of the executables held on the site include the platform name as
part of the executable name i.e. me for DOS is called medos.exe. On installing the binaries
onto the target machine, you should rename the executable to me or me.exe, whatever is
appropriate. The ONLY exception to this rule is the Microsoft Windows executable where
mewin32.exe should be renamed to me32.exe. Our reason for this naming is to allow the
executables to be unpacked in the same directory and not be confused with each other.

Quick Start Guild For All Platforms

Simply create a directory, down−load the files required (see list for each platform below) and extract
into this directory. From a shell or command prompt, change to the directory, making it the current
one (i.e. cd to it), and run the executable. MicroEmacs '02 should open with the on−line help page
visible.

On Windows based systems this can also be achieved by creating a short−cut and setting the Working
Directory in Properties to this path.

To enable MicroEmacs to be run from any directory, simply include this directory in you PATH
environment variable. Alternatively, copy the executable to somewhere in your PATH and set the
environment variable MEPATH to point to this directory.

MicroEmacs '02 will function normally in this environment, but in multi−user environments and for
up−dating purposes, it is strongly recommended that a proper installation is used, see below.

Installation

DOS

Executable:

Compiled with DJGPP V1.0

MicroEmacs '02

Installation(1) 1417

Distribution components required:

medos.zip
memacros.zip
<spelling>.zip

mewinhlp.zip if you are using windows 3.1/3.11

Recommended installed components:

4dos − Command shell (giving stderr redirection).
grep − Version of grep (djgpp recommended)
make − Version of make (djgpp recommended)
diff − Version of diff (djgpp recommended)

Installation:

Create the directory c:\me (or other location)

Unzip the MicroEmacs components into c:\me

Edit "c:\autoexec.bat" and add the following lines:−

SET MENAME=<name>
SET PATH=%PATH%;c:\me
SET MEPATH="c:\me"

Reboot the system.

MicroEmacs may be run from the command line using

me

Graphics Cards:

MicroEmacs may be configured to the text modes of your graphics card. Refer to you
graphics card DOS text modes to identify the text modes supported by your monitor. The text
mode number may be entered into the user monitor configuration, defined in Help−>User
Setup.

Running From Windows (3.x)

The DOS version of MicroEmacs may be executed from a .pif file. Use the pif editor
to create a new .pif file to launch MicroEmacs. The size of the DOS window may be
configured from the command line, set the terminal size using one of the following
command lines:−

me −c −v$TERM=E80x50 − 80 x 50 window
me −c −v$TERM=E80x25 − 80 x 25 window.

MicroEmacs '02

Installation(1) 1418

We usually add the −c option so that MicroEmacs is executed with history
information. This may be omitted if required.

Windows 3.1/3.11

Executable:

Compiled with Microsoft Developer 2.0

Helper DLL:

Under Win32s a helper DLL methnk16.dll is required to perform the
pipe−shell−command(2) in a synchronous manner. This should be installed into the
C:\WINDOWS\SHELL directory. This (rather inelegantly) gets around the problems of
spawning a process under win32s due to a number of Microsoft bugs in the operating system.
Note: that on a spawn operation a MS−DOS window is visible, this is due to the nature of the
command shell on this platform which has a tendency to prompt the user at every opportunity,
hence a certain amount of interaction (which is out of our control) is necessary.

The helper DLL is compiled with a 16−bit Windows compiler − MSVC 1.5.

Distribution components required:

mewin32s.zip
memacros.zip
mewinhlp.zip
<spelling>.zip

Recommended installed components:

4dos − command shell (giving stderr redirection)
grep − Version of grep (GNU port of grep recommended)
diff − Version of diff (GNU port of grep recommended)
make − use nmake or GNU port of make.

win32s

win32s is a requirement on this platform, typically taken from pw1118.exe which freely
available on the Internet.

Installation:

This version of Windows does not have a install directory as '95/'98 and it is expected that the
MS−DOS version will coexist. No Install Shield installation is provided. Install in a directory
structure similar to MS−DOS. Install the helper DLL methnk16.dll in the
C:\WINDOWS\SHELL directory. Create a me32.ini(8) file in the C:\WINDOWS directory to
identify the location of the MicroEmacs '02 components, this much the same as the '95/'98
file, change the directory paths to suite the install base.

MicroEmacs '02

Installation(1) 1419

Support Status:

The win32s release has not been used with vengeance, although no specific problems have been
reported with this release.

Windows '95/'98/NT

Executable:

Compiled with Microsoft Developer 5.0

Install Shield

An Install Shield version of MicroEmacs is available which includes all of the distribution
components.

Distribution components required:

mewin32.zip
memacros.zip
<spelling>.zip
mewinhlp.zip (optional)

Recommended installed components:

4dos or 4nt − command shell
grep − Version of grep (GNU port of grep recommended)
diff − Version of diff (GNU port of grep recommended)
make − use nmake or GNU port of make.

Installation:

Create the directory "C:\Program Files\Jasspa\MicroEmacs" (or other location)

Unzip the MicroEmacs components into "C:\Program
Files\Jasspa\MicroEmacs"

Create the file "c:\windows\me32.ini" and add the following lines:−

[Defaults]
mepath=C:\Program Files\Jasspa\MicroEmacs
userPath=C:\Program Files\Jasspa\MicroEmacs
fontfile=dosapp.fon

Create a short cut to MicroEmacs for the Desktop

Right click on the desk top

=> New
=> Short

MicroEmacs '02

Installation(1) 1420

=> Command Line: "c:\Program Files\Jasspa\MicroEmacs\me.exe −c"
=> Short Cut Name: "MicroEmacs"

MicroEmacs may be executed from the shortcut.

Open Actions

Microsoft Windows 95/98/NT provide short cut actions, assigning an open action to a file.
The short cuts may be installed from the Install Shieled installation, but may alternativelly be
explictly defined by editing the registry file with regedit(1).

A file open action in the registry is bound to the file file extension, to bind a file
extension .foo to the editor then the following registry entries should be defined:−

[HKEY_CLASSES_ROOT\.foo]
"MicroEmacs_foo"
[HKEY_CLASSES_ROOT\MicroEmacs_foo\DefaultIcon]
"C:\Program File\JASSPA\MicroEmacs\meicons,23"
[HKEY_CLASSES_ROOT\MicroEmacs_foo\Shell\open]
"&Open"
[HKEY_CLASSES_ROOT\MicroEmacs_foo\Shell\open\command]
"C:\Program File\JASSPA\MicroEmacs\me32.exe −o "%1""

In the previous exaple the DefaultIcon entry is the icon assigned to the file. This may
be an icon taken from meicons.exe (in this case icon number 23), or may be some
other icon. The open action in the example uses the −o option of the client−server,
which loads the file into the current MicroEmacs '02 session, alternatively the −c
option may be used to retain the previous context, or no option if a new session with
no other files loaded is started.

A generic open for ALL files may be defined using a wildcard, this may be used to
place a MicroEmacs edit entry in the right−click popup menu, as follows:−

[HKEY_CLASSES_ROOT*\shell]
[HKEY_CLASSES_ROOT*\shell\MicroEmacs]
"&MicroEmacs"
[HKEY_CLASSES_ROOT*\shell\MicroEmacs\command]
"C:\Program File\JASSPA\MicroEmacs\me32.exe −o "%1""

UNIX

Executable:

Compiled with native compilers.

Distribution Components Required:

me<unix>.gz
memacros.tar.gz
<spelling>.gz
html.tar.gz (optional)

MicroEmacs '02

Installation(1) 1421

Installation:

It is recommended that all files are placed in /usr/local, although they may be installed
locally.

Unpack the executable and placed in "/usr/local/bin"

Create the new directory "/usr/local/microemacs", unpack and install the
memacros.tar.gz into this directory.

For csh(1) users execute a "rehash" command and then me(1) can be executed
from the command line.

By default a X−Windows terminal is displayed, ensure that $DISPLAY and $TERM
are correctly configured. To execute a terminal emulation then execute me with the
−n option i.e. "me −n". Note that this is not required if you are using a vt100
emulation.

Organizing a local user profile

MicroEmacs uses local user configuration profiles to store user specific information. The user
information may be stored in the MicroEmacs directory, or more typically in a users private directory.
The environment variable $MENAME is typically used to determine the identity of the user.

The location of the user profile will depend upon your installation configuration.

Single Machine

For a single user machine it is typically easiest to use the installed MicroEmacs directory where user
specific files are placed. This method, although not recommended, is simple as all files that are
executed are in the same location. The $MEPATH is not changed.

UNIX

The UNIX environment is fairly easy and operates as most other UNIX applications. The user should
create a MicroEmacs directory in their home directory for their own local configuration. Assigning a
suitable name such as "microemacs", or if the file is to be hidden ".microemacs".

The $MEPATH environment variable of the user should be modified to include the users
MicroEmacs path BEFORE the default macros MicroEmacs path i.e.

Ksh/Zsh:

export MEPATH=$HOME/microemacs:/usr/local/bin

Csh/Bash:

setenv MEPATH $HOME/microemacs:/usr/local/bin

MicroEmacs '02

Installation(1) 1422

Where $HOME is defined as "/usr/<name>" (typically by default).

DOS/Windows

DOS and Windows are a little more tricky as numerous directories at the root level are more
than a little annoying. It is suggested that the user directory is created as a sub−directory of
the MicroEmacs directory. i.e.

"c:\me\<user>" for DOS

or

"c:\Program Files\Jasspa\MicroEmacs\<user>" for Windows

The $MEPATH environment variable (see me32.ini(8) for Windows) is modified to include
the user component before the MicroEmacs component where $MEPATH is defined i.e.

SET MEPATH=c:\me\<user>;c:\me

where <user> is the user name (or $MENAME).

Alternative Directory Configurations

Numerous other configurations exist to organize the macro directories, to take the directory
organization to the extreme then it is sometimes easiest to keep all of the macro components separate.
An installation layout which encompasses different macro directories for:−

User profiles − 1 per user.♦
Shared company profiles − 1 per organization.♦
MicroEmacs macros which are updated from time to time.♦

The configuration on different systems may be defined as follows:−

UNIX

The shared files are placed in /usr/local

/usr
 \
 local
 \
 microemacs − Spelling + standard macros
 \
 company − Company specific files

The user profile is stored in the users directory

/usr
 \
<name>

MicroEmacs '02

Installation(1) 1423

 \
 microemacs − User specific files

The user should configure the $MEPATH as:

MEPATH=$(HOME)/microemacs:/usr/local/microemacs/company:/usr/local/microemacs

DOS/WINDOWS

For DOS and MS−Windows environments, bearing in mind the problem of the root directory,
then it is easier to use the "me" directory as a place holder for a number of sub−directories,
using a configuration such as:−

 c:
 |
 me − Place holder directory
 / | \
 / | \
 <name> macros company

The user should configure the $MEPATH as:−

SET MEPATH=c:\me\<name>;c:\me\company;c:\me\macros

User Profile Files

Files contained in the user profiles typically include:−

<name>.emf − The users start up profile.
<name>.edf − The users spelling dictionary.
<name>.erf − The users registry configuration file.

These files are established from the menu "Help−>User Setup". The "Setup Path" item defines the
location of the files, but must be MANUALLY included in the $MEPATH environment.

Company Profiles

Company profiles include standard files and extensions to the standard files which may be related to a
company, this is typically <company>.emf where <company> is the name of the company.

The directory may also include template files etf(8) files which defines the standard header template
used in the files. Files in the "company" directory would over−ride the standard template files.

The company directory should be added to the $MEPATH after the user profile and before the
MicroEmacs standard macro directory.

SEE ALSO

MicroEmacs '02

Installation(1) 1424

$MENAME(5), $MEPATH(5), Company Profiles, File Hooks, File Language Templates, User
Profiles.

MicroEmacs '02

Installation(1) 1425

Interfacing(2)

INTERFACING

This sections describes how MicroEmacs '02 may be interfaced to external components.

Shells

A shell window may be opened within the context of the editor using the command ishell(3), whereby
an interactive command shell is presented within a buffer.

In the Microsoft Windows environment a cygnus UNIX style BASH shell may be realised with the
cygnus(3) command.

Debugger

Within the UNIX environment the GNU gdb(1) or native UNIX dbx(1) debuggers may be invoked
from the editor using gdb(3) or dbx(3). respectively This invokes the debugger and follows the
debugging process in the editor window, automatically opening the source files as the debugger calls
for them.

Microsoft Developer Studio

In the Microsoft windows environment, the memsdev(1) DLL may be attached to the Microsoft
Developer Studio to enable MicroEmacs '02 to be used in place of the in−built editor.

File Searching

File searching is performed using grep(1) using the grep(3) command. For Windows then the GNU
grep utility is recommended, for MS−DOS then the DJGPP version of GNU grep is recommended.

File Differencing

Differencing files, or directories is performed using the diff(1) utility using the diff(3) command. For
all platforms the GNU diff utility is recommended as this provides a comprehensive differencing that
is not typically available with native UNIX diff utilities.

Tag Files

A tag capability exists (see find−tag(2)) such that source functions and alike may be located quickly
using a tags file. The standard ctags(1) format is used by MicroEmacs. The tags file itself may be

MicroEmacs '02

Interfacing(2) 1426

generated by MicroEmacs '02 from the menu (Tools−>XX Tools−>Create Tags File). Alternatively a
tags file may be generated by the ctags(1) utility. This is typically standard on UNIX platforms. For
Windows and DOS platforms then the Exuberant Ctags is recommended, this is available from:−

http://darren.hiebert.com

A MicroEmacs '02 compatible tags file may be generated using the command line "ctags −N
−−format=1 ." cataloging the current directory. To generate tags for a directory tree then use
"ctags −NR −−format=1 .". Refer to the Exuberant Ctags documentation for a more detailed
description of the utility.

Compilation

Compilation is performed using the compile(3) command. This invokes a command shell, typically
using make(1) to initiate a build sequence.

Client−Server

The Client−Server interface allows other client applications to inject commands into an already
existing MicroEmacs '02 session (the server), thereby controlling the editor remotely. This is typically
used to inject new files into the editor to be presented to the user.

The Client−Server interface is available in both the UNIX and Microsoft Windows environments.
This mechanism is used in the Microsoft windows environment by the memsdev(1) DLL to attach the
Microsoft Developer Studio to MicroEmacs '02. This may be used with similar effects within the
UNIX environments from the X−Window managers desktop in addition to other utilities such as
TkDesk(1).

Command Line Filer

MicroEmacs may be invoked as a command filter in it's own right, macro scripts have been developed
to perform a dos2unix(1) conversion operation, generate tags files etc. See Command Line Filters.

SEE ALSO

ctags(1), compile(3), cygnus(3), dbx(3), diff(3), find−tag(2) gdb(3), grep(3), ishell(3), memsdev(1),
Client−Server, Command Line Filters.

MicroEmacs '02

Interfacing(2) 1427

ifill−paragraph(3)

NAME

ifill−paragraph − Format a paragraph

SYNOPSIS

n ifill−paragraph (esc q)

DESCRIPTION

ifill−paragraph, like fill−paragraph, fills the current paragraph from the left margin to the current
fill column. In addition ifill−paragraph also recognizes joined bullet lists and fills each bullet
paragraph separately.

See fill−paragraph(2) for more information on the process of filling paragraphs.

EXAMPLE

Following are 2 copies of the same paragraph, the first has been filled using ifill−paragraph:

This is the main paragraph which can be as long as required,
following is a list of bullets, some with a sub−bullet list. Here
is the list:
 a) The bullet paragraph can also be as long as required and it
 also can have a bullet list following (sub−bullet list)
 which will also be filled correctly. Here is the sub−bullet
 list:
 1. First sub−bullet − again no length restrictions, this
 will be filled correctly.
 2. second sub−bullet − no problems.
 3. Third sub−bullet − again no length restrictions, this is
 getting boring.
 b) This is the second major bullet and this can just carry on
 for ever, but all things must come to an

The following version has been filled using the normal fill−paragraph:

This is the main paragraph which can be as long as required,
following is a list of bullets, some with a sub−bullet list. Here
is the list: a) The bullet paragraph can also be as long as
required and it also can have a bullet list following (sub−bullet
list) which will also be filled correctly. Here is the sub−bullet
list: 1. First sub−bullet − again no length restrictions, this
will be filled correctly. 2. second sub−bullet − no problems. 3.
Third sub−bullet − again no length restrictions, this is getting
boring. b) This is the second major bullet and this can just carry
on for ever, but all things must come to an

MicroEmacs '02

ifill−paragraph(3) 1428

NOTES

ifill−paragraph is a macro defined in format.emf.

SEE ALSO

fill−paragraph(2), paragraph−to−line(3).

MicroEmacs '02

ifill−paragraph(3) 1429

imakefile(9)

SYNOPSIS

imakefile − Make file

FILES

hkimake.emf − Imakefile hook definition
imake.etf − Template file

EXTENSIONS

Imakefile, imakefile − Imakefiles.

DESCRIPTION

The Imakefile file type template handles the hilighting of the Imakefile files.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

By default, TAB's are enabled as this is the syntactical feature of the file.

Hilighting

The hilighting emphasizes the keywords and comments within the Imakefile. BUGS

No attempt is made to hilight any embedded shell commands.

SEE ALSO

makefile(9), time(2m).

Supported File Types

MicroEmacs '02

imakefile(9) 1430

indent(2)

NAME

indent − Manage the auto−indentation methods

SYNOPSIS

0 indent "ind−no" "flags" "look−back"

indent "ind−no" "type" "token" ["close" ["ignore"]] ["indent"]

DESCRIPTION

The indent command creates and manages the auto−indenting methods, the process of creating a new
indentation method is best described in File Language Templates. The command takes various forms
as defined by the arguments. Each of the argument configurations is defined as follows:−

Indentation Method Creation

0 indent "ind−no" "flags" "look−back"

With an argument of 0, indent creates a new indentation method with the integer handle ind−no. The
indentation method is assigned to a buffer by setting $buffer−indent(5) to ind−no. ind−no cannot be 0
as setting $buffer−indent to zero disables indentation. If the indentation method with the same
ind−no already exists, then the existing method is deleted and a new method may be created.

flags Sets the indent bit flags where:−

0x01

Indent method is case insensitive. Note that indent tokens must be specified in lower case.

look−back specifies the maximum number of lines, prior to the current line, considered when
calculating the indentation of a line, i.e. if there are look−back number of lines between the line to be
indented and the previous non−blank line then the current indentation is lost.

If look−back is set to 0 then the indentation is effectively disabled as the current indentation can never
be found. The value may be specified in the range 0−255, a value of 10 is typically sufficient.

Indentation Rule Creation

indent "ind−no" "type" "token" ["close" ["ignore"]] ["indent"]

MicroEmacs '02

indent(2) 1431

With the default argument of 1, indent creates a new rule for the indentation method ind−no which
must have previously been defined and initialized.

The indentation of a line in a buffer, which is using an indentation method, is affected by the token
types matched on the line (typef, o, s) and the current indentation (if line is not of type f).

The current indentation is determined by searching the previous lines (look−back) for the indentation
of the last indented line. This may not simply be the indentation of the last non−blank line, the exact
indentation is determined by searching for tokens in the line and assessing their effect on the
indentation of the current line.

The format of the regex valid in the "token" and "close" arguments are the same as at used by hilight
token creation, see hilight(2) for more information.

The indent tokens may be assigned one of the following types, using the type argument. If the type is
specified in upper case then the token must be surrounded by non−alpha−numeric characters:

Fixed (type = 'f' or 'F')

A line containing a fixed indent token will be indented to the given indent column from the
left−hand edge. indent is the only argument specified. e.g. MicroEmacs macro !goto
labels:−

indent .hilight.emf f "*" 0

producing

*label

The fixed token must be the first non−white character on the line, the rest of the line is
ignored. The indentation of the previous line has no effect.

Indent−from−next−line−onward (type = 'n' or 'N')

The indentation changes by indent from the next line onwards from the current line. indent is
the only argument specified. e.g. MicroEmacs macro !if:−

indent .hilight.emf n "!if" 4

Keeps the indentation of the !if line the same as the previous indentation, change the
indentation on the following lines by an extra 4 characters, to produce:

....
!if

Indent−from−current−line−onward (type = 'o' or 'O')

MicroEmacs '02

indent(2) 1432

Increment the current and following lines indentation by indent. indent is the only argument
specified. e.g. MicroEmacs macro !endif

indent .hilight.emf o "!endif" −4

decrement the indent of the !endif line and following lines by 4 spaces producing:

!endif
....

Indent−single (type = 's' or 'S')

Changes the indentation of the current line ONLY by indent. indent is the only argument
specified. e.g. MicroEmacs macro !elif:−

indent .hilight.emf o "!elif" −4

decrements the indentation of the !elif line by 4 characters, but restores the previous
indentation after the current line, producing:

!elif

Bracket (type = 'b' or 'B')

A bracket should be used when a starting token pairs with a closing token which may span
multiple lines. i.e. the opening and closing braces of a programming language. Note that the
opening and closing tokens must be different otherwise they cannot be differentiated. A
bracket has two main effects:

When the previous line has an unmatched open bracket

In this situation the current line is indented to the right of the mismatched bracket.

When the previous line has an unmatched close bracket

In this situation the matching open bracket is hunted for in previous lines until either the
look−back limit (See Indentation Method Creation) is exhausted or the bracket is matched,
in which case the indent of that line is used.

For a bracket the only other argument given is the close. e.g. tcl's '(' and ')' brackets

indent .hilight.tcl b "(" ")"

Which produces:

....

.... (....

MicroEmacs '02

indent(2) 1433

 )
....

Continue (type = 'c' or 'C')

Indicates that when token is found on the current line, the next line is a continuation of the
current line. The indentation of the next line is the indentation of the first continuation line
plus the given indent. indent is the only argument specified. e.g. tcl's '\'

indent .hilight.tcl c "\\" 10

A simple example is

....
12345678901234567890 \

....

When used in conjunction with brackets, the following effect is observed:

....
12345678901234567890 \
 (.... \
 ) \
 \

....

This shows why the first continuation line (the 123456... line) must be located and used
as the base line from which the indentation is derived; again the look−back limits the search
for this line.

Exclusion (type = 'e' or 'E')

Used to exclude text between start token and close token from the indentation calculation,
typically used for quotes. The ignore argument is also specified (see hilight(2)type 0x004
type bracket) e.g. MicroEmacs macro quotes:−

indent .hilight.emf e "\"" "\"" "\\"

e.g. tcl's quotes

indent .hilight.tcl e "\"" "\"" "\\"

producing:−

....
".... ignore { ... \" ... ignore another { token ... "
....

Ignore (type = 'i' or 'I')

MicroEmacs '02

indent(2) 1434

Text to the right of a line containing token is to be ignored; typically used for comments. e.g.
MicroEmacs macro ';' comment:−

indent .hilight.emf i ";"

Or tcl's '#' comment

indent .hilight.tcl i "#"

producing

....
... ignore this { indent token
....

EXAMPLE

Examples of indentation method creations can be found in macro files hkemf.emf, hktcl.emf
and hkvrml.emf. The following example is taken from hkemf.emf:−

!if &sequal .hilight.emf "ERROR"
 set−variable .hilight.emf &pinc .hilight.next 1
!endif

...

0 indent .hilight.emf 0 10
indent .hilight.emf N "define−macro" 4
indent .hilight.emf n "!if" 4
indent .hilight.emf s "!eli" −4
indent .hilight.emf s "!els" −4
indent .hilight.emf o "!end" −4
indent .hilight.emf n "!whi" 4
indent .hilight.emf o "!don" −4
indent .hilight.emf n "!rep" 4
indent .hilight.emf o "!until" −4
indent .hilight.emf o "!ema" −4
indent .hilight.emf e "\"" "\"" "\\"
indent .hilight.emf i ";"
indent .hilight.emf f "*" 0

SEE ALSO

File Language Templates, $buffer−indent(5), add−file−hook(2), hilight(2).

MicroEmacs '02

indent(2) 1435

indent(2m)

NAME

indent − Automatic indentation

SYNOPSIS

indent Mode

I − mode line letter.

DESCRIPTION

indent mode, when enabled, ensures that a new text line is automatically indented to the same left
hand column as the previous line's first non−white character. If the previous line contains no
non−white characters then the line will not be indented. Automatic indentation is disabled when using
center or right justification. Indent is usually used in conjunction with wrap(2m) and justify(2m).

SEE ALSO

buffer−mode(2), global−mode(2), wrap(2m) justify(2m).

MicroEmacs '02

indent(2m) 1436

info(9)

SYNOPSIS

info − GNU Info File.

FILES

info.emf − Info macro file.

EXTENSIONS

No fixed extension, the root of the info tree is specified by $INFOPATH/dir. The default search paths
on different platforms are:−

c:/info − MS−DOS and MS−Windows (all).
/usr/local/info − All UNIX platforms.

DESCRIPTION

The GNU info files are handled by the command info(3) which starts the info reader. This reads the
initial info file dir and initializes the info file traversal. Where the info directory is not in the
aforementioned locations then the $INFOPATH environment variable should specify the base
directory.

The standard info navigation keys are in effect within the info buffers. The mouse may also be used to
select the next info page.

BUGS

There is no support within MicroEmacs '02 to regenerate the info tags and indexes.

SEE ALSO

info(3).

Supported File Types

MicroEmacs '02

info(9) 1437

insert−file(2)

NAME

insert−file − Insert file into current buffer

SYNOPSIS

n insert−file "file−name" (C−x C−i)

DESCRIPTION

insert−file inserts the named file file−name n times into the current buffer at the beginning of the
current line. The buffer mark is set to the start of the insertion and the cursor is moved to the end.

SEE ALSO

set−mark(2), find−file(2), insert−file−name(2), view−file(2).

MicroEmacs '02

insert−file(2) 1438

insert−file−name(2)

NAME

insert−file−name − Insert filename into current buffer

SYNOPSIS

insert−file−name (C−x C−y)

DESCRIPTION

insert−file−name inserts the current buffer's file name into the current buffer or, if entering text on
the message line then enters the file name into the message line buffer.

SEE ALSO

insert−file(2), yank(2).

MicroEmacs '02

insert−file−name(2) 1439

insert−macro(2)

NAME

insert−macro − Insert keyboard macro into buffer

SYNOPSIS

insert−macro "command"

DESCRIPTION

insert−macro inserts the named command into the current buffer in the MicroEmacs '02 macro
language, thus enables it to be saved, re−load and therefore re−used at a later date. This is often used
in conjunction with start−kbd−macro(2), end−kbd−macro(2) and name−kbd−macro(2). The given
command must have been defined either by a keyboard macro or in MicroEmacs '02 macro code.

NOTES

The insert−macro provides a good method of identifying unknown low level key codes. Simply
record the unknown key as a macro and insert the macro into the scratch buffer. The low level key
code appears within the string.

SEE ALSO

start−kbd−macro(2), name−kbd−macro(2), define−macro(2), execute−file(2).

MicroEmacs '02

insert−macro(2) 1440

insert−newline(2)

NAME

insert−newline − Move the cursor to the next word

SYNOPSIS

n insert−newline (C−o)

DESCRIPTION

insert−newline inserts n new lines at the current cursor position, but does not move the cursor. Any
text following the cursor is moved to the newly created line.

SEE ALSO

newline(2).

MicroEmacs '02

insert−newline(2) 1441

insert−space(2)

NAME

insert−space − Insert space(s) into current buffer

SYNOPSIS

n insert−space

DESCRIPTION

insert−space inserts n spaces at the current cursor position, moving the cursor position.

SEE ALSO

insert−string(2), insert−tab(2), insert−newline(2).

MicroEmacs '02

insert−space(2) 1442

insert−string(2)

NAME

insert−string − Insert character string into current buffer

SYNOPSIS

n insert−string "string"

DESCRIPTION

insert−string inserts a string n times into the current buffer, moving the cursor position.

insert−string allows text to be built in a buffer without reading it from a file. Some special escape
characters are interpreted in the string, as follows:

\n − Enters a new line
\t − A tab character
\b − Backspace
\f − Form−feed
\\ − Literal backslash character '\'
\xXX − Hexadecimal value of character ASCII value

SEE ALSO

insert−file(2), insert−newline(2), insert−space(2), insert−tab(2), newline(2).

MicroEmacs '02

insert−string(2) 1443

insert−tab(2)

NAME

insert−tab − Insert tab(s) into current buffer

SYNOPSIS

n insert−tab (C−i)

DESCRIPTION

insert−tab inserts n tab characters at the current cursor position, moving the cursor. The command is
not affected by the tab(2m) mode as it always inserts literal tab characters.

SEE ALSO

insert−space(2), insert−string(2), insert−newline(2), tab(2), normal−tab(3), tab(2m).

MicroEmacs '02

insert−tab(2) 1444

ipipe−shell−command(2)

NAME

ipipe−shell−command − Incremental pipe (non−suspending system call)
ipipe−kill − Kill a incremental pipe
ipipe−write − Write a string to an incremental pipe

SYNOPSIS

n ipipe−shell−command "command" ["buffer−name"] (esc backslash)
n ipipe−write "string"
n ipipe−kill

PLATFORM

UNIX − irix, hpux, sunos, freebsd, linux.

Windows NT − win32.

DESCRIPTION

ipipe−shell−command executes the given system command command, opening up a *icommand*
buffer into which the results of the command execution are displayed. Unlike the
pipe−shell−command(2), the user may continue editing during command execution. The command
may be terminated by deleting the buffer or issuing a ipipe−kill command.

The argument n can be used to change the default behavior of pipe−shell−command described above,
n is a bit based flag where:−

0x01

Enables the use of the default buffer name *icommand* (default). If this bit is clear the user must
supply a buffer name. This enables another command to be started without effecting any other
command buffer.

0x02

Hides the output buffer, default action pops up a window and displays the output buffer in the new
window.

0x04

Disable the use of the command−line processor to launch the program (win32 versions only).

MicroEmacs '02

ipipe−shell−command(2) 1445

By default the "command" is launched by executing the command:

 %COMSPEC% /c command

Where %COMSPEC% is typically command.com. If this bit is set, the "command" is launched
directly.

0x08

Detach the launched process from MicroEmacs (win32 versions only). By default the command is
launched as a child process of MicroEmacs with a new console. With this bit set the process is
completely detached from MicroEmacs instead.

0x10

Disable the command name mangling (win32 versions only). By default any '/' characters found in
the command name (the first argument only) are converted to '\' characters to make it Windows
compliant.

0x20

Displays the new process window, by default this window is hidden.

Many other macro commands (see compile(3), grep(3)etc.) use this command.

ipipe−write writes a string string to an open ipipe, n times.

ipipe−kill terminates an open ipipe, this is automatically called when the ipipe buffer is deleted using
delete−buffer(2) or when MicroEmacs is exited.. The numeric argument n can be used to change the
signal generated, where n can take the following values:

1

Sends a Terminate process signal, literally a SIGKILL signal on unix or a WM_CLOSE on windows
platforms. This is the default signal and is typically bound to C−c C−k.

2

Sends an interrupt signal, writes a Ctrl−C to the <stdin> pipe on unix or sends Ctrl−C key events on windows
platforms. This is typically bound to C−c C−c. NOTES

On UNIX platforms the TERM environment variable of the new process can be set by setting the user
variable %ipipe−term to the required value, e.g.:

 set−variable %ipipe−term "TERM=vt100−nam"

Ipipe shells support a large sub−set of vt100 terminal commands, notable exceptions are color and
font support and the support of auto−margins. Using the terminal type "vt100−nam" disables the

MicroEmacs '02

ipipe−shell−command(2) 1446

use of auto−margins, providing better support.

On platforms which do not support ipipe−shell−command, such as MS−DOS, executing
ipipe−shell−command automatically invokes pipe−shell−command, hence macros may safely use
ipipes without explicitly checking the platform type. ipipe−shell−command does not run reliably on
Windows 3.11 and Windows 95; Windows NT does support ipipes.

While the pipe command is running, mode pipe(2m) is enabled. Modes lock(2m) and wrap(2m) effect
the output behavior of an ipipe−shell−command.

EXAMPLE

The following example is the grep(3) command macro which utilizes the ipipe−shell−command,
diverting the output to a buffer called *grep*.

define−macro grep
 !if &seq %grep−com "ERROR"
 set−variable %grep−com "grep "
 !endif
 !force set−variable #l0 @1
 !if ¬ $status
 set−variable #l0 @ml00 %grep−com
 !endif
 !if @?
 1 pipe−shell−command &cat %grep−com #l0 "*grep*" @mna
 !else
 1 ipipe−shell−command &cat %grep−com #l0 "*grep*" @mna
 !endif
!emacro

Note that if an argument is passed to grep then it uses pipe−shell−command instead. This is useful if
another command is using grep which must finish before the calling command can continue, see
replace−all−string(3) for an example.

BUGS

On MicroSoft Windows platforms, ipipe−shell−command spawns the shell (e.g. command.com)
with the appropriate command line to make it execute the given command. If the command to be run
detaches from the shell and creates its own window, for example me.exe, ipipe−kill will only kill
the shell, it will not kill the actual process, i.e. the me.exe.

On MicroSoft Windows platforms ipipe−shell−command does not work on Novell's Intranet Client
v2.2 networked drives, version 2.5 does appear to work.

SEE ALSO

$buffer−ipipe(5), compile(3), grep(3), pipe−shell−command(2), replace−all−string(3),
shell−command(2), pipe(2m), lock(2m), wrap(2m).

MicroEmacs '02

ipipe−shell−command(2) 1447

isearch−forward(2)

NAME

isearch−forward − Search forward incrementally (interactive)
isearch−backward − Search backwards incrementally (interactive)

SYNOPSIS

isearch−forward (C−s)
isearch−backward (C−r)

DESCRIPTION

isearch−forward provides an interactive search in the forward direction. This command is similar to
search−forward(2), but it processes the search as each character of the input string is typed in. This
allows the user to only use as many key−strokes as are needed to uniquely specify the string being
searched.

The follow keys can be used at the start of an incremental search only:

C−s − Search for last string.
C−m − Perform a search−forward instead.
esc p,
esc n − Scroll through history list etc (See ml−bind−key(2)).

Several control characters are active while isearching:

C−s or C−x

Skip to the next occurrence of the current string

C−r

Skip to the last occurrence of the current string

C−h

Back up to the last match (possibly deleting the last character on the search string)

C−w

Insert the next word into the search string.

C−g

MicroEmacs '02

isearch−forward(2) 1448

Abort the search, return to start.

esc or C−m

End the search, stay here

isearch−backward is the same as isearch−forward, but it searches in the reverse direction.

For both commands when the end of the buffer is reached, an alarm is raised (bell etc.) a further
search request (C−s) causes the search to commence from the start of the buffer.

NOTES

The ml−bind−key(2) bindings are used.

The incremental search supports buffer modes exact(2m) and magic(2m).

BUGS

Due to the dynamic nature of active ipipe−shell−command(2) buffers the search history cannot be
stored in the same way (list of fixed locations). As a result the search history is stored as a list of
searches which are not guaranteed to be consistent.

SEE ALSO

exact(2m), hunt−forward(2), magic(2m), ml−bind−key(2), search−forward(2).
Regular Expressions

MicroEmacs '02

isearch−forward(2) 1449

item−list(3)

NAME

item−list − Abbreviated search and list buffer contents.
item−list−find − Find the selected item in the item list
item−list−close − "Close the item list"

SYNOPSIS

item−list (F7)
item−list−find
item−list−close (esc F7)

DESCRIPTION

item−list performs a regular expression search of a buffer, presenting a list of the located text and
associated types in a separate window which is presented to the left of the buffer window. item−list is
a generic function that interacts with the buffer environment variables to present abbreviated buffer
information to the user.

The regular expression search strings are predefined in the language templates. To add support for a
new buffer type a list of search/replace strings must be created. The search strings must use regex
(magic mode) and groups \(..\) to place the located object string into the replace string. Within
the template buffer search strings (s) and replace (r) are defined with the following syntax:−

set−variable .hookname.item−list−sx "regexp"
set−variable .hookname.item−list−rx "replace"

Where:−

hookname

The name of the file hook i.e. fhook−c for ANSI 'C'.

x

The search number, this is valid in the range 1..9, commencing from 1. The search is processed in the
order of the numeric identity.

regexp

The regular expression to search for. One of the arguments must include a groups \(..\) definition
to allow the string to be moved to the replace.

MicroEmacs '02

item−list(3) 1450

replace

The replace string, this typically includes a type and part of the search string.

On invocation of item−list the buffer is searched and the results are presented in the *item−list*
window appearing at the left−hand side of the window. If there is no item list set up for the file type
then an error message is displayed.

The user may interact with the *item−list* buffer using the mouse or <RETURN>, on selecting a
line then the user is moved to the corresponding line in the original buffer.

item−list−find finds the current item list item and searches for the text in the original buffer. This is
typically bound to a mouse or key stroke action.

item−list−close closes the item list buffer.

EXAMPLE

The following example works through the item−list definition for the ME macros e.g. given that the
ME macro definition is:

define−macro macro−name

Searching for "define−macro \([a−z−]+\)" and replacing with "Macro \1" will work most
of the time. The space between define−macro and the name does not have to be a single space and
the name does not have to contain just lower case letters, so these search strings should be a flexible
as possible, try

"define−macro\s +\(\w+\)"

This however is not as optimal as it could be and if you have large files this could become slow.
Performance can be greatly increased if it can be anchored to the start of the line, e.g.

"^define−macro\s +\(\w+\)"

but to allow for initial white spaces and the optional numeric argument, you really need

"^\s *[0−9]*\s *define−macro\s +\(\w+\)"

To hilight the function name you need the name encased the name in a magic hilighting string,

"\ecBmacro−name\ecA"

where \e is an escape char, so the replace string should be

"Macro \ecB\1\ecA"

Now all thats needed is to set these variables as fhook command variables, for macro files, the file
hook command is fhook−emf, therefore the following is required:

MicroEmacs '02

item−list(3) 1451

set−variable .fhook−emf.item−list−s1 "^\\s *[0−9]*\\s *define−macro\\s +\\(\\w+\\)"
set−variable .fhook−emf.item−list−r1 "Macro \ecB\\1\ecA"

Note that you can have as many of these search and replace variables as you require, i.e.
.item−list−s1, .item−list−s2, .item−list−s3, ... ; but the more you have the slower it
will be, often a good regex can do the job of 2 or 3.

SEE ALSO

occur(3), search−forward(2), Regular Expressions

MicroEmacs '02

item−list(3) 1452

java(9)

SYNOPSIS

java − Java programming language templates

FILES

hkjava.emf − Java programming language hook definition
java.etf − Java programming language template file

EXTENSIONS

.java, .jav − Java

DESCRIPTION

The java file type templates share much with the c(9) template definitions, utilising the electric 'C'
features for automatic layout of text.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, preprocessor definitions, comments,
strings and characters of the language to be differentiated and rendered in different colors.

Auto Layout

The electric C−Mode cmode(2m) performs automatic layout of the text, variables such as c−brace(5)
allow the brace position and text formation to be modified.

restyle−region(3) and restyle−buffer(3) are available to reformat (re−layout) selected sections
of the buffer, or the whole buffer, respectively.

Comments may be formatted using esc o, which reformats the comments according to the
current fill paragraph. If a comment commences with /***... then the comment is
automatically formatted to a box.

Folding and Information Hiding

MicroEmacs '02

java(9) 1453

Generic folding is enabled within the Java files. The folds occur about braces {...} located on the
left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds the current
region. Note that folding does not operate on K&R style code, with the trailing open brace.

Tags

A c−tags file may be generated within the editor using the Tools −> Java−Tools −> Create Tag File.
find−tag(2) takes the user to the file using the tag information.

On invoking the tag generator then the user is presented with a dialog box which specifies the
generation option of the tags file. The base directory of the tags file search and tagging
options may be specified to locate all of the definitions within the code space.

The tags file is extremely useful where the user is dealing with inherited source code spread
over multiple directories. Generation of a recursive tag file with all searching options enabled
allows labels to be located extremely rapidly (certainly faster than IDE environments).

Folding and Information Hiding

Generic folding is enabled within the C and C++ files. The folds occur about braces {...} located on
the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds the current
region. Note that folding does not operate on K&R style code.

The Tools −> C−Tools menu allows #define's to be evaluated within the buffer. Where the
state of a #if is established to be false (using the #define information) then the disabled
region of code is grayed out indicating which regions of the code are active.

Working Environment

compile(3) may be invoked to rebuild the source, the user is prompted to save any files.

rcs−file(2) is automatically invoked if an RCS file is detected, the normal check−in/out
operations may be performed through the editor.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.
C−c C−e − Comment to the end of the line with stars (*).
A−C−i − Restyle the current region.
esc q − Format a comment.
esc o − Format a comment.
f2 − (un)fold the current region
f3 − (un)fold all regions

NOTES

MicroEmacs '02

java(9) 1454

The hilighting is typically extended using a file myjava.emf

SEE ALSO

c(9), c−brace(5), cmode(2m), compile(3), find−tag(2), javatags(3f), find−tag(2), fold−all(3),
fold−current(3), rcs−file(2), restyle−buffer(3), restyle−region(3), time(2m).

Supported File Types

MicroEmacs '02

java(9) 1455

javatags(3f)

NAME

javatags − Generate a C tags file from Java sources.

SYNOPSIS

me "@javatags" [−v%tag−option=<flags>] [files]

DESCRIPTION

The start−up file javatags.emf may be invoked from the command line to generate a tags file for
java source files.

Given a list of files a tags file tags is generated in the current directory, which may be used by the
find−tag(2) command. This is a good alternative on Microsoft platforms where a utility such as
ctags(1) is not typically available to process Java files. If no files are specified the default file list is
"./", i.e. process the current directory. If a directory name is given (such as the default "./") all Java
source files within the directory will be processed.

The value of variable %tag−option is used to control the tag generation process, its value <flags>
can contain any number of the following flags:

a

Append new tags to the existing tag file, note that if also using flag 'm' multiple 'tags' to the same item
may be created.

m

Enable multiple tags. This enables the existence of 2 tags with the same tag name, but typically with
different locations. See help on find−tag(2) for more information on multiple tag support.

r

Enables recursive mode, any sub−directory found within any given directories will also be processed.

v

Add global variables to the tag file. (i.e. variables marked with extern).

s

Add classes definitions to the tag file (i.e. class).

MicroEmacs '02

javatags(3f) 1456

The generated tags file includes #define and C++ class names.

NOTES

This function is invoked from menu

Tools −> C Tools −> Create Tags File

when the user requests a tags file to be generated.

The user setup file "myjavatags.emf" is executed by javatags during start−up, this file can be
used to over−ride any of the javatags configuration variables (see below).

The following variables are set within "javatags.emf" and are used to control the process:−

%tag−option

Tags options flag, default value is "". See above for more information.

%tag−filemask

A list of source file masks to be processed when a directory is given, default value is
":*.java:*.jav:".

%tag−ignoredir

A list of directories to be ignored when recursive option is used, default value is ":SCCS/:CVS/:".

These variables can be changed using the −v command−line option or via the "myjavatags.emf"
file

SEE ALSO

find−tag(2), start−up(3), java(9).

MicroEmacs '02

javatags(3f) 1457

justify(2m)

NAME

justify − Justification Mode

SYNOPSIS

justify Mode

J − mode line letter.

DESCRIPTION

justify mode, when enabled, performs paragraph justification as designated by $fill−mode(5) −
capable of left, right, both or center justification of text. Justify removes all white spaces at the end of
the line, if there are no non−white characters on the line then the line is always left empty. If the
justification method is center or right then all white spaces are removed at the beginning of the line. If
the line is longer than the $fill−col(5) or the method is left then nothing more is done, else the line is
appropriately justified. The method used is set by the variable $fill−mode(5). Justify is usually used in
conjunction with wrap(2m) and indent(2m).

SEE ALSO

buffer−mode(2), global−mode(2), wrap(2m) indent(2m), $fill−col(5), $fill−mode(5).

MicroEmacs '02

justify(2m) 1458

kbd−macro−query(2)

NAME

kbd−macro−query − Query termination of keyboard macro

SYNOPSIS

[Definition]
kbd−macro−query (C−x q)

[Execution]
kbd−macro−query "y"|"n"|"C−g"

DESCRIPTION

kbd−macro−query queries the termination state of keyboard macro recording. If the command is
executed during a keyboard macro definition, at that point during its execution the user is prompted as
to whether to continue the macro execution. A reply of "y" continues the execution as normal, "n"
stops execution at that point once, if executing the macro n times the macro will still executed a
further n−1 times. If the "C−g" abort command is entered then all keyboard macro execution is
aborted, regardless of the number of repetitions.

SEE ALSO

start−kbd−macro(2), execute−kbd−macro(2).

MicroEmacs '02

kbd−macro−query(2) 1459

keyNames(2)

KEY BINDING NAMES

Every key which can be generated in MicroEmacs '02 has a character string or name representation
which can be used to bind and unbind the key to a command. The name of simple keys like "a" or "$"
is simply the character, i.e. "a" and "$". Following is a list of other parts to a key name.

Modify Keys

There are 3 modifying keys, Shift, Control and Alt, these are represented as "S−", "C−", "A−"
respectively. For example the key "A−C−S−up" is generated when the up cursor key is pressed when
Shift, Control and Alt keys where also pressed.

The Control and Alt modifiers are case insensitive so C−a is the same as C−A and C−S−a.

Prefix Keys

Many binding are single stroke key sequences (e.g. "C−a" => beginning−of−line). However
MicroEmacs '02 has a prefix(2) command which can be used to bind up to 8 single stroke keys,
turning them into two stroke keys; this greatly increasing the number of available bindable key
sequences. For example prefix 1 is bound to the escape character (esc), this allows key sequences
like "esc a" to be used. Following is a list of prefixes and their default bindings

prefix 1 => esc
prefix 2 => C−x
prefix 3 => C−h
prefix 4 => C−c

Special Keys

Following is a complete list of recognized keyboard key names, not all are able to be generated on
every platform:−

backspace, delete, down, end, esc, f1, f2, f3, f4, f5, f6, f7, f8, f9, f10, f11,
f12, f13, f14, f15, f16, f17, f18, f19, f20, home, insert, kp−0, kp−1, kp−2,
kp−3, kp−4, kp−5, kp−6, kp−7, kp−8, kp−9, kp−add, kp−begin, kp−decimal,
kp−delete, kp−divide, kp−down, kp−end, kp−enter, kp−home, kp−insert,
kp−left, kp−multiply, kp−page−down, kp−page−up, kp−right,
kp−subtract, kp−up, left, page−down, page−up, return, right, space, tab,
up

The name of any key can be obtained by using describe−key(2).

MicroEmacs '02

keyNames(2) 1460

Mouse Keys

Following is a list of mouse related keys:−

mouse−pick−1, mouse−pick−2, mouse−pick−3, mouse−pick−4, mouse−pick−5

These keys are generated when the user presses a mouse button, these key events are always created.
On most systems button 1 is the left, 2 the middle and 3 the right mouse button. If the system only has
a 2 button mouse then a mouse−pick−2 cannot be generated. The order of the buttons can be
revered (i.e. 1 becomes right) and the number of buttons can be set using the $system(5) variable.
Note that X−servers support up to 5 buttons and with the growing popularity of pilot 'wheel' mice, the
4th and 5th button are often used to report wheel spin up and down events. The translate−key(2)
command can be used to translate these buttons to the mouse wheel keys.

mouse−drop−1, mouse−drop−2, mouse−drop−3, mouse−drop−4, mouse−drop−5

These keys are generated when the user release a mouse button, these key events are always created.

mouse−move−1, mouse−move−2, mouse−move−3, mouse−move−4, mouse−move−5,
mouse−move

These key events are generated when the user moves the mouse and are only if they are bound to a
command. The key generated depends on whether a button is being held down by the user, if the user
is pressing button 1 then a mouse−move−1 key is created etc.

mouse−time−1, mouse−time−2, mouse−time−3, mouse−time−5, mouse−time−5, mouse−time

These key events are generated only when they are bound to a command. They are pseudo keys
created when the user hold the mouse buttons done for a period of time, see Pseudo Keys below for
more information.

mouse−wheel−up, mouse−wheel−down

Pilot mouse wheel events, generated when the wheel is spun up or down respectively. Modifier Keys

The Shift, Control and Alt modifier keys will also generate key input whenever pressed or released.
The keys are however only generated if they are bound to a command. The key names are as follows:

S−pick, S−drop

Shift modifier.

C−pick, C−drop

Control modifier.

A−pick, A−drop

MicroEmacs '02

keyNames(2) 1461

Alt modifier.

Note that the keys are only generated when another key is pressed, i.e. if the user presses and holds
only the shift key, no "S−pick" key will be generated until another key, such as down, is also
pressed. If the shift key is released before another key is pressed the event will not be reported.

Pseudo Keys

Pseudo keys events cannot be directly created by the user, they are created internally by MicroEmacs.
They are treated like normal keys to allow the user to handle the events properly themselves.
Following is a complete list of the system generated pseudo keys:−

bell

The pseudo key is generated when the bell is rung.

callback

The pseudo key when a create−callback(2) macro is executed, this allows the executed macro to know
it was executed via a create−callback as @cck(4) will be set to this.

idle−pick, idle−drop, idle−time

The commands bound to these keys are executed when the system becomes idle for a period of time.
See help on $idle−time(5) for more information.

mouse−time−1, mouse−time−2, mouse−time−3, mouse−time−4, mouse−time−5, mouse−time

The command bound to these keys are executed when mouse button 1, 2, 3, 4, 5 or a combination are
held bound for a period of time. See help on $delay−time(5) for more information.

redraw

The command bound to this pseudo key is executed whenever the screen needs redrawing, by default
it is bound to screen−update(2). If the user unbinds this key then screen−update is still called, but if
the user binds it to a function which does not redraw the screen, such as void(2), then the screen will
not be up−dated.

The command executed is always given an argument, a non−zero argument indicates a forced
complete redraw, an argument of zero indicates that just an up−date is required.

Alt Key

The Alt Key has special binding priorities defined as follows:−

Direct key binding (e.g. A−b executes file−browser)♦
Main menu hot key (e.g. A−f opens the File menu)♦

MicroEmacs '02

keyNames(2) 1462

Meta key binding (e.g. A−space −> esc space −> set−mark)♦

If the ALT key is to be used strictly as the Emacs Meta key then the bindings for the menu should be
over−ridden by Direct Key Bindings from the user configuration file i.e. to re−map the default
MicroEmacs Alt key to equivalent esc keys then the following keys should be re−bound.

global−bind−key forward−word "A−f" ; Over−ride File menu binding
: ; For all of the other menu items.
:
global−bind−key backward−word "A−b" ; Over−ride the file browser.
global−bind−key replace−string "A−r" ; Over−ride tools binding.

This creates a higher priority binding which overrides the underlying default. The commands that are
displaced would have to be re−bound to different keys if required.

KEYBOARD MACROS

Keyboard macros do not store the name of keys, instead a more machine oriented format is used
(usually in the form "\s??") these will work across platforms (assuming the key bindings are the
same) but they may not work across different releases.

As a result it is advised that any long term macro should avoid named keys like up in favor of using a
standard key binding such as C−p. See help on execute−string(2) for more information.

MicroEmacs '02

keyNames(2) 1463

kill−line(2)

NAME

kill−line − Delete all characters to the end of the line

SYNOPSIS

n kill−line (C−k)

DESCRIPTION

kill−line, when used with no argument n, deletes all text from the cursor to the end of a line, the end
of line character is also deleted if the cursor is in the first column and the line(2m) mode is disabled.
The deleted text is placed in the kill buffer, see yank(2) for more information on the kill buffer. When
used on a blank line, it always deletes it.

If a +ve argument n is supplied the specified number of lines is deleted, the setting of the line mode is
ignore. If n is 0 the command has no effect. If a −ve argument is given, +n lines are deleted but the
text is NOT added to the kill buffer.

NOTES

If a line is accidentally removed then yank the text back immediately or use undo(2).

The −ve argument is typically used in macro scripts where the yank buffer is more precisely
controlled by the script.

SEE ALSO

kill−region(2), line(2m), undo(2), yank(2), forward−kill−word(2).

MicroEmacs '02

kill−line(2) 1464

kill−paragraph(2)

NAME

kill−paragraph − Delete a paragraph

SYNOPSIS

n kill−paragraph

DESCRIPTION

kill−paragraph deletes the next n paragraphs, if n is +ve then the paragraph the cursor is currently in
and the next n−1 paragraphs are killed. If n is −ve then the current paragraph and the previous n−1
paragraphs are killed. If n is zero the command simply returns. The default value for n is 1.

DIAGNOSTICS

The following errors can be generated, in each case the command returns a FALSE status:

[end of buffer]

The given argument n was greater that the number of remaining paragraphs, all the remaining
paragraphs are still removed.

[top of buffer]

A negative argument n was given requesting more paragraphs to be killed then are present before the cursor.
All the paragraphs before the cursor are still removed. NOTES

A paragraph is terminated by a blank line. All text residing between two blank lines is considered to
be a paragraph − regardless of the text layout.

The distinction between killed text and deleted text is that text which is killed is placed into the yank
buffer so that it can be pasted into any buffer using yank(2).

SEE ALSO

backward−paragraph(2), forward−paragraph(2), kill−region(2).

MicroEmacs '02

kill−paragraph(2) 1465

kill−rectangle(2)

NAME

kill−rectangle − Delete a column of text
yank−rectangle − Insert a column of text

SYNOPSIS

kill−rectangle (esc C−w)
n yank−rectangle (esc C−y)

DESCRIPTION

kill−rectangle deletes a rectangle (or column) of text defined be the cursor and the set−mark position.
The text between the mark column and the cursor column is removed from every line between the
mark line and the cursor line inclusive and copied to the kill buffer. The delete text may then be
extracted from the kill buffer using yank(2) or yank−rectangle.

The mark position may be ahead or behind the current cursor position. If the rectangle column
boundary divides a tab character which spans multiple columns, the tab character is replaces with the
equivalent number of spaces. Similarly if the boundary divides an unprintable character which is
displayed using multiple characters (e.g. '^A' for character 0x01) then spaces are inserted before the
character to move it to the right of the boundary.

yank−rectangle inserts the current kill buffer (which may or may not have been generated using
kill−rectangle) into the current buffer in a column fashion. That is to say that the first line of text in
the kill buffer is inserted into the current line of text in the current buffer from the current cursor
column, the cursor is then moved the the next line and placed at the same column. The process is then
repeated for the second line of text in the kill buffer etc.

NOTES

The command copy−rectangle is not provided by default as this command is rarely required. If this
command is required, the following macro definition can be used:

define−macro copy−rectangle
 set−alpha−mark "T"
 set−variable #l0 &bmod "view"
 set−variable #l1 &bmod "edit"
 set−variable #l2 &bmod "undo"
 −1 buffer−mode view
 1 buffer−mode undo
 kill−rectangle
 ; undo the kill and restore the buffer state
 undo

MicroEmacs '02

kill−rectangle(2) 1466

 &cond #l2 1 −1 buffer−mode "undo"
 &cond #l1 1 −1 buffer−mode "edit"
 &cond #l0 1 −1 buffer−mode "view"
 goto−alpha−mark "T"
 ; flag the command to be a copy−region type command
 set−variable @cl copy−region
!emacro

SEE ALSO

set−mark(2), kill−region(2), yank(2), copy−region(2), reyank(2), undo(2).

MicroEmacs '02

kill−rectangle(2) 1467

kill−region(2)

NAME

kill−region − Delete all characters in the marked region

SYNOPSIS

n kill−region (C−w)

DESCRIPTION

kill−region deletes all characters from the cursor to the mark set with the set−mark(2) command. The
characters removed are copied into the kill buffer and may be extracted using yank(2). If a numeric
argument of 0 is given the command has no effect. If a −ve argument is given the characters are not
placed in the kill buffer, therefore the text is effectively lost (this does not effect the undo(2)
operation).

The mark position may be ahead or behind the current cursor position.

USAGE

To move text from one place to another:

Move to the beginning of the text you want to move.♦
Set the mark there with the set−mark (esc space) command.♦
Move the point (cursor) to the end of the text.♦
Use the kill−region command to delete the region you just defined. The text will be saved in
the kill buffer.

♦

Move the point to the place you want the text to appear.♦
Use the yank (C−y) command to copy the text from the kill buffer to the current point.♦

Repeat the last two steps to insert further copies of the same text.

NOTES

If a region is accidentally removed then yank the text back immediately or use undo(2).

Windowing systems such as X−Windows and Microsoft Windows utilize a global windowing kill
buffer allowing data to be moved between windowing applications (cut buffer and clipboard,
respectively). Within these environments MicroEmacs '02 automatically interacts with the windowing
systems kill buffer, the last MicroEmacs '02 kill−region entry is immediately available for a paste
operation into another windowing application.

MicroEmacs '02

kill−region(2) 1468

SEE ALSO

copy−region(2), kill−rectangle(2), reyank(2), set−mark(2), undo(2), yank(2).

MicroEmacs '02

kill−region(2) 1469

languageTemplates(2)

FILE LANGUAGE TEMPLATES

MicroEmacs '02 provides a large range of macros and templates to deal with the most commonly
occurring types of ASCII file that may be edited. However, there is a requirement for users to extend
this capability to include more obscure file types, in addition to bespoke files found internally within
organizations, or devised by the user.

For each file type, MicroEmacs '02 may be tailored to recognize the file and modify it's hilighting,
key binding configuration, osd display and indentation to accommodate the file. In addition, new
shorthand macros may be introduced to help deal with the contents of the file.

This section outlines the steps to be taken to integrate a new file language template into MicroEmacs
'02.

The scope of the File Type

The first step is to decide the scope of the file, this will determine where the file hook should be
defined. The options are:−

A standard file type not supported

If this is a standard file type not supported by MicroEmacs '02 then it should be added to me.emf, in
addition contact us and we will add it to the standard release. Any macro files associated with this file
type should be available globally and are added to the MicroEmacs macro directory.

Local To your organization

If it is a file type local to your organization then it should be added to your company.emf file. Any
macro files associated with the file type should be added to your local company MicroEmacs '02
directory.

Local to an individual

If this is a file type that is only used by a limited number of individuals then it should be added to the user.emf
file. Any files associated with the file type are added to your local user MicroEmacs '02 directory.
Recognizing the File Type

The next step to adding a new file type is to get MicroEmacs '02 to recognize the file as the new type.
Recognition is performed by the File Hooks which perform recognition on the file extension and/or
the file content. The name of the file type must be determined, this is typically the name of the file
prepended by hk. e.g. a file with extension foo uses the file hkfoo.emf for it's language specific
definitions.

MicroEmacs '02

languageTemplates(2) 1470

Using the add−file−hook(2) invocation the file recognition is bound to the file hook macro whenever
the file type is loaded. The file hook is added to the appropriate global, company or user start up file
as determined in step 1. The file hooks for file foo might be defined as follows, depending upon the
recognition method:−

Recognizing the extension

To recognize the file extension, then a space separated list of extensions may be defined,
including the dot '.' (or other) extension separator.

add−file−hook ".foo" fhook−foo

Recognizing a magic editor string in the file

If the file type adopts multiple extensions (or does not use a file extension) then an editor
specific string may be inserted into the file to enable the editor to recognize it, typically of the
form −!− type −!−, if the string is GNU Emacs compatible then the −*− convention may be
used. The binding is defined as:−

−1 add−file−hook "−!−[\t]*foo.*−!−" fhook−foo

Recognizing a magic string in the file

UNIX files use a "#!<path>" notation for executable ASCII files. If the file is this type of
file (or uses any other type of common string in the as the first characters of a file) then the
binding may be defined as follows, in this case we have assumed foo is the UNIX executable
variety i.e. #!/usr/local/bin/foo:−

1 add−file−hook "^#!/.*foo" fhook−foo

Any, or all of the above recognition methods may be employed to invoke the language specific macro.
Note that the methods are evaluated in a LIFO order, hence it is possible to over−ride an existing
method.

Defining the Macro File

Once the hook has been defined, the language specific file must be created. Create the language
specific file with the same name as defined in the hooks, removing the fhook− prefix and replacing it
with hk, i.e. fhook−foo invokes the language specific file hkfoo.emf. Create, the file and add
the file hook macro. for example hkfoo.emf contents may be defined as:

define−macro fhook−foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro
ml−write "[MicroEmacs foo file hook loaded]"

The file hook may be tested by exiting and re−loading MicroEmacs '02, or simply by executing the
file containing the add−file−hook function. Once the file bindings are installed a foo file may be

MicroEmacs '02

languageTemplates(2) 1471

loaded and the hook message should be displayed.

Modifying an Existing file hook

The standard file hooks supplied with MicroEmacs '02 should not be modified, typically a user will
want to extend the repertoire of hi−lighting tokens to encompass locally defined programming
libraries or syntactical extensions, in addition to extending support macros that are associated with the
file type. In this case, an extension to the hook function is required. The hook file myXXX.emf, allows
extensions to be made to the hkXXX.emf, without editing the original file. This may be considered to
be an include file and is executed, if it exists, after the hk file has been executed. i.e. if the hook file
hkfoo.emf is already defined and extensions are added to myfoo.emf.

Note that the myXXX.emf files do not typically include any fhook−XXX functions, the original fhook
functions would be used. However, if a different buffer environment is required from the one created
be the hook, such as a different setting of tab(2m) mode, the hook function should be copied to
myXXX.emf and altered appropriately.

Adding Hilighting definitions

File specific hilighting is used to pick out key words and tokens used within the file type, it greatly
improves readability; the hilighting is also used for printing. The hilighting is defined within the body
of the file and is executed once when the hook file is loaded, this occurs when the hook function is
executed. During development of the hilighting code, it is usually necessary to execute the hook
buffer to view the effects of any changes to the hilighting.

The hilighting is defined using the command hilight(2) which requires a hilighting identifier, used to
identify the hilighting scheme. This identifier is dynamically allocated when the hook file is loaded,
again using foo, the identifier is allocated at the top of the file and is protected such that a value is
assigned once only.

!if &sequal .hilight.foo "ERROR"
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

The variable .hilight.next allocates unique hilighting numbers, typically a single hilighting
number is consumed, incrementing the .hilight.next variable ready for the next allocation. The
hilighting color scheme is defined in a macro variable .hilight.ext, where ext is the name of the
language scheme (i.e. foo).

Given a hilighting number, the hilighting scheme may be defined. Each of the tokens in the language
is assigned a hilighting color, for our simple foo file type:−

0 hilight .hilight.foo 1 $global−scheme
hilight .hilight.foo 2 "#" .scheme.comment
hilight .hilight.foo 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.foo 0 "'.'" .scheme.quote
hilight .hilight.foo 0 "'\\\\.'" .scheme.quote ; '\?' quoted char

hilight .hilight.foo 1 "if" .scheme.keyword

MicroEmacs '02

languageTemplates(2) 1472

hilight .hilight.foo 1 "then" .scheme.keyword
hilight .hilight.foo 1 "else" .scheme.keyword
hilight .hilight.foo 1 "endif" .scheme.keyword

When the hilighting tokens have been defined, the hilighting scheme is bound to the buffer. This is
performed by assigning $buffer−hilight(5) with the hilighting scheme within the fhook macro body,
e.g.

define−macro fhook−foo
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Putting it all together hkfoo.emf now comprises:−

!if &sequal .hilight.foo "ERROR"
 ; Allocate a hilighting scheme number
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

; Define the hilighting scheme
0 hilight .hilight.foo 1 $global−scheme
hilight .hilight.foo 2 "#" .scheme.comment
hilight .hilight.foo 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.foo 0 "'.'" .scheme.quote
hilight .hilight.foo 0 "'\\\\.'" .scheme.quote ; '\?' quoted char

hilight .hilight.foo 1 "if" .scheme.keyword
hilight .hilight.foo 1 "then" .scheme.keyword
hilight .hilight.foo 1 "else" .scheme.keyword
hilight .hilight.foo 1 "endif" .scheme.keyword

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

; Notification that hook is loaded.
ml−write "[MicroEmacs foo file hook loaded]"

Adding a Template

A template inserts initial text into a new file that is created. This mechanism is typically used to insert
a standard header into the file on creation. The insertion text is defined within a template file, given
the file extension etf(8), which is created in the corresponding global, company or user directory as
determined in step 1. The template is named ext.etf, so for our example file foo, the template file is
called foo.etf. We shall simply add a file header, our comment is # (as defined by the hilighting
tokens). Our example foo template file foo.etf may be defined as follows:−

MicroEmacs '02

languageTemplates(2) 1473

#−!− foo −!− #################################

Created By : $USER_NAME$
Created : $ASCII_TIME$
Last Modified : <160495.1521>

Description

Notes

History

Copyright (c) $YEAR$ $COMPANY_NAME$.

The template file must be explicitly loaded by the hook file, within the fhook function. A new file
condition may be tested within the fhook macro by checking the numerical argument, an argument of
0 indicates that this is a new file. The template file is inserted with an invocation of etfinsrt(3). The
fhook macro checks the argument and inserts the template file as follows:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Adding abbreviations

Abbreviations are short−cut expansions which may be defined for the language specific file. The
abbreviations are defined in a eaf(8) file, ext.eaf, located in the appropriately defined MicroEmacs
directory. The abbreviation file defines the key sequences which may be automatically inserted, under
user intervention, using expand−abbrev(2). An abbreviation file for foo, foo.eaf, may be defined
as:−

if "if \p\rthen\rendif\P"
el "else\r\p\P"

The binding to the hook is defined in the fhook macro using buffer−abbrev−file(2). For the example
language file foo the fhook macro becomes:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo

MicroEmacs '02

languageTemplates(2) 1474

 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Automatic Indentation

Automatic indentation may be applied to the file, such that the indentation is automatically performed
when new lines are entered into the file. Indentation also benefits from automatic re−styling
operations using restyle−region(3) and restyle−buffer(3).

The indentation style is declared by defining language tokens that constitute positions in the syntax
where the indentation is changed. The indentation requires a unique identifier to identify the
indentation style, the hilighting identifier is used. If hilighting is not defined, then the language
template may still obtain an identifier as described in the hilighting section.

The indention is create with an argument of 0 to the indent(2) command, the subsequent tokens are
defined using indent with no argument. For our simple foo syntax then the indentation might be
defined as follows:−

0 indent .hilight.foo 2 10
indent .hilight.foo n "then" 4
indent .hilight.foo s "else" −4
indent .hilight.foo o "endif" −4

This provides an indentation of the form:−

if condition
then
 XXXX
else
 if condition
 then
 XXXX
 endif
endif

The indentation is bound to the buffer in the fhook macro by defining $buffer−indent(5). For the
example file foo then the fhook is defined as:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"

MicroEmacs '02

languageTemplates(2) 1475

 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Setting Buffer Modes

Buffer modes which are to be adopted (or discarded) by the language specific file are defined in the
fhook macro. Typical modes that are applied are:−

time

Enables time stamping on the file, modifying the time stamp field with the modification date and
time.

indent

Automatic indentation, where the cursor is returned to the same column on entering a new line, rather
than to the start of the line.

As an example, the foo fhook file becomes:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Set up the buffer modes
 1 buffer−mode "time"
 1 buffer−mode "indent"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Assigning New Bindings

New bindings and language specific macros may be added to the language specific file. New macros,
to extend the repertoire of commands specifically developed for the language file are defined within
the macro body using define−macro(2) these are automatically loaded when the hook file is loaded,
which in turn is loaded when the file type is identified and loaded.

New bindings, which may be associated with new macros or existing commands, are assigned within
the fhook macro. As an example, we shall extend the foo language file to include a commenting and
uncommenting macros, locally binding the macros to the keys "C−c C−c" and "C−c C−d"

MicroEmacs '02

languageTemplates(2) 1476

respectively. The macro definitions are defined as follows:−

; Macro to comment a line
define−macro foo−comment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 insert−string "#"
 beginning−of−line
 forward−line
 !done
!emacro

; Macro to remove a comment from a line
define−macro foo−uncomment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 −1 search−forward "#"
 backward−delete−char
 forward−line
 !done
!emacro

The key bindings for the macros are defined for the local buffer ONLY, as such are added using
buffer−bind−key(2). The bindings are declared in the fhook macro as follows:−

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Set up the buffer modes
 1 buffer−mode "time"
 1 buffer−mode "indent"
 ; Set up local bindings
 buffer−bind−key foo−comment−line "C−c C−c"
 buffer−bind−key foo−uncomment−line "C−c C−d"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

Allowing Other to Modify the Hook

Other users of the file hook may need to modify or extend the file hook, the most common form is the
addition of user specific hilight tokens. MicroEmacs uses a simple mechanism of executing a user
hook extension file if it exists. The extension file name must be of the form myXXX.emf, i.e. for our
example it must be "myfoo.emf". This is performed at the end of the macro file so that anything
within the file can be altered, it is executed as follows:−

MicroEmacs '02

languageTemplates(2) 1477

; load in user extensions if found
!force execute−file "myfoo"

Note the !force(4) directive is used as the file may not exist.

Summing Up

The previous sections have presented the basic steps involved in setting up a new language file
template. They cater for simple file types, for more complex examples then browse the hkxxx.emf
files.

The completed files that should have been generated by following the previous examples are now
presented:−

file.foo

This is a comment.
if condition
then
 do something
else
 if condition
 then
 do something
 endif
endif

hkfoo.emf

!if &sequal .hilight.foo "ERROR"
 ; Allocate a hilighting scheme number
 set−variable .hilight.foo &pinc .hilight.next 1
!endif

; Define the hilighting scheme
0 hilight .hilight.foo 1 $global−scheme
hilight .hilight.foo 2 "#" .scheme.comment
hilight .hilight.foo 4 "\"" "\"" "\\" .scheme.string
hilight .hilight.foo 0 "'.'" .scheme.quote
hilight .hilight.foo 0 "'\\\\.'" .scheme.quote ; '\?' quoted char

hilight .hilight.foo 1 "if" .scheme.keyword
hilight .hilight.foo 1 "then" .scheme.keyword
hilight .hilight.foo 1 "else" .scheme.keyword
hilight .hilight.foo 1 "endif" .scheme.keyword

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

MicroEmacs '02

languageTemplates(2) 1478

; Define the indentation scheme
0 indent .hilight.foo 2 10
indent .hilight.foo n "then" 4
indent .hilight.foo s "else" −4
indent .hilight.foo o "endif" −4

; Reset the hilighting printer format and define the color bindings.
0 hilight−print .hilight.foo
hilight−print .hilight.foo "i" .scheme.comment
hilight−print .hilight.foo "b" .scheme.keyword
hilight−print .hilight.foo "bi" .scheme.string .scheme.quote

; Macro to comment a line
define−macro foo−comment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 insert−string "#"
 beginning−of−line
 forward−line
 !done
!emacro

; Macro to remove a comment from a line
define−macro foo−uncomment−line
 !while &gre &pdec @# 1 0
 beginning−of−line
 −1 search−forward "#"
 backward−delete−char
 forward−line
 !done
!emacro

; File hook − called when new file is loaded.
define−macro fhook−foo
 ; if arg is 0 this is a new file so add template
 !if ¬ @#
 etfinsrt "foo"
 !endif
 ; Assign the hilighting
 set−variable $buffer−hilight .hilight.foo
 ; Assign the buffer indentation
 set−variable $buffer−indent .hilight.foo
 ; Set the abbreviation file
 buffer−abbrev−file "foo"
 ; Set up the buffer modes
 1 buffer−mode "time"
 1 buffer−mode "indent"
 ; Set up local bindings
 buffer−bind−key foo−comment−line "C−c C−c"
 buffer−bind−key foo−uncomment−line "C−c C−d"
 ; Temporary comment to make sure that it works.
 ml−write "Loaded a foo file"
!emacro

; Notification that hook is loaded.
ml−write "[MicroEmacs foo file hook loaded]"

; load in user extensions if found
!force execute−file "myfoo"

MicroEmacs '02

languageTemplates(2) 1479

foo.eaf

if "if \p\rthen\rendif\P"
el "else\r\p\P"

foo.etf

#−!− foo −!− #################################

Created By : $USER_NAME$
Created : $ASCII_TIME$
Last Modified : <160495.1521>

Description

Notes

History

Copyright (c) $YEAR$ $COMPANY_NAME$.

SEE ALSO

add−file−hook(2), buffer−abbrev−file(2), etfinsrt(3), execute−buffer(2), expand−abbrev(2),
global−abbrev−file(2), hilight(2), scheme−editor(3), indent(2), indent(2m), restyle−buffer(3),
restyle−region(3), time(2m), $buffer−hilight(5), $buffer−indent(5), etf(8), eaf(8),
File Hooks.

MicroEmacs '02

languageTemplates(2) 1480

latex(9)

SYNOPSIS

latex − TeX Documentation

FILES

hklatex.emf − Tex File hook definition
latex.etf − Template file

EXTENSIONS

.tex − TeX Documentation

DESCRIPTION

The latex file type template handles the hilighting of the TeX files. The hilighting is minimal,
hilighting the key words and comments.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting emphasizes the Tex embedded command strings and comments. No special recognition
of the command strings is performed.

Outline Hilighting

The LaTeX content may be viewed with synthetic hilighting such that headers, text in bold and italic
are displayed, removing the LaTeX control sequences.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.

The command latex−compile is available within the buffer which invokes an external process
to build the text.

MicroEmacs '02

latex(9) 1481

BUGS

No bugs reported

SEE ALSO

time(2m).

Supported File Types

MicroEmacs '02

latex(9) 1482

letter(2m)

NAME

letter − Letter kill policy

SYNOPSIS

letter Mode

l − mode line letter.

DESCRIPTION

By default individually deleted characters are not added to the kill buffer unless an argument is given
to the command. This allows the user to delete characters while preserving the kill buffer, at the
expense of not being able to yank(2) the character back out. Enabling letter mode ensures that all
deleted characters are added to the kill buffer.

NOTES

This mode is implemented for backwards compatability only and the use of it is strongly discouraged
as this may alter the behaviour of many on the supporting macros. If this feature is required it would
be preferable to use a numeric argument with the delete or backspace key binding as follows:

1 global−bind−key backward−delete−char "backspace"

The use of the numeric argument of 1 has the same effect.

SEE ALSO

buffer−mode(2), global−mode(2), yank(2), line(2m).

MicroEmacs '02

letter(2m) 1483

line(2m)

NAME

line − Line kill policy

SYNOPSIS

line Mode

L − mode line letter.

DESCRIPTION

By default an invocation of kill−line(2) at the left−hand margin will kill the whole line. If line mode
is enabled and the line contains text then only the text is killed, leaving an empty line. If the line is
empty then it is removed.

SEE ALSO

buffer−mode(2), global−mode(2), letter(2m).

MicroEmacs '02

line(2m) 1484

line−scheme−search(3)

NAME

line−scheme−search − Search and annotate the current buffer

SYNOPSIS

line−scheme−search

DESCRIPTION

line−scheme−search provides a method of searching for text patterns within the current buffer and
annotating any matches through colored line hilighting. A selection of line colors are provided to
allow different search patterns to be assigned their own color.

line−scheme−search is generally used for annotating log files and alike, where indevidual lines are of
interest in addition to the context about that line. The hilighting draws attention to the line, by
providing a visual cue, allowing the contents of the file to be breifly scanned.

On invocation of line−scheme−search a osd(2) dialog is presented to the user, search patterns and
their associated hilighting assignment are selected through this interface. The dialog entries are
defined as follows:−

Search for

The text dialog entry box allows the search pattern to be entered. This may be a regular expression or
plain text.

Color

The Color allows the line hilighting color scheme to be selected from a pop−up menu. The color
Remove is special and allows previously applied line hilighting to be removed.

Case Sensitive

A check box that allows the search to be case sensitive or insensitive. This modifies the exact(2m)
mode.

Magic Mode

A check box that enables/disables regular expression pattern matching. This modifies the magic(2m)
mode.

Below

MicroEmacs '02

line−scheme−search(3) 1485

Searches and hilights lines matching the search pattern from the current cursor position to the end of
the buffer.

Above

Searches and hilights lines matching the search pattern from the current cursor position to the top of
the buffer.

All

Searches and hilights lines matching the search pattern for the whole buffer.

Clear All

Removes all line hilighting from the current buffer.

First

Moves to the top of the buffer and hilights the first line that matches the search pattern.

Next

Hilights the next line that matches the search pattern.

Reverse

Hilights the previous line that matches the search pattern.

Exit

Exits the hilighting search dialog. NOTES

line−scheme−search is a macro implemented in hiline.emf.

SEE ALSO

osd(2), $line−scheme(5).

MicroEmacs '02

line−scheme−search(3) 1486

list−buffers(2)

NAME

list−buffers − List all buffers and show their status

SYNOPSIS

list−buffers (C−x C−b)

DESCRIPTION

list−buffers splits the current window and in one half brings up a list of all the buffers currently
existing in the editor. The active modes, change flag, and active flag for each buffer is displayed. (The
change flag is a * character if the buffer has been changed and not written out. The active flag is not
an @ if the file had been specified on the command line, but has not been read in yet since nothing
has switched to that buffer.)

The buffer list has some special command keys associated with it which allow the state of the buffers
to be edited from the buffer list, the editing allows buffers to be killed and saved to disk. The key
codes are defined as follows:−

1 − Switch to buffer

Switch to that buffer and make it the only buffer.

2 − Move to buffer

Switch the buffer list window to that buffer.

D − delete buffer

Flag buffer for deletion. A buffer scheduled for deletion is marked with a 'D' in first column. The
delete status is enacted by the 'X' command, or may be removed with the 'U' command.

S − save buffer

Flag buffer for saving. A buffer scheduled from saving is marked with a 'S' in the second column.
Note that a buffer may be marked for saving and deletion, the save operation is performed before the
delete.

U − unmark buffer

Unmark the 'D' and 'S' flags on current line.

MicroEmacs '02

list−buffers(2) 1487

X − execute

Execute all the 'D' and 'S' flags currently set. The Save is enacted first.

For all but 'X', the buffer selected is the buffer noted on the current cursor line. These keys are not
remappable.

SEE ALSO

list−variables(2), list−commands(2), split−window−horizontally(2).

MicroEmacs '02

list−buffers(2) 1488

list−commands(2)

NAME

list−commands − List available commands

SYNOPSIS

list−commands (C−h c)

DESCRIPTION

list−commands constructs a list of all known built in commands and macros that are currently
defined by MicroEmacs '02 and presents a list of those commands in the buffer "*commands*". Each
entry is formatted as:−

command keyCode

Where multiple keys are bound to the same command, then each of the keyCode's is shown.

list−commands is similar to describe−bindings(2) except that the commands are presented in
alphabetical order (as opposed to key binding order).

EXAMPLE

The following is an example of the output of list−commands:−

backward−char "C−b"
 "left"
backward−delete−char "backspace"
 "S−backspace"
backward−delete−tab "S−tab"
backward−kill−word "esc backspace"
backward−line "C−p"
 "up"
 "C−up"
backward−paragraph "esc ["
 "esc p"
backward−word "esc b"
 "C−left"
beginning−of−buffer "esc <"
 "home"
beginning−of−line "C−a"
buffer−bind−key
buffer−info "C−x ="
buffer−mode "esc ~"
 "C−x m"
 "insert"

MicroEmacs '02

list−commands(2) 1489

buffer−unbind−key
:
:

SEE ALSO

describe−bindings(2), list−variables(2).

MicroEmacs '02

list−commands(2) 1490

list−registry(2)

NAME

list−registry − Display the registry in a buffer

SYNOPSIS

list−registry

DESCRIPTION

list−registry lists the contents of the registry in the a buffer in a hierarchical format. The key name
and any associated string is shown as a hierarchical tree.

The registry listing is generated in the buffer "*registry*".

SEE ALSO

read−registry(2), erf(8).

MicroEmacs '02

list−registry(2) 1491

list−variables(2)

NAME

list−variables − List defined variables

SYNOPSIS

list−variables (C−h v)

DESCRIPTION

list−variables pops up a window with a list of all register, buffer, user and global variables with their
current setting. The variables are shown for the current buffer from which the command was invoked

list−variables provides a good alternative to describe−variable(2) where the value of multiple
variables is to be interrogated.

The output is displayed in four sections:−

Register variables

The current settings of the global register variables ('#' prefix).

Buffer Variables

The current setting of the buffer variables (':' prefix). This variables relate to the current buffer from
which the command was invoked.

System Variables

The current settings of the system variables ('$' prefix).

Global Variables

The current setting of the global variables ('%' prefix). EXAMPLE

An example output from list−variables is shown below:−

Register variables:

 #g0 "29"
 #g1 ""
 #g2 "ERROR"
 :
 :

MicroEmacs '02

list−variables(2) 1492

 #g8 "ERROR"
 #g9 "ERROR"

Buffer [m2cmd086.2] variables:

System variables:

 $auto−time "300"
 $buffer−bhook "bhook−nroff"
 $buffer−bname "m2cmd086.2"
 $buffer−ehook "ehook−nroff"
 $buffer−fhook "fhook−nroff"
 $buffer−fmod "040"
 $buffer−fname "d:/emacs/doc/m2cmd086.2"
 $buffer−hilight "3"
 :
 :
 $window−width "80"
 $window−x−scroll "0"
 $window−xcl−scroll "0"
 $window−y−scroll "52"

Global variables:

 %black "0"
 %blue "4"
 %compile−com "nmake "
 %cyan "6"
 %green "2"
 %grep−com "grep −n "
 :
 :
 %usr1mode "off"
 %white "7"
 %yellow "3"

SEE ALSO

describe−variable(2), list−commands(2).

MicroEmacs '02

list−variables(2) 1493

localeSupport(2)

LOCALE SUPPORT

Locale support within MicroEmacs handles the hardware and software configuration with respect to
location, including:−

Displayed Character Set
Keyboard Support
Word characters
Spell Support

There are many other locale problems which are not addressed in this help page. Supporting different
locale configurations often requires specific hardware (a locale specific keyboard) and knowledge of
the language and customs of the region. This makes it a very difficult area for one localized
development team to support, as such, JASSPA rely heavily on the user base to report locale issues.

Note on Names and IDs

The language name is not sufficient to identify a locale (Mexican Spanish is different to Spanish
Spanish) neither is the country name (two languages are commonly used in Belgium), so before we've
really started the first problem of what to call the locale has no standard answer! Call it what you like
but please try to call it something meaningful so others may understand and benefit from your work.

In addition, the internal id and data file names have a length limit of just four characters due to the
"8.3" naming conversion of MS−DOS. The standard adopted by JASSPA MicroEmacs for the
internal locale id is to combine the 2 letter ISO language name (ISO 639−1) with the 2 letter ISO
country name (ISO 3166−1). Should the locale encompasses more than one country, then the most
appropriate country id is selected.

Displayed Character Set

A character set is the mapping of an integer number to a display symbol (i.e. character). The ASCII
standard defines a mapping of numbers to the standard English characters, this standard is well
defined and accepted, as a result the character set rarely causes a problem for plain English.

Problems occur when displaying characters found outside the ASCII standard, such as letters with
accents, letters which are not Latin based (e.g. Greek alphabet) and graphical characters (used for
drawing dialog boxes etc.). There are many different character sets to choose between and if the
wrong character set is selected then the incorrect character translation is performed resulting in an
incorrect character display. If the character display looks incorrect then first try changing the font and
character−set setting, these can be configured using the platform page of user−setup(3).

If the problem persists (i.e. because the character set used to write the text is not supported on your
current system) use the charset−change(3) command to convert the text to the current character set.

MicroEmacs '02

localeSupport(2) 1494

If your character−set is not supported then first make sure that MicroEmacs will draw all of the
characters to be used. By default MicroEmacs does not draw some characters directly as the symbol
may not be defined. When a character is not defined then there will typically be a gap or space in the
text at the unknown character, in some cases there may be no space at all which will make it very hard
to use. The symbol(3) command (menu−>symbol) is a good way of looking at which characters can
be used with the current character set.

For a character to be rendered (when in main text) or poked (drawn by screen−poke(2) or osd(2)) is
defined by the set−char−mask(2) command. The characters that are used when drawing MicroEmacs's
window boarders or osd dialogs is set via the $box−chars(5) and $window−chars(5) variables.

MicroEmacs attempts to improve the availability of useful graphics characters on Windows and
UNIX X−Term interfaces. The characters between 0 and 31 are typically control characters with no
graphical representation (e.g. new−line, backspace, tab etc.) if bit 0x10000 of the $system(5) variable
is set then MicroEmacs renders its own set of characters. These characters are typically used for
drawing boxes and scroll−bars.

With so many character sets, each with their own character mappings, then the problem of spelling
dictionary support is also tied to the locale. MicroEmacs uses the ISO standard character sets (ISO
8859) internally for word and spelling support and therefore a mapping between the ISO standard and
the user character set is required. This mapping is defined by using the 'M' flag of the
set−char−mask(2) command.

The user may declare the current character set in the platform page of user−setup(3). All the settings
required for supporting each character set may be found in the charset.emf macro file, so if your
character set is not supported, this is the file to edit.

Keyboard Support

The keyboard to character mapping is defined in the Start−Up page of user−setup(3), where the
keyboard may be selected from a list of known keyboards. If your keyboard is not present, or is not
working correctly, then this section should allow you to fix the problem (please send JASSPA the
fix).

Most operating systems seem to handle keyboard mappings with the exception of MS−Windows
which requires a helping hand. The root of the problems with MS−Windows is it's own locale
character mappings which change the visibility status of the keyboard messages which conflict with
Emacs keystroke bindings. To support key−bindings like 'C−tab' or 'S−return' a low level
keyboard interface is required, but this can lead to strange problems with the more obscure keys,
particularly with the 'Alt Gr' accented letter keys. For example on American keyboards pressing
'C−#' results in two 'C−#' key events being generated, this peculiarity only occurs with this one key.
On a British keyboard the same key generates a 'C−#' followed by a 'C−\'.

This problem can be diagnosed using the $recent−keys(5) variable. Simply type an obvious character,
e.g. 'A' then the offending key followed by another obvious key ('B'), then look for this key sequence
in the $recent−keys variable (use the list−variables(2) or describe−variable(2) command). So for the
above British keyboard problem the recent−keys would be:

MicroEmacs '02

localeSupport(2) 1495

 B C−\\ C−# A

($recent−keys lists the keys backwards). Once you have found the key sequence generated by the key,
the problem may be fixed using the translate−key(2) to automatically convert the incorrect key
sequence into the required key. For the problem above the following line is required:

translate−key "C−# C−\\" "C−#"

Note that once a key sequence has been translated everything, including $recent−keys, receive only
the translated key. So if you a suspected a problem with the existing definition, change the keyboard
type in user−setup to Default so no translations are performed, quit and restart MicroEmacs before
attempting to re−diagnose the problem.

All the settings required for supporting each keyboard may be found in the keyboard.emf macro
file, so if your keyboard is not supported, this is the file you need to edit.

Word characters

Word characters are those characters which are deemed to be part of a word, numbers are usually
included. Many MicroEmacs commands use the 'Word' character set such as forward−word(2) and
upper−case−word(2). The characters that form the word class are determined by the language being
used and this can be set in the Start−Up page of user−setup(3).

If your language is not supported you will need to add it to the list and define the word characters,
these settings may be found in the language.emf macro file. The 'a' flag of command
set−char−mask(2) is used to specify whether a character is part of a word, you must specify the
uppercase letter and then the lowercase equivalent so the case conversion functions work correctly.

A list of characters to be removed from the word character set is stored in the
.set−char−mask.rm−chars variable. This is done so that the language may be changed many times in
the same session of MicroEmacs without any side effects (such as the expansion of the word character
set to include all letters of all languages). This makes MicroEmacs ideal for writing multi−language
documents.

This may unfortunately be made a little more tricky by the requirement that this list must be specified
in the most appropriate ISO standard character set (see Displayed Character Set section). When
extending the word character set the characters have to be mapped to the current character set which
may not support all the required characters. For example in the PC−437 DOS character set there is an
e−grave (`e) but no E−grave so the E−grave is mapped to the normal E. As a result, if trying to write
French text the case changing commands will behave oddly, for example:

 r`egle −> REGLE −> r`egl`e

The conversion of all 'E's to '`e' is an undesirable side effect of '`E' being mapped to E. This can be
avoided by redefining the base letter again at the end of the word character list, for example:

set−char−mask "a" "`E`eEe"

MicroEmacs '02

localeSupport(2) 1496

Spell Support

The current language is set using the Language setting on General page of user−setup(3), if your
required language is not listed you must first create the basic language support by following the guide
lines in the Word Character section above. If you Language is listed, select it and enable it by either
pressing Current or saving and restarting MicroEmacs. in a suitable test buffer run the spelling
checker, one of three things will happen:

The Spelling Checker dialog opens and spelling is checked

The spelling checker is supported by the current language and can be used (the rules and
dictionaries have been downloaded and installed).

Dialog opens with the following error message:

Rules and dictionaries for language "XXXX"
 are not available, please download.

The spelling checker is supported by the current language but the required rules and
dictionaries have not been downloaded. You should be able to download them from the
JASSPA website, see Contact Information. Once downloaded they must be placed in the
MicroEmacs search path, i.e. where the other macro files (like me.emf) are located.

Dialog opens with the following error message:

Language "XXXX" not supported!

The spelling checker is not supported by the current language, see the following Adding
Spell Support section.

Adding Spell Support

To support a language MicroEmacs's spelling checker requires a base word dictionary and a set of
rules which define what words can be derived from each base word in the dictionary. The concept and
format of the word list and rules are compatible with the Free Software Foundation GNU ispell(1)
package.

The best starting point is to obtain ispell rules and word lists in plain text form, the web can usually
yield these. Once these have been obtained the rules file (or affix file) must be converted to a
MicroEmacs macro file calling the add−spell−rule(2) command to define the rules. The rule file
should be named "lsr<lang−id>.emf" where "<lang−id>" is the spelling language id, determined
by the .spell.language variable set in the language.emf macro file.

The spellutl.emf macro file contains the command spell−conv−aff−buffer which will attempt
to convert the buffer but due to formatting anomalies this process often goes wrong so using the
command spell−conv−aff−line (also contained in spellutl.emf) to convert a single line is often
quicker. See existing spelling rule files (lsr*.emf) for examples and help on command

MicroEmacs '02

localeSupport(2) 1497

add−spell−rule(2).

Note: the character set used by the rules should be the most appropriate ISO standard (see Displayed
Character Set section), this can make the process much more difficult if the current character set not
compatible, if you are having difficulty with this please e−mail JASSPA Support.

Once the rules have been created, create a dictionary for the language from the word lists, see help on
command add−dictionary(2). The dictionary file name should be "lsdm<lang−id>.edf", if the
dictionary is large and can be split into two sections, a set of common words and a set of more
obscure ones, create two dictionaries calling the dictionary containing obscure words
"lsdx<lang−id>.edf" and the other as above.

Once the generated word and dictionary files have been place in the MicroEmacs search path, the
spelling checker should find and use them. Please submit your generated support to MicroEmacs for
others to benefit.

SEE ALSO

user−setup(3), charset−change(3), set−char−mask(2), translate−key(2), $box−chars(5),
$window−chars(5), $recent−keys(5).

MicroEmacs '02

localeSupport(2) 1498

lock(2m)

NAME

lock − Pipe cursor position lock

SYNOPSIS

lock Mode

k − mode line letter.

DESCRIPTION

This mode can only be used while an incremental pipe (started by ipipe−shell−command(2)) is
running in the current buffer, denoted by the pipe(2m) being set. When this mode is enabled and
MicroEmacs '02 buffer cursor is at the same location as the process shell cursor, the buffer cursor is
automatically moved with the shell cursor.

This mode is automatically enabled for a piped buffer.

SEE ALSO

ipipe−shell−command(2), pipe(2m).

MicroEmacs '02

lock(2m) 1499

MacroNumericArguments(4)

NAME

@#, @? − Macro numeric arguments

SYNOPSIS

@# − The numerical argument to a macro
@? − The truth of the numerical argument to a macro

DESCRIPTION

All built−in commands and macros are invoked with a numerical argument. The argument is obtained
from either the command line when the user invokes a command line such as:

esc 5 esc x forward−char

where the argument is entered after prefix 1 (esc). In this case, causing the cursor to be moved
forward 5 characters. Within a macro file the same operation is defined as:−

5 forward−char

In both cases the numerical argument 5 is passed to the command requesting that the resultant
operation is performed 5 times in succession before returning. The command itself is invoked once, it
is the responsibility of the command to iterate if requested.

The command determines how the numerical argument is interpreted, in the case of spell−word the
argument identifies the type of word that is being spelled and NOT the number of words to spell.

The invocation of named macros operate in the same way, the macro may use the variables @? and
@# to determine the status of the numerical argument passed to it. The variables are interpreted as
follows:

@?

A logical value defined as TRUE (1) if a numerical argument has been specified, otherwise FALSE
(0).

@#

A signed integer value of the supplied numeric argument. If no argument is supplied (i.e.
@?==FALSE) then @# is set to 1.

The @? and @# are only valid for the current macro invocation. Other macros or commands that are

MicroEmacs '02

MacroNumericArguments(4) 1500

invoked have their own values of @? and @#.

EXAMPLE

Consider the following example, which sorts lines into alphabetical order using the sort−lines(2)
function. A new command sort−lines−ignore−case is created using a macro to sort lines case
insensitively regardless of the current buffer mode. The command sort−lines takes an optional
argument which determines which column should be used to perform the sort.

;
; sort−lines−ignore−case
; Sort lines case insensitively regardless of the current 'exact' mode
; setting.
define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 !if @?
 @# sort−lines
 !else
 sort−lines
 !endif
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

@? is used to test the presence of the argument, if it is false sort−lines is invoked without an
argument. When true the numeric argument is propagated e.g. @# sort−lines.

This particular macro highlights an important consideration when passing the numerical argument to
other functions, had the macro been implemented as:

; INCORRECT IMPLEMENTATION
define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 @# sort−lines
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

then when sort−lines−ignore−case is invoked with no arguments @# is defined as 1, this is would be
incorrectly propagated to sort−lines causing it to sort on column 1 rather than column 0 as expected.

SEE ALSO

MacroArguments, define−macro(2).

MicroEmacs '02

MacroNumericArguments(4) 1501

Mahjongg(3)

NAME

Mahjongg − MicroEmacs '02 version of the solitaire Mah Jongg game

SYNOPSIS

Mahjongg

DESCRIPTION

Mah Jongg is an ancient Chinese game usually played by four players with tiles similar to dominos.
This is a MicroEmacs '02 version which was inspired by the X−Windows version of the same game.
The X−Windows version for the solitaire game originally seen on the PC and later ported to
SunView.

Theory Of Play

The object of the game is to remove all the tiles from the board. Tiles are removed by matching two
identical tiles which have either an open left edge or open right edge. The only exception to this rule
is that any open "flower" tile (bamboo [BAMB], orchid [ORCH], plum [PLUM], or chrysanthemum
[CHRY]) matches any other open "flower" tile and any open "season" tile (spring, summer, autumn,
or winter) matches any other open "season" tile.

Tiles are stacked on the board, the height of the tile is indicated by the color coding as follows:−

Level 5 − White
Level 4 − Red
Level 3 − Yellow
Level 2 − Green
Level 1 − Cyan

To remove a pair of tiles, click the left mouse button on a tile (which will show in the selection color)
and then click the left mouse button on the matching tile. At this point, both tiles will disappear from
the board. If after selecting the first tile, you decide that you don't wish to play that tile, simply reclick
the left button on the selected tile, alternatively click the right button to deselect any selected tile.

To the right of the board are a number of control buttons. To select an option, click the left mouse
button on it.

NEW

Start a new game (keyboard n).

MicroEmacs '02

Mahjongg(3) 1502

SAME

Start the same game again (keyboard s).

QUIT

Exit the game (keyboard q).

HELP

This help page (keyboard esc h).

The counter shows the number of remaining tiles on the board, at the start of the game there are 144
tiles.

NOTES

Mahjongg is a macro defined in mahjongg.emf.

Mah Jongg may only be played with a mouse, there is no keyboard support, with the exception of the
re−start keys.

ACKNOWLEDGEMENT

Thanks to Jeff S. Young who (I think) wrote the original X−Windows version, and whose manual
page formed the basis of this page.

The tile patterns were inspired from the X−Windows tile patterns. The X−Windows tile patterns
themselves are copyright 1988 by Mark A. Holm <tektronix!tessi!exc!markh>.

SEE ALSO

Games, Match−It(3), Patience(3).

MicroEmacs '02

Mahjongg(3) 1503

MainMenu(3)

NAME

Main Menu − The top main menu

SYNOPSIS

n osd

DESCRIPTION

The main menu is provided to give an easier access to parts of MicroEmacs functionality, the menu is
not burnt into MicroEmacs but defined on start−up in me.emf and osd.emf. The user−setup(3)
command can be used to set whether the menu is always visible and if the Alt−Hotkeys are enabled
(i.e. 'A−f' to open the File menu).

The main menu is osd(2) dialog number 0 so key bindings can be made which will open the main
menu, an argument of 0 will simply open the main menu, an argument of 0x0n0000 will not only
open the main menu but also the nth sub menu, e.g. to open the edit menu use:

 0x020000 osd

Following is a brief description of the main menu items:

File Menu

New

Changes the current buffer to a new buffer.

Open

Opens a dialog enabling the user to select files for opening into MicroEmacs. By default the dialog
opens the selected file using command find−file(2), but if the view option is selected the view−file(2)
command is used. The binary or encrypt options configure whether the files are to be loaded with
binary(2m) or crypt(2m) modes enabled.

Quick Open

Opens a sub−menu list all user file types (defined in user−setup(3)). Selecting one will open another
sub−dialog list all files of that type in the current directory, selecting a file will open it using
command find−file(2).

Favorites

MicroEmacs '02

MainMenu(3) 1504

Opens a sub−menu enabling the user to add new favorite files, edit the existing list of favorite files, or
select an existing favorite file in which case the file is opened using command find−file(2). The
favorite file using to store the list is "$MENAME.eff" and is saved in the first path given in the
$search−path(5). Each favorite file takes 2 lines in the file, the first is the text displayed in the dialog
(note that characters '\' and '&' must be protected with a '\' and the '&' can be used to set the Hot key)
and the second line is the file name. A line with a single '−' character creates a separater line in the
dialog.

Find Tag

Only visible when a tags file is found in the current directory, the command jumps to the current tag
or if not on a tag or the tag is not found, opens a dialog enabling the user to select a tag. See command
find−tag(2) for more information.

Find File

Executes command file−browser(3).

FTP

Executes command ftp(3).

Close

Executes a dialog form of the command delete−buffer(2).

Attributes

Opens a dialog enabling the user to set the current buffers file attributes. See command file−attrib(3)
for more information.

Save

Executes a dialog form of the command save−buffer(2).

Save As

Executes a dialog form of the command write−buffer(2).

Save All

Executes a dialog form of the command save−all(3).

Printer Setup

Opens a dialog which enables the user to configure the printer driver, output location and page layout
(executes command print−setup(3)).

Print

MicroEmacs '02

MainMenu(3) 1505

Executes command print−buffer(2).

Buffer

Opens a sub−menu listing all created buffers, selecting one will change the current buffer to the
selected one.

Exit

Executes command save−buffers−exit−emacs(2). Edit Menu

Undo

Undoes the last edit in the current buffer (executes command undo(2)).

Redo

Redo the last undo, only available immediately after an undo. This is also done via the undo(2)
command.

Undo All

Undo all edits in the current buffer until the last save or no more undo history is available. Executes
the command undo(2) with a 0 numerical argument.

Set Mark

Executes command set−mark(2).

Cut

Executes command kill−region(2).

Copy

Executes command copy−region(2).

Paste

Executes command yank(2).

Narrow Out

Executes command narrow−buffer(2) with a numeric argument of 4.

Narrow To

Executes command narrow−buffer(2) with a numeric argument of 3.

MicroEmacs '02

MainMenu(3) 1506

Remove Single Narrow

Executes command narrow−buffer(2) with a numeric argument of 2.

Remove All Narrows

Executes command narrow−buffer(2) with a numeric argument of 1. Search Menu

Search

Executes a dialog form of the command isearch−forward(2).

Replace

Executes a dialog form of the command query−replace−string(2).

Hilight Search

Opens another dialog which can be used to add and remove hilighting of individual lines in the
current buffer. Note that setting a line hilight is a temporary change, it will not effect any files etc and
will be lost when the buffer is deleted.

Goto Line

Executes a dialog form of the command goto−line(2).

Goto Fence

Executes command goto−matching−fence(2).

Set Bookmark

Executes command set−alpha−mark(2).

Goto Bookmark

Executes command goto−alpha−mark(2). Insert Menu

Symbol

Executes command symbol(3).

Date & Time

Opens a dialog with the current date and time in a selection of common formats; selecting one of
these will insert the string into the current buffer at the current position. Note that the format text
strings depend on the current language (Default and American languages use the order MM−DD−YY

MicroEmacs '02

MainMenu(3) 1507

etc whereas the rest use DD−MM−YY). The names used for the day and month names can be defined
using the Setup page of Organizer(3).

File

Executes command insert−file(2).

File Name

Executes command insert−file−name(2).

Macro...

Executes command insert−macro(2). Format Menu

Restyle Buffer

Executes command restyle−buffer(3).

Restyle Region

Executes command restyle−region(3).

Clean Buffer

Executes command clean(3).

Change Buffer Char Set

Executes command charset−change(3).

IQ Fill Paragraph

Executes command ifill−paragraph(3).

Fill Paragraph

Executes command fill−paragraph(2).

Fill All Paragraphs

Executes command fill−paragraph(2) with a very large positive numerical argument. Note that this
only effects paragraphs from the current position onwards.

Paragraph to Line

Executes command paragraph−to−line(3).

MicroEmacs '02

MainMenu(3) 1508

All Paragraphs to Line

Executes command paragraph−to−line(3) with a very large positive numerical argument. Note that
this only effects paragraphs from the current position onwards.

Sort Lines

Executes command sort−lines(2).

Ignore Case Sort Lines

Executes command sort−lines−ignore−case(3).

Capitalize Word

Executes command capitalize−word(2).

Lower Case Word

Executes command lower−case−word(2).

Lower Case Region

Executes command lower−case−region(2).

Upper Case Word

Executes command upper−case−word(2).

Upper Case Region

Executes command upper−case−region(2). Execute Menu

Execute Command

Executes command execute−named−command(2).

Execute Buffer

Executes command execute−buffer(2).

Execute File

Executes command execute−file(2).

Start Kbd Macro

Executes command start−kbd−macro(2).

MicroEmacs '02

MainMenu(3) 1509

Query Kbd Macro

Executes command kbd−macro−query(2).

End Kbd Macro

Executes command end−kbd−macro(2).

Execute Kbd Macro

Executes command execute−kbd−macro(2).

Name Kbd Macro

Executes command name−kbd−macro(2).

Ipipe command

Executes command ipipe−shell−command(2).

Shell

Executes command shell(2). Tools Menu

Current Buffer Tools

For some file formats MicroEmacs provides a file format specific set of tools, see the file type help
page for more specific information.

Count Words

Executes command count−words(2).

Spell Word

Executes command spell−word(3).

Spell Buffer

Executes command spell−buffer(3).

Word Complete

Takes the incomplete word to the left of the cursor and attempts to complete the word by using the
users current language dictionary. Executes command expand−word(3).

Compare Windows

MicroEmacs '02

MainMenu(3) 1510

Executes command compare−windows(2).

Compile

Executes command compile(3).

Grep

Executes command grep(3).

Graphical Diff

Executes command gdiff(3).

Diff

Executes command diff(3).

Diff Changes

Executes command diff−changes(3).

Organizer

Executes command organizer(3).

Mail

Executes command mail(3).

View Mail

Executes command vm(3).

More...

Opens a sub−menu with a collection of other useful miscellaneous tools. Window Menu

Split Window V

Executes command split−window−vertically(2).

Grow Window V

Executes command change−window−depth(2) with an argument of 1.

Shrink Window V

MicroEmacs '02

MainMenu(3) 1511

Executes command change−window−depth(2) with an argument of −1.

Split Window H

Executes command split−window−horizontally(2).

Grow Window H

Executes command change−window−width(2) with an argument of 1.

Shrink Window H

Executes command change−window−width(2) with an argument of −1.

One Window

Executes command delete−other−windows(2).

Delete Window

Executes command delete−window(2).

Previous Window

Executes command previous−window(2).

Next Window

Executes command next−window(2).

Create New Frame

Create an new external frame, only available on version which support multiple−window frames.
Executes command create−frame(2).

Create New Frame

Closes the current frame, only available on version which support multiple−window frames. The command
will fail if this is the only frame, use File −> Exit to exit MicroEmacs, executes command delete−frame(2).
Help Menu

Curr Buffer Help

For some file formats MicroEmacs provides a file format specific help page giving details of
key−bindings and tools specific to the current buffers file type.

General Help

MicroEmacs '02

MainMenu(3) 1512

Executes command osd−help(3).

Help on Command

Executes command help−command(2).

Help on Variable

Executes command help−variable(2).

Describe Bindings

Executes command describe−bindings(2).

Describe key

Executes command describe−key(2).

Describe Variable

Executes command describe−variable(2).

Describe Word

Executes command describe−word(3).

List Buffers

Executes command list−buffers(2).

List Commands

Executes command list−commands(2).

List Registry

Executes command list−registry(2).

List Variables

Executes command list−variables(2).

Command Apropos

Executes command command−apropos(2).

Buffer Setup

Executes command buffer−setup(3).

MicroEmacs '02

MainMenu(3) 1513

User Setup

Executes command user−setup(3).

Scheme Editor

Executes command scheme−editor(3).

Games

Opens a sub−menu listing all available games, see Games for more information.

Product Support

Opens on−line Contact information.

About MicroEmacs

Executes command about(2). NOTES

The main menu is defined using osd(2) in macro files me.emf and osd.emf.

General user extensions to the main menu can be added to the user file myosd.emf which is
executed once when the main menu is first opened. The macro file can add new items to any of the
main sub menus and can delete most existing items (some are dynamically added when appropriate,
these should not be deleted). See osd.emf for examples of how to add items to the menu.

New sub−menus should be added in the company or user setup files as this must be done at start−up.
The content on the menu is not required until the main menu is used so populating the new sub−menu
can be done in myosd.emf.

SEE ALSO

user−setup(3).

MicroEmacs '02

MainMenu(3) 1514

Match−It(3)

NAME

Match−It − MicroEmacs '02 version of the Match−It game

SYNOPSIS

Match−It

DESCRIPTION

The object of the game is to score the largest number of points, to do this the player must complete as
many sheets as possible. A sheet is completed when all the tiles are removed from the board within
the given time limit − ALL sheet are possible. If the player fails to remove all the tiles before the time
runs out a life is lost, if all lives have been lost then the game is over.

Tiles are removed from the board by matching two identical tiles which have an 'extraction' path
between them. The only exception to this rule is that any open "flower" tile (bamboo [BAMB], orchid
[ORCH], plum [PLUM], or chrysanthemum [CHRY]) matches any other open "flower" tile and any
open "season" tile (spring, summer, autumn, or winter) matches any other open "season" tile.

An 'extraction' path is a straight line which uses 2 or less right angles, the following are legal
extraction paths, '*'s denote the right angles:

 A−−−* *−−−−−* A−−−−*
 A−−−−A A AXXXXXA XXXXX|
 A−−−−*

The following are illegal paths:

 −−−− *−−−*
 AXXXX| |XXXA
 XXXXA* A−−−*XXXX

2 points are added to the score whenever a pair is successfully removed, a point is deducted whenever
a pair is selected which can not be removed because there is no valid extraction path. There are 2 aids,
pressing the right button on a tile when no other tile is selected will hilight all tiles of matching type,
this costs 4 points. The other help is activated by a button at the top right of the screen and it removes
a random removable pair (or informs the user that there are no removable pairs), there are a limited
number of these helps.

At the end of a successful sheet the score is increased be the time left, the number of lives and helps
remaining and by the Pedigree and Internal bonuses if they were achieved.

The Pedigree bonus is obtained when only identical tiles are paired, i.e. no differing flowers or

MicroEmacs '02

Match−It(3) 1515

seasons were paired, 50 points are awarded when achieved. Its status is indicated by a 'P' to the left of
the 'Help' button and the top of the window.

The internal bonus is obtained when the outer 4 margins are not used. If the left or right margins are
not used then 10 points are awarded for each, if the top or bottom are not used then 20 points are
awarded for each and if none are used then 400 points are awarded! The status on the Internal bonus
is indicated by an 'I' surrounded by '*'s, one for each margin. This can be found next to the Pedigree
bonus 'P'.

GAME CONTROLS

To the right of the high score table on the main menu there are a number of control buttons. To select
an option, click the left mouse button on it.

NEW

Start a new game.

QUIT

Exit Match−It.

HELP

This help page (keyboard esc h).

During a sheet, to remove a pair of tiles, click the left mouse button on a tile (which will show in the
selection color) and then click the left mouse button on the matching tile. At this point, if the tiles can
be removed, the extraction path is drawn and both tiles will disappear from the board. If after
selecting the first tile, you decide that you don't wish to play that tile, simply reclick the left button on
the selected tile, alternatively click the right button to deselect any selected tile.

To the top right of the sheet there are a number of control buttons:−

HELP

Removes a tile pair.

QUIT

Exit the game.

BOSS

Hides Match−It, also acts as a pause. Execute Match−It again to return to the game.

The top left shows the number of remaining lives, the current sheet level, the current score, time
remaining for the current sheet and the status of the Internal and Pedigree bonuses.

MicroEmacs '02

Match−It(3) 1516

NOTES

Match−It is a macro defined in matchit.emf.

Match−It may only be played with a mouse, there is no keyboard support, with the exception of the
re−start keys.

The sheet database file matchit.edf must be accessible for Match−It to work.

SEE ALSO

Games, Mahjongg(3), Metris(3).

MicroEmacs '02

Match−It(3) 1517

MetaFont(9)

SYNOPSIS

MetaFont/MetaPost − Meta Font and Post File.

FILES

hkmeta.emf − MetaFont/MetaPost file hook definition

EXTENSIONS

.mf − MetaFont file

.mp − MetaPost file

DESCRIPTION

The Meta file type template provides simple hilighting of MetaFont (.mf) and MetaPost (.mp)
files, the template provides minimal hilighting. The same hilighting definition is used for both file
types.

File recognition is performed using the standard file extensions.

NOTES

JASSPA have no idea as to the state of this file hook definition.

SEE ALSO

Supported File Types

MicroEmacs '02

MetaFont(9) 1518

Metris(3)

NAME

Metris − MicroEmacs '02 version of the falling blocks game

SYNOPSIS

Metris

DESCRIPTION

Traditional falling blocks game, make solid horizontal lines out of the falling blocks. The blocks can
be rotated and moved left or right by the user as they fall. Once a horizontal line is completely solid it
will disappear and everything above it will drop down. A bonus is given if 3 solid rows are made at
the same time, i.e. using one block.

Every line you make the game speeds up until it gets too fast!! The game ends when there is no more
room to put a block.

The keys used to control Metris are:

left or j

Move the block left one character.

right or l

Move the block right one character.

down or k

Rotate the block counter−clockwise 90 degrees.

space

Drop the current block.

p

Pause the current game.

q

Quit the current game.

MicroEmacs '02

Metris(3) 1519

C−l

Redraw the display.

return

Start a new game.

esc h

View this help page. NOTES

Metris is a macro defined in metris.emf.

SEE ALSO

Games, Match−It(3), Patience(3).

MicroEmacs '02

Metris(3) 1520

m4(9)

SYNOPSIS

me − M4 Macro Processor

FILES

hkm4.emf − M4 macro processor macro file.
m4.etf − M4 macro processor header template file.

EXTENSIONS

.m4

DESCRIPTION

The M4 macro processor template performs simple hilighting of .m4 files. The file type is
recognized by the standard extension only.

Hilighting

The hilighting features allows components of the language to be differentiated and rendered in different
colors. NOTES

The M4 hilighting is minimal, no other features have been implemented.

SEE ALSO

Supported File Types

MicroEmacs '02

m4(9) 1521

magic(2m)

NAME

magic − Regular expression search

SYNOPSIS

magic Mode

M − mode line letter.

DESCRIPTION

magic mode enables the regular expression search capability used in the search and the replace
commands such as search−forward(2) and query−replace−string(2).

In the magic mode of MicroEmacs '02, certain characters gain special meanings when used in a search
pattern. Collectively they are know as regular expressions, and a limited number of them are
supported in MicroEmacs '02. They grant greater flexibility when using the search commands (note
that they also affect isearch−forward(2) commands).

The symbols that have special meaning in magic mode are ^, $, ., \|, *, [], \(\), \{ \} and \.

The characters ^ and $ fix the search pattern to the beginning and end of line, respectively. The ^
character must appear at the beginning of the search string, and the $ must appear at the end,
otherwise they loose their meaning and are treated just like any other character. For example, in magic
mode, searching for the pattern "t$" would put the cursor at the end of any line that ended with the
letter 't'. Note that this is different than searching for "t<NL>", that is, 't' followed by a newline
character. The character $ (and ^, for that matter) matches a position, not a character, so the cursor
remains at the end of the line. But a newline is a character that must be matched, just like any other
character, which means that the cursor is placed just after it − on the beginning of the next line.

The character '.' has a very simple meaning − it matches any single character, except the newline.
Thus a search for "bad.er" could match "badger", "badder" (slang), or up to the 'r' of "bad
error".

The character * is known as closure, and means that zero or more of the preceding character will
match. If there is no character preceding, * has no special meaning, and since it will not match with a
newline, * will have no special meaning if preceded by the beginning of line symbol ^ or the literal
newline character <NL>. The notion of zero or more characters is important. If, for example, your
cursor was on the line

This line is missing two vowels.

MicroEmacs '02

magic(2m) 1522

and a search was made for "a*", the cursor would not move, because it is guaranteed to match no
letter 'a', which satisfies the search conditions. If you wanted to search for one or more of the letter 'a',
you would search for "aa*", which would match the letter a, then zero or more of them, note that this
pattern is better searched using "a+".

The character "+" is the same as "*" except that it searches for one or more occurrences of the
preceding character.

The character [indicates the beginning of a character class. It is similar to the any (.) character, but
you get to choose which characters you want to match. The character class is ended with the character
]. So, while a search for "ba.e" will match "bane", "bade", "bale", "bate", et cetera, you can
limit it to matching "babe" and "bake" by searching for "ba[bk]e". Only one of the characters
inside the [and] will match a character. If in fact you want to match any character except those in
the character class, you can put a ^ as the first character. It must be the first character of the class, or
else it has no special meaning. So, a search for [^aeiou] will match any character except a vowel,
but a search for [aeiou^] will match any vowel or a ^. If you have a lot of characters in order that
you want to put in the character class, you may use a dash (−) as a range character. So, [a−z] will
match any letter (or any lower case letter if exact mode is on), and [0−9a−f] will match any digit or
any letter 'a' through 'f', which happen to be the characters for hexadecimal numbers. If the dash is at
the beginning or end of a character class, it is taken to be just a dash.

The ? character provides a simple zero or one occurrence test of the previous character e.g. "ca?r"
matches "cr" and "car", it will not match "caar".

Where a previous item has a range of repetitions then the \{N,M\} syntax may be used to denote the
minimum and maximum iterations of the previous item. Where a set quantity of repetitions is required
then the simpler syntax of \{N\} may be used. i.e. "ca\{2\}r" matches "caar", "ca\{2,3\}r"
matches "caar" and "caaar".

The escape character \ is for those times when you want to be in magic mode, but also want to use a
regular expression character to be just a character. It turns off the special meaning of the character. So
a search for "it\." will search for a line with "it.", and not "it" followed by any other character.
The escape character will also let you put ^, −, or] inside a character class with no special side
effects.

In search−replace strings the \(\) pair may be used to group characters for in the search string for
recall in the replacement string. The \(\) bracket pair is recalled using \1−\9 in the replace string,
\1 is the first pair, \1 the second and so on. Hence to replace %dgdg%name%dhdh% with
%dgdg%names%dhdh% then we could use the following search replace string
\(%[a−z]+%\)\([a−z]*\)\(%[a−z]+%\) replacing with \1\2s\3.

\0 in the replace string implies the whole string.

A summary of magic mode special characters are defined as follows:−

^

Anchor search at beginning of line

MicroEmacs '02

magic(2m) 1523

$

Anchor search at end of line

.

Match any character except <NL>

*

Match zero or more occurrences of the preceding item.

\|

Match either/or i.e. car\|bike matches the work car and matches the word bike.

+

Match one or more occurrences of the preceding item.

?

Match zero or one occurrences of the preceeding item.

[]

Match a class of characters ([a−z] would be all alphabetics)

\

Take next literally

\{N,M\}

Match a minimum of N occurrences and maximum of M occurrences of the preceeding item.

\{N\}

Match a N occurrences of the preceeding item.

\(...\)

Delimit pattern to replicate in replace string. Max of 9 allowed. Called in replace
string with \1,..,\9. 1 being 1st etc. \0 or \& in the replace string is the whole
string. i.e.

Search: \(ab\)\(dc\)
Replace: \1\2 \1\2
on "abdc" => "abdc abdc"

MicroEmacs '02

magic(2m) 1524

SEE ALSO

buffer−mode(2), global−mode(2), query−replace−string(2), search−forward(2).
Regular Expressions

MicroEmacs '02

magic(2m) 1525

vm(3)

NAME

vm − Email viewer
mail−check − Check for new email
stop−mail−check − Disable the check for new email
mail − Compose and send an email

SYNOPSIS

vm
mail−check
stop−mail−check
mail

DESCRIPTION

vm is a simple email manager, it is configured to send and receive emails using the user−setup(3)
Mail dialog.

mail−check tests the size of this incoming mail box, a non−zero length indicates that new mail has
arrived and mail−check informs the user by inserting a 'M' in the mode−line (2nd character for the
left) and ringing the system bell. mail−check uses create−callback(2) to check for new mail every 10
minutes, this can be disabled by executing stop−mail−check.

When vm is executed it checks for new mail, if found it first copies the new mail to a file called
"new_mail" in the users mail directory. The incoming box is then emptied by truncating the file to
zero length. The users main mail box is then loaded and the new mail (if any) is appended. The mail
box is then processed after which 2 windows are created the bottom window listing all messages in
the box and the top displaying the current message.

vm is capable of:

Scrolling through the mail box displaying each message (up, p, down, n, return, space).♦
Check and get new mail messages (g).♦
Extract and cut embedded data files (x, C, c).♦
Reply to and forward mail messages (R, r, z).♦
Delete mail messages (d, u).♦
Archive messages to other mail boxes (A, a).♦
Save changes to the current mail box (S, s).♦
Delete the current mail box (D).♦
Visit another mail box (v).♦
Send a mail message (m).♦
Hide vm windows (delete).♦

MicroEmacs '02

vm(3) 1526

Use the vm help page (bound to "esc h") for further information.

vm supports two types of embedded data, uuencode and mime encoding and uses
ipipe−shell−command(2) to extract the data, the commanding to use must be supplied by the user
using the setup dialog, which can contain the following special tokens:

%i

Temporary file name, if used, the embedded data is written to the this file first.

%o

User supplied output file name, if %i is not used, the embedded data is written to this file first.

%b

The output base name, i.e. %o without the path.

If no command line is supplied then the embedded data is written to the user supplied file name as a
text file in the form found in the mail message.

mail can be used to compose and send an email, it can insert embedded data in a similar way to vm's
data extraction, the following special tokens can be used:

%i

The user supplied data file to be embedded.

%b

The input base name, i.e. %i without the path.

%o

Temporary file name used to output the processed data file, this file is inserted into the mail message
using insert−file(2).

mail also uses ipipe−shell−command to send the mail message, the following special tokens can be
used:

%f

The from user name.

%s

The email subject.

%t

MicroEmacs '02

vm(3) 1527

A comma separated list of 'To' recipients.

%c

A comma separated list of 'Cc' recipients.

%o

A file name of the mail message.

Any field not used in the command−line is left at the head of the mail message.

EXAMPLE − UNIX

The following command−line can be used on most UNIX systems to extract uuencoded data:

rm −f %o ; uudecode %i ; rm −f %i

The following command−line can be used on most UNIX systems to extract mime encoded data:

rm −f /tmp/%b ; metamail −B −d −q −w −x −z %i ; mv −f /tmp/%b %o

The following command−line can be used on most UNIX systems to uuencode a data file ready for it
to be embedded, the original file is not changed:

uuencode %b < %i > %o

The following command−line can be used on most UNIX systems to send an email:

/usr/lib/sendmail −oi −oem −odi −t < %o

EXAMPLE − WIN32

Typically the cygnus(1) utilities can be used for data insertion and extraction. These have the
advantage of being very similar to the unix ones so only minor changes are required, i.e. try the
following for data insertion and mime & uuencode extraction respectively:

del %o ^ uudecode %i ^ del %i
del c:\tmp\%b ^ metamail −B −d −q −w −x −z %i ^ move c:\tmp\%b %o
uuencode %b < %i > %o

This assumes that the shell you are using supports the '^' multiple commands on a single line feature,
this is supported by 4dos(1) and 4nt(1). If your shell does not support this feature a simple batch file
command could be used instead.

postie(1) is a freely available pop3/smpt e−mail support program, available on the net, which can be
used to provide a fully working vm on windows systems. As it is typically used in a dial−up connect
environment, the user−setup 'Queue Outgoing Mail' option will be enabled while the 'Check Mail'

MicroEmacs '02

vm(3) 1528

and 'VM Gets Mail' will be disabled. This ensures that a connection is only made when the vm 'g'
command is used which sets all queued outgoing mail and gets any incoming mail.

The following command−line can be used to get mail from your pop server using postie:

postie −host:pop−mail−addr −user:user−addr −pass:password −file:inbox
 "−sep:From root Mon Jan 11 20:02:02 1999" −raw −rm

Where the inbox is the 'Incoming Mail Box' file specified in user−setup. The −sep option is used to
partition each mail message from the previous message, this string is used as it is in a unix standard
form so the resulting mail box could be understood by unix mail systems such as netscape etc.

NOTE: The −rm option is used to remove the incoming mail messages from the server. It is strongly
recommended that the system is thoroughly tested without this option first.

The following command−line can be used to send mail to your smtp server using postie:

postie −host:smtp−mail−addr "−from:user@mail−addr" −use_mime:0
 "−to:%t" "−s:%s" "−cc:%c" "−file:%o"

blat(1) is another freely available windows program which can be used to send mail with the
following command−line:

blat %o −f %f −s \"%s\" −t \"%t\" −c \"%c\"

NOTES

vm is a macro defined in vm.emf, mail−check, stop−mail−check and mail are macros defined in
mail.emf.

vm has only been tested in a couple of environments, the author will not except any responsibility for
any loss of data, i.e. use at your own peril. You have been warned! Back−up all data files and test vm
THOROUGHLY before using it.

SEE ALSO

user−setup(3), ipipe−shell−command(2), create−callback(2), sendmail(1).

MicroEmacs '02

vm(3) 1529

makefile(9)

SYNOPSIS

makefile − Make file

FILES

hkmake.emf − Make file hook definition
make.etf − Template file

EXTENSIONS

Makefile, makefile, .mak − Makefiles.

MAGIC STRINGS

−!− makefile −!−

Recognized by MicroEmacs only, defines the file to be a makefile. DESCRIPTION

The make file type template handles the hilighting of the makefile files.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

By default, TAB's are enabled as this is the syntactical feature of the file.

Hilighting

The hilighting emphasizes the keywords and comments within the makefile. No special support for Microsoft
nmake(1) is provided because of the number of oddities in their implementation of make. BUGS

No attempt is made to hilight any embedded shell commands.

SEE ALSO

imakefile(9), time(2m).

MicroEmacs '02

makefile(9) 1530

Supported File Types

MicroEmacs '02

makefile(9) 1531

man(3)

NAME

man − UNIX manual page viewer. man−clean − Clean UNIX manual page.

SYNOPSIS

man
man−clean

DESCRIPTION

man provides a mechanism to display a UNIX manual page within the MicroEmacs window. On
invoking man the user is prompted for the name of the manual page to display:−

Man on ?

The name of the manual page (and any options) are entered on the command line. The macro invokes
the UNIX utility man(1) to generate the page and displays the results in a window.

Another manual page can be selected by either moving the cursor to the link and pressing return or
double clicking on it with the left mouse button. MicroEmacs will then attempt to load and display the
selected manual page.

man−clean removes any man−page formatting codes from the current buffer reducing a manual page
to plain text. The formatting codes are used to create the bold and underline fonts. This allows the
page to be treated as a normal buffer, i.e. string searches and other similar command will work as
expected.

NOTES

man and man−clean are macros defined in hkman.emf.

man is only made available within UNIX environments, the UNIX start up file unixterm.emf
links in the macro. If the man utility is required on other platforms then the following definition is
required in a start−up file.

define−macro−file hkman man

SEE ALSO

man(9), user−setup(3), spell−buffer(3).

MicroEmacs '02

man(3) 1532

man(9)

SYNOPSIS

man − UNIX Manual page

FILES

hkman.emf − UNIX manual page hook definition

EXTENSIONS

.man − UNIX manual page file

DESCRIPTION

The man provides the hilighting of UNIX manual pages, generally acquired through the man(3)
command, via a pipe. man references within the displayed manual page may be accessed using the
mouse in a hypertext fashion.

Hilighting

The hilighting commands recognize the manual page bold and underline character sequences and
transpose these into the appropriate character hilighting. The hilighting sequences are generally
unpleasant because they also remove the characters for display.

The multitude of different platforms causes problems as different vendors produce different
character sequences for bold/italic text, hence on some platforms it may be necessary to add
additional hilighting rules to cater for any local variations.

Short Cuts

Selecting a link node within the manual page using the mouse (i.e. a reference to another
manual page) then MicroEmacs '02 attempts to find the manual page in the text and invokes
man(3) to render the page. This provides a crude hyper text mechanism simply using the
manual page information itself.

The man−clean(3) command can be used to remove all of the hilighting characters from the current manual
page. This is the typical method of reducing a manual page to plain text. SEE ALSO

man(3), man−clean(3),

Supported File Types

MicroEmacs '02

man(9) 1533

mark−registry(2)

NAME

mark−registry − Modify the operating mode of a registry node

SYNOPSIS

n mark−registry "root" "mode"

DESCRIPTION

mark−registry modifies the mode of a registry node root. If an argument n is supplied then the nth
register node down from root (as viewed from list−registry(2) output) is modified instead. The mode
is string specifying the modes, each mode is represented by a character. Lower case characters add a
mode, upper case characters delete a mode. The modes are defined as:−

? − Query Name

Returns the full name, including path, of the given registry node in the variable $result(5). This does
not alter the registry.

! − Hide Value

Hides the value of the given registry node, i.e. its value will not be displayed in the output of
list−registry(2). Once set, this mode cannot be removed.

a − Autosave

Automatically saves the registry when it is deleted or unloaded from the registry. The user is not
prompted for a save.

b − Backup

Automatically performs a backup of the registry file whenever a save operation is performed.

c − Create

If the registry file cannot be loaded then the root node is created and the invocation succeeds. If this
mode is omitted then the call fails if the file cannot be found.

d − Discard

Marks the registry as discardable. This is typically used for registries that are not saved.

MicroEmacs '02

mark−registry(2) 1534

f − File

The registry node is marked as a file root, the value must be set to the registry file name.

g − Get Modes

Returns the list of modes currently set on the given registry node in the variable $result(5). This does
not alter the registry.

h − Hidden

The registry node is marked as Hidden, i.e. its children will not be shown in list−registry(2) output.

u − Updated

Marks the registry as modified. The modified bit is removed when the registry file is saved. If the
modified bit is applied to a registry node the user will be prompted to save the registry when it is
deleted (or it will be automatically saved when the Autosave mode is used).

Multiple modes may be applied.

EXAMPLE

A history registry can be hidden with the following invocation:−

mark−registry "/history" "h"

It could then be made visible again using:−

mark−registry "/history" "H"

BUGS

At exit only registry nodes attached to the root are saved.

DIAGNOSTICS

mark−registry fails if root does not exist.

SEE ALSO

get−registry(2), list−registry(2), read−registry(2), set−registry(2), erf(8).

MicroEmacs '02

mark−registry(2) 1535

me(1)

NAME

me − MicroEmacs '02 text editor

SYNOPSIS

me [options] [files ...]

me [@startupFile] [−b] [−c] [−d] [−h] [−i] [−llineNo] [−mcommand] [−n] [−0file] [−p] [−r]
[−sstring] [−uusername] [−vvariable=string] [−x] files...

DESCRIPTION

MicroEmacs '02 is a cut down version of the EMACS text editor, based on Danial Lawrences
MicroEmacs. MicroEmacs '02 is a tool for creating and changing documents, programs, and other
text files. It is both relatively easy for the novice to use, but also very powerful in the hands of an
expert. MicroEmacs '02 can be extensively customized for the needs of the individual user.

MicroEmacs '02 allows multiple files to be edited at the same time. The screen may be split into
different windows and screens, and text may be moved freely from one window on any screen to the
next. Depending on the type of file being edited, MicroEmacs '02 can change how it behaves to
make editing simple. Editing standard text files, program files and word processing documents are all
possible at the same time.

There are extensive capabilities to make word processing and editing easier. These include commands
for string searching and replacing, paragraph reformatting and deleting, automatic word wrapping,
word move and deletes, easy case controlling, and automatic word counts.

For complex and repetitive editing tasks editing macros can be written. These macros allow the user a
great degree of flexibility in determining how MicroEmacs '02 behaves. Also, any and all the
commands can be used by any key stroke by changing, or rebinding, what commands various keys
invoke.

Special features are also available to perform a diverse set of operations such as file encryption,
automatic backup file generation, entabbing and detabbing lines, executing operating system
commands and filtering of text through other programs.

The command line options to MicroEmacs '02 are defined as follows:−

@startFile

Initialize MicroEmacs '02 using startFile[.emf]. The default when omitted is me.emf. See start−up(3)
and Command Line Filters for more information.

MicroEmacs '02

me(1) 1536

−b

Load next file as a binary file (binary editor mode, uses binary(2m) buffer mode).

−c

Continuation mode. Load MicroEmacs '02 last edit session, restoring the buffers to their previous
loaded state and position. Note that history mode must be enabled. The −c option is generally used
with windowing interfaces (X−Windows/Microsoft Windows) as the shortcut icon invocation.

−d

Enable debug mode (for macro files).

−h

Show the help page (does not start the editor).

−i

MS−DOS versions of MicroEmacs '02 only. Insert the contents of the current screen into the
scratch buffer

−k[key]

Load next file as an encrypted file (uses crypt(2m) buffer mode). The optional adjoining argument can
be used to specify the decrypting key, if this argument is not specify the user will be prompted for it
on start−up.

−llineNo

Go to line lineNo in the next given file. Typically used with utilities such a more(1) where an external
editor may be invoked from other viewer.

−mcommand

Sends a client−server command to an existing MicroEmacs session. The command takes the
form "C:<client>:<command>" i.e. to write "Hello World" on the message line then a
client may issue the command:−

; launch server
me &
; send message
me −m "C:ME:ml−write \"Hello world\"

Note that the <command> is a MicroEmacs macro command, the escape sequences must be
adhered to. The client−server interface is typically used to load a file, this may be performed
as follows:−

me −m "C:myutility:find−file \"/path/foo.bar\""

MicroEmacs '02

me(1) 1537

The absolute path is specified in this type of transaction as the current working directory of
the active MicroEmacs session is unknown. The −m option de−iconize's the existing editor
session and bring it to the foreground.

−n

UNIX X−Windows environments only and MicroSoft Windows NT console versions. Execute
MicroEmacs '02 using termcap rather than X−Windows for UNIX; typically used within an xterm
shell to fire up MicroEmacs '02 for a quick edit. For Microsoft Windows, a console window is
started as opposed to a GUI window.

−o<file>

Use already running version of MicroEmacs '02 to load the <file>, if it exists, otherwise start a new
editor session. This uses the client−server interface to push the new file into the existing editor
session. Refer to the Client−Server Interface for details.

−p

Pipe stdin into buffer *stdin*, when saved output to stdout, following is a simple example
which changes 'a's to 'b's:

 define−macro start−up
 find−buffer "*stdin*"
 beginning−of−buffer
 replace−string "a" "b"
 save−buffer
 quick−exit
 !emacro

This can be used in the following manner:

 me "@testpipe.emf" < foo.a > foo.b

−r

Read−only, all buffers will be in view mode

−sstring

Search for string "string" in the current buffer. e.g. me −sfoo bar starts MicroEmacs '02, loads
file bar and initiates a search for foo. The cursor is left at the end of the string if located, otherwise at
the top of the buffer.

−uusername

Set the current user name to username before MicroEmacs is initialized. This is done by setting the
environment variable MENAME(5) to the given value.

−vvariable=string

MicroEmacs '02

me(1) 1538

Assign the MicroEmacs '02 variable with string. The assignment is performed before the buffers are
loaded. Typically used to change the start−up characteristics of the startup file(s).

−x

UNIX environments. Disable the capture of signals. MicroEmacs '02 by default captures an handles
all illicit signal interrupts. The option is enabled when debugging the source code allowing exception
conditions to be trapped within the debugger.

−y

Load next file as a reduced binary file (uses rbin(2m) buffer mode). ENVIRONMENT

The following environment variables are used by MicroEmacs '02.

DISPLAY

UNIX environments running X−Windows only. The identity of the X−Windows server. Typically set
to unix:0.0, refer to the X−Windows documentation for details of this environment variable.

MENAME and LOGNAME

The identity of the user, $MENAME takes precedence over $LOGNAME. $LOGNAME variable is
generally defined within UNIX as part of the login script. The variables are used to determine which
start−up configuration to use in the initialization of MicroEmacs '02 ($MENAME.erf).

Non−UNIX platforms usually need to explicitly set the $MENAME environment variable to
identify the aforementioned files. for MS−DOS and Microsoft Windows this is typically
performed in the AUTOEXEC.BAT file.

PATH

The $PATH environment variable is used on most operating systems as a search path for
executable files. This $PATH environment variable must be defined with MicroEmacs '02
on the search path. Under UNIX this is set in the .login, .cshrc or .profile file i.e.

export PATH $PATH:/usr/name/me

Within MS−DOS or Microsoft Windows environments it is defined in the AUTOEXEC.BAT
file. e.g.

set PATH=%PATH%;c:\me

MicroEmacs '02 utilizes information in the $PATH environment variable to locate the
start−up files, dictionaries etc.

TERM

MicroEmacs '02

me(1) 1539

The terminal identification sting. In UNIX environments the environment variable $TERM is set to
"vt...", in this case it is assumed that the machine is a server, and the host cannot support X (see
command line option −n).

In MS−DOS the environment variable is usually set to define the graphics adapter mode.
%TERM is assigned a string, understood by the me.emf start−up file, to set the graphics
mode. Predefined strings include:−

E80x50

Initiates an 80 column by 50 line screen.

E80x25

Initiates an 80 column by 25 line screen.

userDefined

A user defined string to set an explicit graphics card mode. The operation is dependent upon the
support offered by the graphics adapter.

MEPATH

MicroEmacs '02 uses the environment variable $MEPATH as the directory(s) used to search
for the macro files (see emf(8)). Within the UNIX $MEPATH is a semi−colon separated list of
directories which are used to search for the MicroEmacs '02 macro files. The path is searched
from left to right. The environment variable is typically defined in the in the .login,
.cshrc or .profile file i.e.

export MEPATH /usr/name/me/macros:/usr/local/microemacs

The default when omitted is /usr/local/microemacs.

Within MS−DOS or Microsoft Windows environments it is defined in the AUTOEXEC.BAT
file. e.g.

set MEPATH=c:\me\username;\me\macros

There is no default location in these environments. For Microsoft Windows environments
refer to me32.ini(8) for a method of setting up the $MEPATH from the windows configuration
file.

INFOPATH

MicroEmacs '02 uses the environment variable $INFOPATH as the directory(s) used to
search for GNU Info files. Within the UNIX $INFOPATH is a semi−colon separated list of
directories which are used to search for the MicroEmacs '02 macro files. The path is searched
from left to right. The environment variable is typically defined in the in the .login,
.cshrc or .profile file i.e.

MicroEmacs '02

me(1) 1540

export INFOPATH /usr/local/info:$HOME/info

The default when omitted is /usr/local/info.

Within MS−DOS or Microsoft Windows environments it is defined in the AUTOEXEC.BAT
file. e.g.

set MEPATH=c:\usr\local\info

There is no default location in these environments. For Microsoft Windows environments
refer to me32.ini(8) for a method of setting up the $INFOPATH from the windows
configuration file.

FILES

All of the macro files and dictionaries are located in the MicroEmacs home directory. The standard
file extensions that are utilized are:−

.eaf

MicroEmacs '02 abbreviation file, defines completion definitions for buffer dependent text
expansion.

.edf

A MicroEmacs '02 spelling dictionary. <language>.edf provide language specific dictionaries;
$LOGNAME.edf is personal spelling dictionary.

.ehf

MicroEmacs '02 help file information. On−line help information for emacs, the main file is me.ehf.

.emf

A MicroEmacs '02 macro file. The following classes of macro file exist:

me.emf

The default startup file.

<platform>.emf

A platform specify startup file, these include UNIX generic (unixterm.emf), UNIX
specific (irix.emf, hpux.emf, unixwr1.emf, linux.emf, sunos.emf etc),
Microsoft Windows (win32.emf), MS−DOS (dos.emf).

hkxxxxxx.emf

MicroEmacs '02

me(1) 1541

Buffer context specific hook files to initialize a buffer with macros and highlighting appropriate to the
contents of the file type. e.g. 'C' language editing (hkc.emf), N/Troff typesetting (hknroff.emf),
UNIX Manual page display (hkman.emf), Makefiles (hkmake.emf), etc.

.erf

Registry files, used to retain personal information, users history in the file etc.

.etf

Template files used to seed new files. Typically contains standard header information, copyright notices etc.
that are placed at the head of files. The 'C' programming language is called c.etf MICROSOFT
WINDOWS

Microsoft Windows environments should refer to me32.ini(8) for a method of setting up the
environment variables without editing the AUTOEXEC.BAT configuration file.

SEE ALSO

emf(8), erf(8), emacs(1) [GNU], more(1), vi(1).
Client−Server Interface.
Command Line Filters.

MicroEmacs '02

me(1) 1542

me32.ini(8)

NAME

me32.ini − Microsoft Window's Initialization (ini) File

SYNOPSIS

[Location]
exe=<executablePathname>

[Defaults]
mepath=<directoryPath>
userpath=<directoryPath>
fontfile=<fontFileName>

[<userName>]
<environmentVariable>=<value>
<environmentVariable>=<value>

[<userName>]
<environmentVariable>=<value>
<environmentVariable>=<value>

; Comments commence with a semi−colon

PLATFORM

Microsoft Windows environments only

DESCRIPTION

me32.ini is the Microsoft Windows configuration file, located in the windows directory (typically
C:\Windows), the me32.ini file is primarily used to counteract the deficiencies of Windows shell
environment (as compared with UNIX) with respect to the initialization of environment variables.

The configuration file may be considered to be split into two sections, a Defaults section, which
defines system settings and a User section which allows environment variables to be defined.

User Section

The User Section is executed prior to the Defaults Section. The User Section uses the user name
which is defined as follows:−

MicroEmacs '02

me32.ini(8) 1543

The environment variable $MENAME(5).♦
The login name under Windows '95 or NT if $MENAME is not set. If the login name is
defined then environment variable $MENAME is set to this value.

♦

The environment variable $LOGNAME(5) if the login name cannot be located.♦
guest if none of the above are defined.♦

A section [userName] is looked up, and if located each of the entries <environmentVariable> =
<value> is extracted and pushed into the execution environment. The <environmentVariable> is
automatically promoted to upper case if specified as a lower case entry. The environment variables
may be subsequently used within the .emf macro files to configure MicroEmacs '02 at start up.

Any value may be inserted into the environment including the $MENAME environment variable which
is used in the next section.

Defaults Section

The defaults section, labeled [Defaults] includes the following keys:−

mepath

The directory (or folder) location of the MicroEmacs '02 default configuration files.

userpath

The directory (or folder) location of the user(s) directories.

Given that the userpath is specified as c:\me98.5 and the user is called foo, then the
directory location c:\me98.5\foo is considered to be the user path.

If the userpath is omitted then the mepath entry is used as the user path.

The userpath and mepath entries are concatenated together to form the environment variable
$MEPATH(5), e.g. userpath\logname;mepath. If the entries are omitted the then environment
variable $MEPATH is used as defined. The mepath and userpath are configured initialy by the
InstallShield installation process.

fontfile

The name of the font file used to render the text to the screen. The default font file is dosapp.fon, this is a
fixed mono font as used in the MS−DOS windows. Location Section

The location section, labeled [Location], identifies the location of MicroEmacs '02, and is typically
used by other components to find and launch MicroEmacs. The section includes the following keys:−

exe

MicroEmacs '02

me32.ini(8) 1544

The absolute pathname to the MicroEmacs '02 executable image. EXAMPLE

The following is an example of the me32.ini file:−

; External locater for the executable
[Location]
exe=c:\Program Files\JASSPA\MicroEmacs\me32.exe
;
[Defaults]
; mepath
; The location of the MicroEmacs common files.
;
mepath=d:/me98.4/common
;
; userpath − The location of the users MicroEmacs directory.
; The $MENAME is appended as a directory to userpath
;
userpath=d:/me98.4/common
;
; fontfile − The name of the font file used as default.
fontfile=dosapp.fon
;
;;;
;
; Environment settings for a user.
; All settings are pushed into the environment.
;
;;;
;
[guest]
term=8x12
;
[jon]
MENAME=jon
FOO=bar
;
[jnaught]
MENAME=jon
FOO=bar
;
[bill]
....

Note that multiple users share the same me32.ini file, each user may include their own configuration
settings which may be interrogated in the configuration files (e.g. $FOO is assigned the value bar,
which may be extracted from the environment context).

SEE ALSO

$MENAME(5), $MEPATH(5), user−setup(3), emf(8).

MicroEmacs '02

me32.ini(8) 1545

memsdev(1)

NAME

memsdev − Microsoft Developer Studio Add−in for MicroEmacs '02

SYNOPSIS

memsdev.dll

DESCRIPTION

meMsdev is a Microsoft Visual Studio Add−In that allows MicroEmacs '02 to be integrated as the
default text editor. It will be used instead of the Visual Studio built in editor when you double click on
a file or press F4.

INSTALLATION

1) Copy mesdev.dll into the MicroEmacs directory i.e.

c:/Program Files/JASSPA/MicroEmacs

2) Edit the me32.ini(8) file in your Windows directory and identify the location of the MicroEmacs
executable. The executable name is used to spawn MicroEmacs if it is not already running. The entry
takes the form:−

; Identify the location of the MicroEmacs executable so that the
; Developer Studio "Add−In" can locate the executable
[Location]
exe=c:\Program Files\JASSPA\MicroEmacs\me32.exe

Change the exe entry to match the location and name of your executable.

3) For MS−DEV V5.0 only; from a DOS box, register the DLL using regsvr32.exe(1) i.e.

> cd c:/Program Files/JASSPA/MicroEmacs
> regsvr32 memsdev.dll

For MS−DEV V6.0 it is not necessary to perform this registration step.

4) Start Visual Studio and goto:−

Tools
 Customize...
 Add−Ins and Macro Files

MicroEmacs '02

memsdev(1) 1546

5) Click on Browse and point Visual Studio to your memsdev.dll file.

6) Click the check box to indicate that you want to use the Add−In, and close the Customize dialog
box.

7) You should notice the MicroEmacs tool bar showing the MicroEmacs Icon. This invokes a dialog
that allows you to attach and detach MicroEmacs as the default editor.

USING meMsdev

Clicking on the MicroEmacs Tool bar shows the meMsdev configuration dialog. Check the boxes
when MicroEmacs edit session is required as default; uncheck the boxes if you wish to revert to the
built−in dialog.

Use Visual Studio as normal, and MicroEmacs should almost always bring MicroEmacs to the
foreground to edit the document. If a MicroEmacs is already running then "meMsdev" will attach to
an existing session and will load the file. If MicroEmacs is not detected then a new version is
spawned off and then an attachment is made.

RUNNING A DEBUG SESSION

meMsdev does not currently provide any debugging capability (but we are working on it !!). To start
debugging it is suggested that the Editor is decoupled (MicroEmacs Dialogue −> Uncheck Boxes)
and work within the Developer studio.

When you have finished debugging and wish to move back to an edit session then re−enable
MicroEmacs (MicroEmacs Dialogue −> Check Boxes) AND close any windows that are open within
the MS−Dev environment (Window−>Windows...−>Select All and Close All Windows). Then
commence editing again.

While MicroEmacs is attached, selecting any of the find file lines, compilation error lines etc within
the response panes will take MicroEmacs to the specified line.

BUGS

meMsdev works by hooks exposed by Visual Studio. Most of the functionality works from the
OpenDocument (look it up in VS 5) hook. So...If a document is ALREADY open in Visual Studio,
and you double click the file in the File Browser...Emacs will NOT come to the foreground. Since the
document was open in the Visual Studio editor, the OpenDocument event never occurred.

ACKNOWLEDGEMENTS

meMsdev is based on the initial work from VisEmacs performed by Christopher Payne
<payneca@sagian.com> for GNU Emacs. This software comes under the GNU General Public
License, as such, meMsdev is covered by the same licensing.

MicroEmacs '02

memsdev(1) 1547

Many thanks to Christopher for putting together this technology, this manual page is derived from the
documentation supplied with VisEmacs.

LICENSING

meMsdev is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2, or (at your
option) any later version.

meMsdev is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with GNU Emacs; see the
file COPYING. If not, write to the Free Software Foundation, Inc., 59 Temple Place − Suite 330,
Boston, MA 02111−1307, USA.

SEE ALSO

Microsoft Developer Studio Add−In Documentation

MicroEmacs '02

memsdev(1) 1548

ml−bind−key(2)

NAME

ml−bind−key − Create key binding for message line
ml−unbind−key − Remove key binding from message line

SYNOPSIS

n ml−bind−key "command" "key"
n ml−unbind−key "key"

DESCRIPTION

ml−bind−key creates a key binding local to the message line input buffer. There are several
commands that can be used in message line input, each command is associated with a main buffer
editing command and inherits all that commands global bindings, i.e. moving forward 1 character is
associated with the command forward−char(2) and thus inherits the binding C−f (as well as any other
like the right cursor key). The following is a list of available commands, what they do and their
associated commands

Cursor Movement

move backwards 1 character, command: backward−char (C−b)♦
move forwards 1 character, command: forward−char (C−f)♦
move backwards 1 word, command: backward−word♦
move forwards 1 word, command: forward−word♦
move to the beginning of buffer, command: beginning−of−line (C−a)♦
move to the end of buffer, command: end−of−line (C−e)♦

Input

Quote a character, command: quote−char (C−q)♦
Yank kill buffer into message line, command: yank (C−y)♦
insert current buffers current line into the buffer, command: insert−newline (C−o)♦
insert current buffers file name into the buffer, command: insert−file−name (C−x C−y).♦
insert current buffers buffer name into the buffer, command: reyank (esc y)♦

Deletion

delete backward 1 character, command: backward−delete−char (C−h)♦
delete forward 1 character, command: forward−delete−char♦

MicroEmacs '02

ml−bind−key(2) 1549

kill text from current position to end of line, command: kill−line (C−k).♦
erase whole line, command kill−region (C−w). Note that in incremental searches this is used
to add the current word to the search string.

♦

History

MicroEmacs '02 stores the last 20 entries of each kind (command, buffer, file, search and general
which is also saved in the history file so the state of the history is retained when next loaded. The
following commands can be used to manipulate the history.

next history list entry (loop through history), command: forward−paragraph (esc n)♦
previous history list entry, command: forward−paragraph (esc p)♦

Completion

When entering a command, file, buffer or a mode name MicroEmacs '02 creates a list of possible
completions the following operations can be performed on this list.

expand. This completes the given input until the first ambiguous character, command: a space
(' ') or tab (C−i).

♦

expand to the previous completion (loops through the completion list, command:
backward−line (C−p)

♦

expand to the next completion (loops through the completion list, command: forward−line
(C−n)

♦

create a listing of all completions, command: a double expansion, i.e. 2 spaces or tabs. The
first expands and the second creates the list.

♦

page up the completion list buffer, scroll−up (C−z)♦
page down the completion list buffer, scroll−down (C−v)♦

Miscellaneous

abort input, returning failure to the input, abort−command (C−g)♦
re−fresh the message line, command: recenter (C−l)♦
finish input, command newline (C−m, return)♦
transpose previous character with current character, command: transpose−chars (C−t)♦
capitalize the next word, command: capitalize−word (esc c)♦
Turn the whole of the next word to lower case letters, command: upper−case−word (esc u)♦
Turn the whole of the next word to upper case letters, command: lower−case−word (esc l)♦

ml−unbind−key unbinds a user created message line key binding, this command effects only the
message line key bindings. If a −ve argument is given to ml−unbind−key then all message line
bindings are removed.

EXAMPLE

MicroEmacs '02

ml−bind−key(2) 1550

If expansion was required on the esc esc key binding then use the following:−

ml−bind−key tab esc esc

NOTES

The prefix commands cannot be rebound with this command.

Command key response time will linearly increase with each local binding.

SEE ALSO

global−bind−key(2), buffer−bind−key(2), describe−bindings(2), osd−bind−key(2),
global−unbind−key(2).

MicroEmacs '02

ml−bind−key(2) 1551

ml−clear(2)

NAME

ml−clear − Clear the message line

SYNOPSIS

ml−clear

DESCRIPTION

ml−clear clears the message line during script execution. This is useful so as not to leave a confusing
message from the last command(s) in a script.

Callback macros which may interrupt the user at any point in time are handled by ml−clear. The
callback macro for instance may interrupt the user while entering a new file name, and any
ml−write(2) erases the message−line which may currently be in use. MicroEmacs '02 stores the line
and when ml−clear(2) is invoked, instead of clearing the message line the current input line is
restored.

SEE ALSO

create−callback(2), ml−write(2).

MicroEmacs '02

ml−clear(2) 1552

ml−write(2)

NAME

ml−write − Write message on message line

SYNOPSIS

n ml−write "message"

DESCRIPTION

ml−write writes the given message to the message line. If a positive argument n is given then there
will be an n millisecond uninterruptible delay, giving the user time to see the message.

A call to ml−write from a callback macro can erase a message line which is currently being used (to
enter a buffer name say). A call to ml−clear(2) restores the previous message−line.

EXAMPLE

The following call displays a message on the message−line with a fixed 2 second pause:

2000 ml−write "Hello World!"

SEE ALSO

ml−clear(2), command−wait(2), create−callback(2).

MicroEmacs '02

ml−write(2) 1553

nact(2m)

NAME

nact − Buffer not active

SYNOPSIS

nact Mode

n − mode line letter.

DESCRIPTION

This mode can not be set and is used to indicate that the buffer has not been activated, i.e. the buffer
has not been displayed in a window. If the buffer is linked to a file but has not been displayed, so is
not active, the file will not have been loaded into the buffer.

The list−buffers(2) command output denotes active buffers with a '@' character in the left hand
column, inactive buffers have a ' '.

This mode can not be tested using the more usual &bmode(4) macro command as it only operates on
the current buffer as which point the mode cannot be set. Instead the &nbmode(4) macro command
must be used.

SEE ALSO

list−buffers(2), &nbmode(4), &bmode(4).

MicroEmacs '02

nact(2m) 1554

name−kbd−macro(2)

NAME

name−kbd−macro − Assign a name to the last keyboard macro

SYNOPSIS

name−kbd−macro "command"

DESCRIPTION

name−kbd−macro labels the last defined keyboard macro with the given command name. The
command name must be either unique or the name of an existing macro. A keyboard macro is deleted
when another keyboard macro is defined, but when named, it is preserved. A named keyboard macro
can also be bound to its own command key sequence, and may be inserted into a buffer enabling it to
be saved and thus re−loaded and re−used at a later date.

SEE ALSO

execute−file(2), execute−kbd−macro(2), global−bind−key(2), insert−macro(2), start−kbd−macro(2).

MicroEmacs '02

name−kbd−macro(2) 1555

narrow(2m)

NAME

narrow − Buffer contains a narrow

SYNOPSIS

narrow Mode

N − mode line letter.

DESCRIPTION

This mode can not be set and is used to indicate whether the buffer contains a narrow, created by the
narrow−buffer(2) command.

SEE ALSO

narrow−buffer(2).

MicroEmacs '02

narrow(2m) 1556

narrow−buffer(2)

NAME

narrow−buffer − Hide buffer lines

SYNOPSIS

n narrow−buffer

DESCRIPTION

The effect of narrow−buffer depends on the argument given, defined as follows:−

1

Removes all narrows in the current buffer (Default).

2

Removes the current line's narrow.

3

Narrow to region. Hides all but the lines of test in the current buffer from the mark position to the
current cursor position, effectively 'narrowing' the buffer to the remaining text.

4

Narrow out region. Hides the lines of test in the current buffer from the mark position to the current
cursor position, opposite to argument 3.

When a narrow is created the buffer mode narrow(2m) is automatically set, when the last is removed
this mode is deleted.

For example, if the buffer contains the following text:

1 Richmond
2 Lafayette
3 Bloomington
4 Indianapolis
5 Gary
6

If the mark is on line 2 and the current point is on line 4, executing:−

4 narrow−buffer

MicroEmacs '02

narrow−buffer(2) 1557

Creates one narrow, narrowing out line 2 and 3. Line 4 becomes the narrow anchor line, when the
narrow is removed lines 2 and 3 will be inserted before line 4. The buffer will become:−

1 Richmond
4 Indianapolis
5 Gary

If instead the following was executed:−

3 narrow−buffer

Two narrows are created, the first narrowing out line 4 and 5 (line 6, the last line, being the anchor
line) the second narrowing out line 1 (line 2 being the anchor line). The buffer will become:−

2 Lafayette
3 Bloomington
6

Executing narrow−buffer with an argument of 2 will only work on the anchor lines, namely 4 in the
first example and 2 and 6 in the second.

NOTES

Alpha mark set by set−alpha−mark(2) in text which is subsequently narrowed out will automatically
remove the narrow if the user returns to the mark using goto−alpha−mark(2).

get−next−line(2) operates on the unnarrowed buffer and will remove any narrows hiding the 'next'
line.

EXAMPLE

c−hash−eval(3) macro defined in cmacros.emf uses narrow−buffer to hide regions of source code
which has been #defined out, improving readability.

vm(3) defined in vm.emf uses narrow−buffer with appropriate arguments to append−buffer(2) and
write−buffer(2) to write out only parts of the current buffer.

SEE ALSO

narrow(2m), set−mark(2), set−alpha−mark(2), get−next−line(2), c−hash−eval(3), vm(3).

MicroEmacs '02

narrow−buffer(2) 1558

newline(2)

NAME

newline − Insert a new line

SYNOPSIS

n newline (return)

DESCRIPTION

newline inserts n new lines into the text, move the cursor down to the beginning of the next physical
line, carrying any text that was after it with it. The next line may automatically be indented depending
on the current buffer mode, see cmode(2m), indent(2m), and wrap(2m).

SEE ALSO

cmode(2m), indent(2m), wrap(2m), buffer−mode(2).

MicroEmacs '02

newline(2) 1559

next−frame(2)

NAME

next−frame − Change the focus to the next frame

SYNOPSIS

n next−frame

DESCRIPTION

next−frame changes the focus to the next frame. The numerical argument n can be used to select the
type of frame to change to, it is a bit based flag defined as follows:

0x01

Allow the selection of an external frame.

0x02

Allow the selection of an internal frame. The default operation when n is omitted is to allow the selection of
either type of frame (equivalent to an argument of 3). SEE ALSO

create−frame(2), delete−frame(2).

MicroEmacs '02

next−frame(2) 1560

next−window(2)

NAME

next−window − Move the cursor to the next window
previous−window − Move the cursor to the previous window

SYNOPSIS

n next−window (C−x o)
n previous−window (C−x p)

DESCRIPTION

next−window makes the next window down the current window, if the current window is the last one
in the frame the first one is selected. The numeric argument n can be used to modify this default
behaviour, it is a bitwise flag where the bits are defined as follows:

0x01

If there is no 'next' window because this is the last then if this bit is set the search for the next window
is allow to continue with the first window of the frame. As the default argument n is 1 this is the
default behaviour.

0x02

When this bit is set windows whose $window−flags(5) are set to be ignored by this command are not
skipped. The setting of bit 0x010 of a windows $window−flags will make the default action of this
command skip it which means the the command may not simply select the next window but the next
window without this flag set. Setting this bit of the numeric argument will force the command to
always select the next window.

0x04

When set the search for the next window starts at the first window instead of the current window, this
can be used to find the first window in the current frame.

previous−window makes the next window up the current window. The numeric argument n has the
same effect on this command as for next−window except bit 0x04 starts the search at the last window
of the frame.

EXAMPLE

The following example visits every window in the current frame printing the buffer it displays with a

MicroEmacs '02

next−window(2) 1561

second pause between each one:

; go to the first window
!force 6 next−window
!while $status
 1000 ml−write $buffer−bname
 ; go to the next window − fail if this is the last
 !force 2 next−window
!done

NOTES

Both commands fail if a suitable window cannot be for, see the example on how this can be used.

SEE ALSO

next−window−find−buffer(2), next−window−find−file(2), set−position(2), goto−position(2),
$window−flags(5).

MicroEmacs '02

next−window(2) 1562

next−window−find−buffer(2)

NAME

next−window−find−buffer − Split the current window and show new buffer

SYNOPSIS

next−window−find−buffer "buffer" (C−x 3)

DESCRIPTION

next−window−find−buffer splits the current window into two near equal windows, and swaps the
current windows buffer to the given buffer. It is effectively a split−window−vertically(2) command
followed by a find−buffer(2). When there is insufficient space in the current window to perform the
split, then the current window is replaced. The requested buffer is always displayed, if the buffer does
not already exist it is created.

SEE ALSO

find−buffer(2), split−window−vertically(2), next−window−find−file(2).

MicroEmacs '02

next−window−find−buffer(2) 1563

next−window−find−file(2)

NAME

next−window−find−file − Split the current window and find file

SYNOPSIS

next−window−find−file "file" (C−x 4)

DESCRIPTION

next−window−find−file splits the current window into two near equal windows, and loads the given
file into the current window. It is effectively a split−window−vertically(2) command followed by a
find−file(2).

When there is insufficient space in the current window to perform the split, then the current window is
replaced. The requested file is always displayed, if the file does not already exist it is effectively
created within MicroEmacs (although it will not exist on the disk until a save operation is performed).

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files. SEE ALSO

MicroEmacs '02

next−window−find−file(2) 1564

find−file(2), next−window−find−buffer(2), split−window−vertically(2), binary(2m), crypt(2m),
rbin(2m).

MicroEmacs '02

next−window−find−file(2) 1565

normal−tab(3)

NAME

normal−tab − Insert a normal tab

SYNOPSIS

n normal−tab

DESCRIPTION

normal−tab insert a tab into the current buffer by temporarily disabling any auto indentation
schemes. The macro first disables any indentation rules by setting $buffer−indent(5) to 0 and
disabling the cmode(2m), the command tab(2) is then called with the given argument n. This means
that the buffer's tab(2m) mode setting will be respected, i.e. whether a tab character or spaces are
inserted. The initial indentation rules are restored on exit.

NOTES

normal−tab is a macro implemented in format.emf.

SEE ALSO

tab(2), insert−tab(2), tab(2m).

MicroEmacs '02

normal−tab(3) 1566

ntags(3f)

NAME

ntags − Generate a nroff tags file

SYNOPSIS

me "@ntags" <files>

DESCRIPTION

The start−up file ntags.emf may be invoked from the command line to generate a tags file for
nroff files.

Given a list of files a tags file tags is generated in the current directory, which may be used by the
find−tag(2) command. If no files are specified the default file list is "./", i.e. process the current
directory. If a directory name is given (such as the default "./") all nroff files within the directory
will be processed.

The value of variable %tag−option is used to control the tag generation process, its value <flags>
can contain any number of the following flags:

a

Append new tags to the existing tag file, note that if also using flag 'm' multiple 'tags' to the same item
may be created.

m

Enable multiple tags. This enables the existence of 2 tags with the same tag name, but typically with
different locations. See help on find−tag(2) for more information on multiple tag support.

r

Enables recursive mode, any sub−directory found within any given directories will also be processed.
NOTES

This function is invoked from menu

Tools −> Nroff Tools −> Create Tags File

when the user requests a tags file to be generated.

MicroEmacs '02

ntags(3f) 1567

The tags are generated from the nroff macro:−

.XI <name>

which indicates an index entry, where <name> is the tag name. <name> may be delimited by double
quotes if any whitespace is present in the string.

This is the macro definition used in the MicroEmacs documentation system. The ntags.emf file
should be edited and shadowed in the user directory if some other search criteria is used for nroff
files. This macro file should provide a good starting point for any other search.

The user setup file "myntags.emf" is executed by ntags during start−up, this file can be used to
over−ride any of the ntags configuration variables (see below).

The following variables are set within "ntags.emf" and are used to control the process:−

%tag−option

Tags options flag, default value is "". See above for more information.

%tag−filemask

A list of source file masks to be processed when a directory is given, default value is
":*.nrs:*.[1−9]:*.n:".

%tag−ignoredir

A list of directories to be ignored when recursive option is used, default value is ":SCCS/:CVS/:".

These variables can be changed using the −v command−line option or via the "myntags.emf" file

SEE ALSO

find−tag(2), start−up(3), nroff(9).

MicroEmacs '02

ntags(3f) 1568

occur(3)

NAME

SYNOPSIS

occur

DESCRIPTION

occur performs a regular expression search for a string in the current buffer; generating a list of every
occurrence of the regular expression in the buffer.

On invocation the user is prompted for a Regular Expressions the buffer is searched for the expression
and the results are presented in the *item−list* window appearing at the left−hand side of the
window.

The user may interact with the *item−list* buffer using the mouse or <RETURN>, on selecting a
line then the user is moved to the corresponding line in the original buffer.

NOTES

The *item−list* window may be closed with the command item−list−close(3) typically bound to
esc−F7.

occur is a macro defined in itemlist.emf.

SEE ALSO

item−list(3), item−list−close(3), search−forward(2), Regular Expressions

MicroEmacs '02

occur(3) 1569

organizer(3)

NAME

organizer − Calendar and address organizer

SYNOPSIS

organizer

DESCRIPTION

organizer is a calendar and address organizer, enabling notes to be stored against the calendar days;
addresses may be archived into an address book.

organizer uses the MicroEmacs '02 in−built registry to store information within a registry file called
<username>.eof. organizer may be entered directly from the command line, or via the menu (via
Tools).

organizer is displayed within a single osd dialog box, tab selections at the top of the window enable
the different forms of information to be displayed. Navigation is typically performed using the mouse,
where the mouse is absent then the TAB key may be used to move between the fields. The information
presented is defined as follows:−

Month

Shows the calendar month, starting with the current month, the current day is hi−lighted and any
notes that have been entered are displayed in the Notes entry box at the bottom of the page.

The default mode of operation is note entries for the current month, however specifying the <year>
as the wild card '*' (star) enables annual events to be entered into the organizer. Annual events are
automatically inserted into the calendar each year, typically used for birthdays etc.

The entry controls to the dialog are defined as follows:−

<−

Advances to the previous month.

−>

Advances to the next month.

<Month>

MicroEmacs '02

organizer(3) 1570

A pull down dialog enabling month selection.

<year>

A text entry field specifying the current year as a 4 digit number. A value of * is the wild card year for
specifying annual events.

Notes

A free form text entry box allowing a note to be attached to the currently selected day.

Save

Saves the entry back to file.

Month To Buffer

Dumps a view of the month to the currently active buffer, any notes are also dumped to the buffer.

Exit

Exits the organizer. Week

Shows the calendar week in the current buffer, the days of the week are shown in a column ordering.
Note that selection of the week is typically performed from the Month view, moving to the Week
view (via the tab) selects the week appropriate to the previously selected day within the month view.

The entry controls on the dialog are defined as follows:−

<−

Advances to the previous week.

−>

Advances to the next week.

<year>

A text entry field specifying the current year as a 4 digit number. The value of * for viewing and
setting annual events is not valid in this view.

Notes

A free form text entry box allowing a note to be attached to the currently selected day.

<day>

MicroEmacs '02

organizer(3) 1571

Selecting a date in the day column changes the view to the Day view.

Save

Saves the entry back to file.

Week To Buffer

Dumps a view of the week to the currently active buffer, any notes are also dumped to the buffer.

Exit

Exits the organizer.

Note: The start day in the week view may be configured to commence on a day other than Sunday
from the Setup tab.

Day

Shows an extended view of the notes attached to the current day, day selection is typically performed
from the Month or Week views. The entry controls on the dialog are defined as follows:−

<−

Advances to the previous day.

−>

Advances to the next day.

<year>

A text entry field specifying the current year as a 4 digit number. A value of * is the wild card year for
specifying annual events.

<month>

A pull down dialog enabling month selection.

<day>

A text entry enabling the current day to be entered.

Notes

A free form text entry box allowing a note to be attached to the currently selected day.

Save

MicroEmacs '02

organizer(3) 1572

Saves the entry back to file.

Day To Buffer

Dumps a view of the day to the currently active buffer, any notes are printed in the buffer.

Exit

Exits the organizer. Lists

The lists pane provides support for multiple list generation and manipulation. Each list consists of
zero or more ordered items each of which has a text field in which the user can enter information.

Entry to the dialog is defined as follows:−

List

Selects a list.

New

Creates a new list.

Lines Per Item

Sets the number of lines to use when displaying a list item.

New

Creates a new list item at the end of the current list.

Up

Moves the currently selected item (left click on the item number) up the list.

Down

Moves the currently selected item down the list.

Insert

Inserts a new list item before the currently selected item.

Delete

Deletes the currently selected item.

Save

MicroEmacs '02

organizer(3) 1573

Saves the entry back to file.

List To Buffer

Dumps a view of the list to the currently active buffer.

Exit

Exits the organizer. Address

The address pane provides entry to the address book, enabling personal and business details to be
retained against a single name, tabbed selection of Work or Home selects the information that is
displayed. A search engine is provide to locate names within the database, and provision is made to
save some text against a name. Entries in the database are, by default, organized by record number,
sorting may be explicitly performed from the Sort button.

Entry to the dialog is defined as follows:−

<Record No>

The identity number of the record, a value of * denotes that this is a new record that is being inserted.

<<

Moves to the start of the database.

>>

Moves to the end of the database, showing record *, a new entry may be entered.

<

Moves to the previous record.

>

Moves to the next record.

Name

The name of the individual, entered as fore−name and surname.

Nickname

A pseudo name assigned to an individual.

Partner

MicroEmacs '02

organizer(3) 1574

Shown in the Home view only. The forename and surname of any partner.

Chld

Shown in the Home view only in the Extended Address Book Mode. The names of any children (up
to 3).

DOB

Date of Birth, shown in the Home view only in the Extended Address Book Mode. The dates of
birth of the parents, any children in addition to an anniversary date.

Company

Shown in the Work view only. The name of the company.

Address

The address of the individual/company.

Tel/Fax/Mobile

Telecommunication information.

Email/WWW/FTP

Electronic communication information.

Notes

Notes associated with the individual.

Save

Saves the address information to file.

Dup

Duplicates the currently selected address entry, creating a new record card. Typically used to
construct a similar entry for a different individual.

Delete

Deletes the currently selected entry.

Addr to Buffer

Dumps the currently selected address to the current buffer.

MicroEmacs '02

organizer(3) 1575

Exit

Exits the organizer.

Find

find provides access to a search engine, enabling addresses to be located in the address book.

Search For

The string to search for.

In Field

Pull−down menu allowing the selection of the field to be searched in.

Match

Selects how strict the search should be; typically Any Part is used as this is the least in−exact
search. The default mode is configured in the Setup tab.

Case/magic

Selects the search criteria. The default mode is configured in the Setup tab.

First

Finds the first record that matches the search criteria

Next

Finds the next record that matches the search criteria, from the currently displayed record.

Reverse

Searches in reverse order.

Exit

Exits the search

Sort

sort provides a mechanism to re−sort the data base into a different order. The sort is
performed on up to 3 different keys enabling conflicting primary sort fields to be resolved by
the secondary sort criteria. The default sort order is <Record No>, <None>, <None>.

Sort Keys

MicroEmacs '02

organizer(3) 1576

The Primary, Secondary and Tertiary sort fields are selected by a pull down menu. The fields
to be used for sorting are selected from the list.

Sort

Performs the sort, based on the settings of the Sort Keys.

Exit

Exits the sort dialog. Setup

The setup pane configures a number of general settings of the organizer.

Current Organizer File

The full pathname of the organizer file. By default this is set to <userpath><userName>.eof and can
be altered using user−setup(3).

Change Name

Allows the displayed name of the month and the day to be modified.

First Day of the week

Selects the first day of the week, this sets the first day to be displayed in the Week view and the first
column in the Month view.

Min New Year Days

The number of days that must appear in the first week of the New Year for the week to be considered
week 1. Modifying the value of this field modifies the week number.

The Calendar section allows the wordy representation of the calendar date to be modified. Typically
used to modify the names to the native language.

Change Month Name

Select the existing month representation from the left−hand box and type in a new selection into the
right−hand box.

Change Week Day Name

As Change Month Name, enables the day of the week representation to be modified.

First Day Of The Week

Selects the first day that appears in the Week view.

MicroEmacs '02

organizer(3) 1577

Minimum Days of New Year in first week

Specifies the number of days that must appear in the first week of the New Year for the week to be
designated as week 1. This value allows the week number to be aligned with the calender weeks of
standard diaries. The default value is 7 days; but may be reduced to 5 or 6 for typical alignment.

The Address Book section allows the operation of the address book to be modified.

Use Extended Address Book

The extended address book allows additional information to be added to the personal address book.
The extended information is limited to the amount of personal information attributed to an individual,
including Date of Birth and Child information.

Import From File

The Import from file allows the address book to be imported from a file. The import data
format is a single line per entry, comma , separated. The field order is defined as follows, the
* entries indicate the Extended Address Book fields:−

Record No, First Name, Surname, Nick Name, Selected, Notes, Partner First Name,
Partner Surname, Home Address, Home Telephone, Home Fax, Home Mobile, Home
E−Mail, Home WWW Page, Home FTP Site, Work Company, Work Address, Work
Telephone, Work Fax, Work Mobile, Work E−Mail, Work WWW Page, Work FTP
Site, Date−Of−Birth*, Partner DOB*, Date−Of−Marriage*, Child1 Name*, Child1
DOB*, Child2 Name*, Child2 DOB*, Child3 Name*, Child3 DOB*.

Export To File

Exports the address book to a file, the address book is exported in the current sort order, with the
fields defined as above. The exported address book may then be imported into a 3rd party package i.e.
Microsoft Access, etc.

The Default Address Find Settings section defines the default search criteria used in the address
book search function.

Whole/Start/Any Part

Radio buttons determine how the search is performed on the string.

Whole matches the whole string exactly.⋅
Start matches the first part of the string only (i.e. Ab*).⋅
Any Part finds entries that include the search string at any position within
the data base search field.

⋅

Case Insensitive

Checked, matches the strings regardless of case. (default).

MicroEmacs '02

organizer(3) 1578

Magic Mode

Allows magic strings to be included in the search string. NOTES

organizer is a macro that is implemented in organiz*.emf files. Organizer uses osd(2) to create
and manage the dialogs.

The maximum size of a text note is 1024 characters.

With an new address is created it is added to the end of the address list regardless of the current sort
criteria.

Organizer replaces the original Calendar utility.

SEE ALSO

user−setup(3), osd(2).

MicroEmacs '02

organizer(3) 1579

osd(2)

NAME

osd − Manage the On−Screen Display

SYNOPSIS

osd
−1 osd
−2 osd
n osd
−1 osd n
osd −1 flag
osd n 0 flags ["scheme"] ["x−pos" "y−pos"] ["min−width" "min−depth" "max−wid" "max−dep"]
["default"] [["title−bar−scheme"] ["Text"]] ["resize−command"] ["control−command"]
["init−command"]
osd n i flags ["tab−no"] ["item−scheme"] ["width" "depth"] ["text"] ["argument" "command"]

DESCRIPTION

The osd command manages the On−Screen Display, menu and dialogs. The command takes various
forms as defined by the arguments. Each of the argument configurations is defined as follows:−

Main Menu−Bar Status

osd −1 flag

This invocation determines the state of the top main menu bar. The state is set by the argument flag
defined as:−

 1 − enable.
 0 − disable.
−1 − disable and destroy.

Dialog Creation and Redefinition

osd n 0 flags ["scheme"] ["x−pos" "y−pos"] ["min−width" "min−depth" "max−wid" "max−dep"]
["default"] [["title−bar−scheme"] ["Text"]] ["resize−command"] ["control−command"]
["init−command"]

This invocation creates or resets the base properties of dialog n. The flags argument determines the
arguments and are defined as follows:

MicroEmacs '02

osd(2) 1580

A

Defines dialog as an alpha type dialog, items are added according to their string text value.
Alpha dialogs may not have separator or child items.

i

Used with the A flag, sets the alpha ordering to be case insensitive.

G

Create a Grid dialog. Every item in the dialog is given a single character boarder around it. If
one of the dialogs items is also given a 'G' flag, the boarder is drawn as a box around it,
otherwise spaces are used.

N

Create a Note−Book (or tabs) dialog. The dialog can only contain one dialog inclusion item
('I') and Note−Book pages ('P'). Pages added before the Inclusion item (page item number is
lass than the inclusion page item number) will be drawn at the top of the note−book, those
added after will be drawn at the bottom.

b

Draw boarder, draws a boarder around the outside of the dialog. See also flag t (title) as flag
effects the boarder.

a

Defines the absolute start−up position of the dialog in the arguments x−pos and y−pos, which
are the column and row positions respectively of the dialog from the top left−hand corner of
the display. The arguments must be specified. e.g. the main menu is defined with an absolute
position of (0,0). If the dialog can not be fully drawn on the screen at the given position it will
be moved to a position which shows the most.

o

Specifies an offset to the dialog position calculated by MicroEmacs in the arguments x−pos
and y−pos, which are the column and row offsets. This flag is ignored when flag a is also
specified. If the dialog can not be fully drawn on the screen at the new position it will be
moved to a position which shows the most.

s

Sets the size of the dialog. osd automatically resizes a dialog to fit the contents, this flag
should be considered as a size hint for osd, and is not guaranteed to be honored. If the dialog
has a boarder (flag b) the size given should include the boarder size.

MicroEmacs '02

osd(2) 1581

The arguments, min−width, min−depth, max−width and max−depth must be
specified, as

+ve

The actual size of the dialog, minimum and maximum sizes.

0

min value should be specified as desired window size, max may be 0 which specifies
the screen size.

−ve

min defines the maximum size. max is unlimited.

The following table shows possible combination of the sing parameters and their
effect:−

min=0, max=0

Default setting, makes dialog as small as possible, with a maximum size of the
screen.

min=0, max=50

Make dialog as small as possible with a max of 50 characters.

min=50, max=0

Make dialog as small as possible, but make it at least 50 characters big and no larger
than the screen.

min=30, max=−1

Make dialog at least 30 characters big with no upper limit, very useful for dialogs
being used as scrolled children.

min=−1, max=50

Make dialog 50 characters big.

min=−1, max=0

Make dialog the same size as the screen.

min=−1, max=−1

MicroEmacs '02

osd(2) 1582

Make dialog as big as possible (do not do this unless you have a large amount of memory to
throw away).

S

Sets the main dialog scheme, The default scheme when not specified is $osd−scheme(5) See
macro file fileopen.emf for an example.

d

Sets default item to select to "default". This item is selected when the dialog is first opened, if
this item is an automatically opened sub−menu then the child menu will also be opened.

t

Title bar is present − draws the title bar. The text argument is optional Also see flags H, c and
r.

H

Defines the title bar color scheme if flag t is specified. If t is absent the option is ignored.

c

Centers the title bar text if specified. Option t must be specified, otherwise the option is
ignored.

r

Right justifies the title bar text if specified. Option t must be specified, otherwise the option is
ignored.

R

Defines the dialog as re−sizable. The resize−command argument must be specified and the
command should resize the dialog to the sizes given in $result(5) in the format "wwwwdddd",
where w is width and d the depth. If the resize−command is aborted then that resize operation
is abandoned.

M

Identifies the dialog as the main menu dialog.

C

Binds a command to the dialog, which is automatically executed when the dialog is opened.
When the dialog with a C attribute is opened, it is rendered on the screen and then a
command, defined by control−command is invoked, when the command completes the dialog
is closed.

MicroEmacs '02

osd(2) 1583

The command dialog is typically used to create status messages. e.g. a "Busy −
Please Wait" dialog box, such a dialog may be implemented when saving the
current buffer then create the simple dialog and sent the control−command to
save−buffer(2). The dialog would be defined as:−

osd 200 0 "btcHC" %osd−title−scheme "Saving Buffer" save−buffer
osd 200 1 ""
osd 200 2 "" "Busy − Please Wait"
osd 200 3 ""
200 osd

If the dialog has buttons which need to become active then control can be returned to
osd by calling osd with no arguments, e.g. in the above example the dialog can be
made to stay on the screen until the user selects okay by:

define−macro test−osd
 save−buffer
 osd 200 2 "" "Save Complete"
 osd 200 4 "BcfH" %osd−ebtt−scheme " &Okay " f void
 osd
!emacro

osd 200 0 "btcHC" %osd−title−scheme "Saving Buffer" test−osd
osd 200 1 ""
osd 200 2 "" "Busy − Please Wait"
osd 200 3 ""
osd 200 4 "BcfHS" %osd−dbtt−scheme " Okay "

200 osd

The above mechanism is how spell−buffer(3) operates.

k

Disables hot−keys for the dialog. All text strings are copied literally. This is useful for dialogs
like the tags child dialog as many tags have '&'s in them.

B

Makes the mouse right Button have the same behaviour as the left, by default the right mouse
button simply closes the dialog. This is useful for some dialogs which are opened using the
right mouse button.

f

Automatically uses the first letter of an item's test as the hot key. Unlike the normal hot keys,
the letter is not hi−lighted and when typed by the user the item is only selected, not executed.
This flag also disables the normal hot−keys for the dialog, so all text strings are copied
literally.

n

MicroEmacs '02

osd(2) 1584

Disables '\n' characters in text fields leading to multi lines. By default a text item of
"Hello\nWorld" will create an item 5 by 2 characters big.

If "init−command" is given then this function is always called just prior to the dialog being
displayed so it can be used to configure the dialog.

Dialog Destruction

−1 osd n

This invocation destructs a dialog n. The dialog is only destroyed if it is not currently being displayed.

Dialog Item Creation and Redefinition

osd n i flags ["tab−no"] ["item−scheme"] ["width" "depth"] ["text"] ["argument" "command"]

This invocation type adds a new item i to a dialog n, the operation of the invocation is controlled by
the flags as follows:−

D

Disable item i, the item is ignored and is not rendered in the dialog.

I

Include dialog "argument" into this dialog. If "command" is specified then it is called prior to
the child being constructed and can be used to define the child. This is similar to the Ms
command. See also flag b.

P

Item is a Note−Book page, the item must have text and have an argument which is the osd
dialog to be show when the page is activated.

M

Item is a sub−menu, The argument "argument" specifies the sub−menus osd dialog
number. A "command" may also be specified which is executed first, this can actually
re−define the item and set the dialog number, e.g.

; To start with the dialog number is unknown
osd 1 1 "M" f submenu−setup

define−macro submenu−setup
 osd 200 0

 ; Now the sub−menu number is known redefine parent item,
 ; note the setup command is not given as we have now set
 ; it up!

MicroEmacs '02

osd(2) 1585

 osd 1 1 "M" 200
!emacro

See also options m, n, e, s, w and d.

m

Sub−menu must be manually opened, using hot−key, the return key or the left mouse button.

n, e, s, w

Specify where a sub−menu is to be placed relative to the parent item. The letter indicates the
direction as points on a compass, North, East, South and West, respectively. The default when
omitted is East.

d

Display sub−menu type, i.e. ".." for auto opening and " >" for a manual opening sub−menu.

−

Fill a non−defined chars with '−'s instead of ' 's, used to draw the lines across menus,
typically with no text given, e.g.

osd 200 5 "−"

But could also be specified as:

osd 200 5 "−c" "Lined"

C

Item is a check−box. The setting of the check−box is evaluated when the dialog is
first drawn, re−draw and whenever any item is executed. A "command" must be
specified which must both return the current setting when the given argument (of 1) is
given (!abort if false, !return if true) and change the value if the argument value is
negated. The text string must also be specified, the first 6 characters are used in the
drawing of the check box. The format can be shown as follows:−

String\State Off On
"123456" "12356" "12456"
" (−+)^" " (−)" " (+)"
"^[*] " "[] " "[*] "
"^^NY^^" "N" "Y"
"^^^^^^" "" ""

Note that no character is rendered when a '^' character is used. See also p for
prepending the check−box.

p

MicroEmacs '02

osd(2) 1586

Prepend the check−box box. By default a check box is drawn as:

"Check box12?56"

This option changes it to:

"12?56Check box"

x

When the item is executed do not exit the dialog. Often used with Check−boxes.

i

The command given is a command line string which is executed in a similar fashion
to execute−line(2). Note that if an argument is required it is usually specified in the
string, i.e.

osd "i" "text" 5 "1000 ml−write @#"

writes the argument (i.e. 5) for 1 second.

osd "i" "text" 5 "my−command"

in this case my−command will not be given an argument,

osd "i" "text" 5 "10 my−command"

in this case my−command will be given an argument of 10,

osd "i" "text" 5 "@# my−command"

in this case my−command will be given an argument of 5.

h

Horizontally add the next item, e.g.

osd "h" "1st on line "
osd "" "2nd on line"

Will produce "1st on line 2nd on line". If there is not enough room on a
single dialog line to display all the horizontally added items then the line is split and
as many lines as needed are used.

c

Center the text for the item in the middle of the dialog.

r

MicroEmacs '02

osd(2) 1587

Right hand justify the text for the item.

t

Set the items tab order in the dialog.

b

Child inclusion is a scroll box type. By default a child inclusion simply draws the whole child
dialog at the position. If this flag is specified then arguments "width" and "depth" must also
be supplied and a window displaying "width" by "depth" of the child is created. The size of
this item will be "width"+1+ss by "depth"+1+ss where ss is the scroll bar size which is 1 or 2
depending on the setting of $scroll−bar(5). It is up to the user to ensure that the child dialog
being displayed is at least "width" by "depth" characters in size, if this is not true then the
effect is undefined, (a crash dump is not out of the question).

f

Fix the item size to the given "size", by default an item is expanded to the width of the dialog.

E

Item is an entry box type. Use a string of #'s to set the position and size of the entry
text box. Similar to Check−boxes, the command given must both return and set the
value depending on value of the argument given. The value must be returned in
$result(5) if the given argument (or 1 for 'f') is given, and the value must be set
(usually using @ml(4) or @mc(4)) if the argument is negated. The absolute value of
the argument is maintained.

set−variable %entry−value "Hello world"

define−macro my−entry−set
 !if &equ @# −1
 set−variable %entry−value @ml "" %entry−value
 !else
 set−variable $result %entry−value
 !endif
!emacro

osd 200 1 "S" " &Enter text" 2
osd 200 2 "ExHf" %osd−entry−scheme "########" 1 my−entry−set

B

Item is a Button type. Add the last 2 characters of $window−chars(5) to the text string
given, one on each side, i.e. if the last two chars are "[]" then:

osd "B" " Okay "

will be drawn as "[Okay]". See also flag T.

MicroEmacs '02

osd(2) 1588

T

Item is a repeat type, this is typically used with buttons, altering their execution behavior. By
default an item is only executed when the left mouse button is released while over the item.
However when this flag is specified the item is executed as soon as the left mouse button is
pressed and is repeatedly executed until the button is release or the mouse moves off the item.
The delay between repeated executions is determined by the variables $delay−time(5) and
$repeat−time(5).

S

Item is a separator type. This is not often required as any item without anything to
execute is automatically set to be a separator. Occasionally a mouse−insensitive item
which can be executed is required, typically a text string with a hot key, e.g.

osd 200 1 "S" " &Enter text" 2
osd 200 2 "ExHf" %osd−entry−scheme "########" 1 my−entry−set

will be drawn as "[Okay]"

Item 1 will have a hot−key which executes item 2 (as no command is given), but it
will not hi−light if the mouse is placed over it.

R

Redraw dialog. Forces a redraw of the dialog when the item is executed. This is not
usually required as osd generally works out for itself whether a redraw is needed,
however, sometimes it does not, most notably when the item sets a variable that is
displayed by another item as an entry, e.g.

set−variable %entry−value "Hello world"

define−macro my−entry−set
 !if &equ @# −1
 set−variable %entry−value @ml "" %entry−value
 !else
 set−variable $result %entry−value
 !endif
!emacro

osd 200 1 "S" " &Enter text" 2
osd 200 2 "ExHf" %osd−entry−scheme "########" 1 my−entry−set
osd 200 3 "BxHcfiR" %osd−ebtt−scheme " &Reset " f "set−variable %entry−value\"\""

If item 3 did not have flag R set when executed, osd would not realize that the change
to value %entry−value affects the display and the button would not appear to
operate.

H

Sets the item color scheme. Note that for scrolled child items this only sets the scroll−box

MicroEmacs '02

osd(2) 1589

color scheme, the dialog scheme is used for the rest of the boarder.

G

This flag is only applicable in grid dialogs (see flag G in dialog creation). The current item
will be drawn with a box around it using $box−chars(5).

z

Sets the item size, arguments "width" and "depth" must be given.

N

This flag only has an effect on entry item types, it selects 'New−line' style text entry which
allows the user to enter multiple line of text using the return key and to end the input using
the tab key.

Note that for a non−sub−menu item type, if an argument is given with no command then it is
assumed that the number given is the item number to be executed, see flag S for an example.

Dialog Exacution

n osd

This invocation with a single positive numeric argument executes the nth dialog.

Returning Command Control

osd

An invocation of osd with no arguments returns control back to the osd from a control−command.
Refer to the C flag in the create/reset dialog property for information and an example.

Current Dialog Redraw

−1 osd

Calling osd with an argument of −1 forces the complete redrawing of current dialog and any
sub−dialogs. This is very useful when the execution of one item may effect the appearance of another.

Redraw All Active Dialogs

−2 osd

MicroEmacs '02

osd(2) 1590

Calling osd with an argument of −2 forces the complete redrawing of all currently active osd dialogs.
This is better than calling screen−update(2) when only the osd dialogs need updating as it suffers less
from flickering.

EXAMPLE

Refer to osd.emf, userstp.emf, search.emf, spell.emf and organize.emf for
examples of the OSD.

SEE ALSO

$osd−scheme(5), $result(5), $scroll−bar(5). $window−chars(5).

MicroEmacs '02

osd(2) 1591

osd−bind−key(2)

NAME

osd−bind−key − Create key binding for OSD dialog
osd−unbind−key − Remove key binding from OSD dialog

SYNOPSIS

osd−bind−key n "command" "key"
osd−unbind−key n "key"

DESCRIPTION

osd−bind−key creates a local key binding for a given osd dialog, binding the command command to
the keyboard input key. Only the current root dialog's local bindings are used, local bindings of
included dialogs or other root dialogs currently displayed are ignored.

Osd local bindings take priority over default osd bindings, local bindings created using
ml−bind−key(2) are also used, but any current buffer local bindings created using buffer−bind−key(2)
are ignored.

NOTES

The prefix commands cannot be rebound with this command.

Key response time linearly increases with each osd binding added.

As only the root dialog's bindings are used, creating note−book page specific bindings can be
awkward. Typically all required keys are bound to the same command which, depending on the page
that is currently being displayed, checks if the key pressed is bound on the current page and if so calls
the required command. See organizer(3), defined in organize.emf for an example of this
operation.

SEE ALSO

osd(2), global−bind−key(2), ml−bind−key(2), buffer−bind−key(2), global−unbind−key(2).

MicroEmacs '02

osd−bind−key(2) 1592

osd−dialog(3)

NAME

osd−dialog − OSD dialog box
osd−xdialog − OSD Extended dialog box
osd−entry − OSD entry dialog box

SYNOPSIS

n osd−dialog "title" "prompt" ["x−pos" "y−pos"] "but1"
n osd−xdialog "title" "prompt" default ["x−pos" "y−pos"]

"but1" "but2" ...
n osd−entry "title" "prompt" variable ["x−pos" "y−pos"]

[["entry−xsize" | "entry−xsizexentry−ysize"] ["type"]] DESCRIPTION

osd−dialog constructs a OSD dialog prompt with a title string title, a prompt string within the dialog
of prompt. A single button, with text rendering but1, is placed within the dialog. The dialog remains
on the screen until the button is selected or the user aborts.

osd−xdialog creates an extended dialog with multiple buttons similar to osd−dialog, the number of
buttons created (#) is determined from the number of but arguments. The default integer argument
specifies the default button (1..#), a value of 0 specifies that there is no default button.

The commands return the button pressed in the variable $result(5).

osd−entry constructs a simple OSD entry dialog which prompts the user to type in a value. The value
of the supplied variable is used as an initial entry value, the variable is set to the entered value when
the user presses the "Okay" button but remains unchanged if the user Cancel or aborts.

The size of the entry defaults to 30 characters if not specified by the user, when a size parameter is
given it can take one of two forms, either simply "w" specifying the width, the height defaulting to 1,
or "wxh" (i.e. "40x5") specifying both. The last optional argument type sets the type of value being
entered (e.g. file name, buffer name, etc) see flag h on the help page for @ml(4) for a list of entry
types and the numerical value to be supplied.

The argument n can be used to change the default behavior of the commands described above, n is a
bit based flag where:−

0x01

Enables command abort (default), except osd−entry which ignores the setting of this bit. When
enabled, if the user abort by either closing the dialog (top right button) or using the abort−command

MicroEmacs '02

osd−dialog(3) 1593

the dialog command will also abort. If bit 0x01 is not set the command will not abort and $result will
be set to −1.

0x02

When set, flags that a dialog position has also been provided, extra arguments x−pos and y−pos must also be
given. By default the dialog is placed under the mouse. EXAMPLE

A simple query dialog is typically constructed using osd−dialog, as follows:−

!if &seq %osd−search−str ""
 osd−dialog "Replace" "Error: Search string is empty!" " &OK "
 !return
!endif

The following example uses multiple buttons within a single dialog, using osd−xdialog, as follows:−

0 define−macro osd−close
 !if &bmod "edit"
 set−variable #l0 &spr "Buffer \"%s\" changed" $buffer−bname
 osd−xdialog "Buffer Close" #l0 1 "&Save First" \
 "&Loose Changes" "&Cancel"
 !if &equ $result 3
 !abort
 !elif &equ $result 2
 −1 buffer−mode "edit"
 !else
 !if &seq $buffer−fname ""
 !nma write−buffer
 !else
 !nma save−buffer
 !endif
 !endif
 !endif
 delete−buffer $buffer−bname @mna
!emacro

The next example macro can be used to change the value of a user variable to a user supplied file
name:

set−variable %source−root "~/"

define−macro set−source−root
 osd−entry "Source Root" "&Path : " %source−root 35 1
!emacro

NOTES

osd−dialog, osd−xdialog and osd−entry are macros defined in osd.emf, using osd(2) to create the
dialog.

MicroEmacs '02

osd−dialog(3) 1594

SEE ALSO

$result(5), osd(2).

MicroEmacs '02

osd−dialog(3) 1595

osd−help(3)

NAME

osd−help − GUI based on−line help

SYNOPSIS

osd−help

DESCRIPTION

osd−help provides a GUI front end to the on−line help manual, the dialog consists of 3 pages which
are defined as follows:−

Contents

The contents page displays a list on contents similar to the help(2) high level help page. Selecting an
item will display the help page in a buffer, selecting Exit will exit the dialog.

Index

The index page gives a list of help items, the Scope menu can be used to narrow the index list to the
required item type.

Search

The search page provides a way of searching the on−line help for a given topic. Similarly to the Index
page, the Scope menu is provided to narrow the search to the required area.

The search strings is considered to be made up of items separated by spaces, an item can be enclosed
in quotes ('"') so that the item can include a space. If the first letter of an item is a '+' the given item
must be found in a page for it to match, if the character is a '−' the item must NOT be found on a page
for it to match, or other items are considered optional. At least one item must be found on a page for it
to be a match, the numbers to the right of each found page is the number of items found.

NOTES

See Help! for help on the on−line help pages.

osd−help is a macro using osd(2), defined in osdhelp.emf.

MicroEmacs '02

osd−help(3) 1596

SEE ALSO

help(2).

MicroEmacs '02

osd−help(3) 1597

over(2m)

NAME

over − Over−strike Mode

SYNOPSIS

over Mode

O − mode line letter.

DESCRIPTION

over mode, when enabled, over writes existing text in a buffer as opposed to inserting text. over
maintains the position of text aligned with tab characters.

SEE ALSO

buffer−mode(2), global−mode(2).

MicroEmacs '02

over(2m) 1598

Patience(3)

NAME

Patience − MicroEmacs '02 version of Patience (or Solitaire)

SYNOPSIS

Patience

DESCRIPTION

Patience (or Solitaire) is a solitaire game using a standard set of playing cards. The object of the game
is to use all of the cards in the deck to build up four suit stacks from Ace to King.

The board is laid out with the dealer pile at the top right hand corner, to the left are four suit stacks
onto which cards of the same suit are placed, in ascending order from the Ace. Below these two areas
of the board are seven row stacks, organized in a triangular shape with zero to six downward facing
cards.

Cards may be moved around the playing area by stacking alternative red and black cards in
descending order on the row stacks. When a row stack has no upturned cards on the stack then the top
card may be turned over and may be played. If a stack becomes empty then only a King may be
moved into the vacant position. Cards may be removed from the dealer, they are over−turned in sets
of three cards, the underlying 2 cards are visible, but are not accessible, only the top card may be
removed and played from the dealer.

Cards are moved around the board using the mouse. Cards may be moved from the dealer or between
the row stacks by placing the mouse over the card to be moved and pressing the left mouse button.
Move the cursor to the new card position and release the left mouse button. If the move is legal then
the card(s) are moved to the new stack. Multiple cards may be moved from the row stacks, the
appropriate card(s) to be moved is automatically determined.

Cards may be moved onto the suit stacks by a single left mouse press and release on the same card,
the card is moved to the appropriate suit stack. The same technique is used to turn cards over in the
suit stacks, and to deal the next set of cards by the dealer. To deal, then click on the down−turned card
stack, if there are no further cards at the dealer then click on the empty position and the dealer will
turn over the dealer stack and deal from the top again.

Note that once a card is played onto the suit stacks then it cannot be removed.

To the right of the board are a number of control buttons. To select an option, click the left mouse
button on it, the buttons are labeled:

DEAL

MicroEmacs '02

Patience(3) 1599

Start a new game by dealing new cards.

QUIT

Exit the game

HELP

This help page

Note that the screen may be updated at any time using "C−l".

NOTES

Patience is a macro defined in patience.emf.

The game is best played with a mouse, it is possible to play with the keyboard, as follows:−

"esc h" for help

To move a card between stacks enter the source and destination column number
("1","2",.."7"). To move from the dealer pile then the source is the "space" key.

"tab" deals the next cards.

To overturn a card on the row stacks then enter the card column twice i.e. source and
destination are the same.

To move a card from the row to the suit stacks then either enter the card column twice, or
enter the destination as "h","d","c","s" (i.e. "2 2" or "2 s" to move the card in column 2 to the
spades stack).

"C−c C−c" to deal the cards again.

"C−l" redraw the screen.

"q" to quit the game.

SEE ALSO

Games, Triangle(3), Mahjongg(3).

MicroEmacs '02

Patience(3) 1600

p(9)

SYNOPSIS

p, pas − Pascal files

FILES

hkpascal.emf − Pascal hook definition
pascal.etf − Pascal template file.

EXTENSIONS

.p, .pas − Pascal file

DESCRIPTION

The pascal file type template provides simple hilighting of Pascal files, the template provides
minimal hilighting.

BUGS

None reported.

SEE ALSO

Supported File Types

MicroEmacs '02

p(9) 1601

paragraph−to−line(3)

NAME

paragraph−to−line − Convert a paragraph to a single line

SYNOPSIS

n paragraph−to−line

DESCRIPTION

paragraph−to−line is a variation of fill−paragraph(2). paragraph−to−line reduces each of the next n
paragraphs of text to single lines. This command is typically used to prepare text for import into a
word processor such as Microsoft Word or Word Perfect. Reduction of text to a single line allows
the word processor to import the raw text file and keep the text within paragraph blocks. If the text is
not prepared then all of the line−feeds have to be manually deleted.

paragraph−to−line allows text based documents to be prepared in MicroEmacs '02 and imported into
the word processor at the final stage for formatting and layout.

NOTES

paragraph−to−line is a macro defined in format.emf.

SEE ALSO

fill−paragraph(2).

MicroEmacs '02

paragraph−to−line(3) 1602

perl(9)

SYNOPSIS

perl − Practical Extraction and Report Language File.

FILES

hkperl.emf − Practical Extraction and Report Language file hook definition
perl.etf − Practical Extraction and Report Language header template file.
perl.eaf − Practical Extraction and Report Language abbreviation file.

EXTENSIONS

.pl, .pm − Perl file

MAGIC STRINGS

#![\t]*/.*perl

MicroEmacs '02 recognizes the magic string on the first line of the file used to locate the executable.
The Perl files may be extension−less and are still recognized.

−*− perl −*−

MicroEmacs '02 recognizes the standard GNU Emacs magic string on the first line of the file. The Perl files
may be extension−less and are still recognized. DESCRIPTION

The perl file type template provides the hilighting, indentation and tools definitions for a perl file.

File recognition is performed using the standard file extension .pl, .pm or by the magic string.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, comments, strings and characters of the
language to be differentiated and rendered in different colors.

Auto Layout

MicroEmacs '02

perl(9) 1603

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3)
and restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the
whole buffer, respectively.

Folding and Information Hiding

Generic folding is enabled within perl files. The folds occur about sub...} located on the left−hand
margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds the current region.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.
C−c esc esc − Command complete.
A−C−i − Restyle the current region.
f2 − (un)fold the current region
f3 − (un)fold all regions

Debugging

Debugging a perl script can be done inside MicroEmacs by using the perldb(3) command. BUGS

The flexibility of the perl language does cause some hilighting anomalies from time to time, typically
with unbalanced quote characters. Most of the common exceptions have been caught, however there
are a few syntax sequences that involve quotation marks that can cause problems.

SEE ALSO

perldb(3), fold−all(3), fold−current(3), indent(2), restyle−buffer(3), restyle−region(3), time(2m).

Supported File Types

MicroEmacs '02

perl(9) 1604

perldb(3)

NAME

perldb − Perl Debugger

SYNOPSIS

n perldb ["script−name"] "script−args"

DESCRIPTION

perldb provides an editor interface to the Perl debugger, on running the command an interactive shell
window is opened to the debugger command line interface. MicroEmacs then interprets the
information from the debugger interface and opens files and hilights the current line as required. The
current line is maintained while single stepping through the script.

Buffers opened and referenced by the debugger have the key F9 bound to setting a break point, this
only works if the buffer contains the current execution point.

If an argument n of 2 is given to perldb the command assumes that the current buffer is the script file
to debug, the "script−name" argument is not prompted for.

NOTES

perldb is a macro defined in file hkipipe.emf.

BUGS

The 'R' rerun command does not work correctly on Windows platforms, perldb is rerun in a newly
created external dos command window instead of inside the MicroEmacs ipipe buffer.

SEE ALSO

gdb(3), ipipe−shell−command(2).

MicroEmacs '02

perldb(3) 1605

pipe(2m)

NAME

pipe − Incremental Pipe running

SYNOPSIS

pipe Mode

P − mode line letter.

DESCRIPTION

This mode indicates whether an incremental pipe (started by ipipe−shell−command(2)) is running in
the current buffer. This mode is automatically set and can not be changed by the user. pipe modes
main use is in macros.

Modes lock(2m) and wrap(2m) effect the output behavior of a piped command.

SEE ALSO

ipipe−shell−command(2), lock(2m), wrap(2m).

MicroEmacs '02

pipe(2m) 1606

popup−window(2)

NAME

popup−window − Pop−up a window on the screen

SYNOPSIS

n popup−window "name"

DESCRIPTION

popup−window manages the display of a new window on the screen. If only one window exists then
it will be split else the current window will changed to one of the other existing visible windows. If
the given buffer name "name" is not null ("") then the buffer is created, if it does not exist, and
swapped in.

If an argument n of zero is given then the command only succeeds if the given buffer is already being
displayed in an existing window, this window is made current. If an non−zero argument is given to
the command and the given buffer is not visible then a window displaying a system buffer is chosen
in preference. A system buffer is one who's name starts with a '*' character, e.g. "*help*". window
used to display

SEE ALSO

find−buffer(2).

MicroEmacs '02

popup−window(2) 1607

prefix(2)

NAME

prefix − Key prefix command
prefix2 − Control(2) prefix
prefix3 − Control(3) prefix
prefix4 − Control(4) prefix

SYNOPSIS

n prefix

Default prefix bindings:

prefix 1 (esc)
prefix 2 (C−x)
prefix 3 (C−h)
prefix 4 (C−c)

DESCRIPTION

prefix sets up to 8 prefix key sequences, allowing two stoke key bindings. The command does not do
anything, it is used to create double barrel key bindings such as such as goto−line(2) (esc g). This
binding may be redefined, redefining ALL meta bindings. If the meta bindings are not required the
command should first be unbound using the global−unbind−key(2).

The prefix key can only be defined using the global−bind−key(2), passing the command the prefix
number required, for example:

1 global−bind−key "prefix" "esc "
2 global−bind−key "prefix" "C−x"

Binds the first prefix to the Escape key and the second prefix to Control−x.

The first prefix key (prefix 1) differs from the other prefixes since it permits entry of the numeric
argument at the message line, e.g. "esc 1 0 C−f" will move forward 10 characters.

NOTES

Invocating this command via execute−named−command(2) or by a macro has no effect. It can be
bound to only one key sequence which must be a single key stroke such as C−x etc. Re−binding the
command to another key will not only unbind the new key but also the current prefix ? key bindings.

MicroEmacs '02

prefix(2) 1608

SEE ALSO

global−bind−key(2), global−unbind−key(2).

MicroEmacs '02

prefix(2) 1609

print−buffer(2)

NAME

print−buffer − Print buffer, with formatting
print−region − Print region, with formatting

SYNOPSIS

n print−buffer
n print−region

DESCRIPTION

print−buffer and print−region print the current buffer or region, respectively, using high−lighting
where appropriate. The hilighting assigned to a buffer is defined by the variable $buffer−hilight(5) the
print scheme is defined with print−scheme(2), the scheme−editor(3) should be used to create printer
schemes.

The printing is typically configured using print−setup(3), which can be found in the main menu under
File−>Printer Setup.

The numerical argument n is generally used for macro development, it changes the default behaviour
of these commands as follows:

−2

Configures the printer and, on win32 platforms, opens a Windows printing dialog box enabling the
user to configure the printer, font and page layout. The configuration is stored in the "/print"
registry.

−1

Configures the printer, the configuration is stored in the "/print" registry.

0

Configures the printer and, on win32 platforms, using the Windows printer, opens a Windows
printing dialog box enabling the user to configure the printer, font and page layout. The required
printing is then performed.

1

Configures the printer and performs the required printing. Printing Process

MicroEmacs '02

print−buffer(2) 1610

When either of these commands are executed the macro file print.emf is executed to configure the
printer (in a same vain as me.emf is executed to configure MicroEmacs for general usage). After the
macro file has been executed the "/print" registry must contain the information required for
printing. Following is a list of registry entries and their use:

flags (integer)

The setup flags, defined as a bit mask as follows:−

0x0f − Destination of the printer output.

0x00 − Buffer only.
0x01 − Internal queue.
0x02 − To file only.
0x03 − To file and command line.
0x10 − Bit set, header enabled.
0x20 − Bit set, footer
0x40 − Bit set, enable line numbers.
0x80 − Bit set, Enable truncated line character (typically \).

paper−x (integer)

Paper page width in character cells.

paper−y (integer)

Paper page depth in character cells.

page−x (integer)

The logical page width in character cells.

page−y (integer)

The logical paper depth in character cells.

specifier−x (integer)

Windows only.

specifier−y (integer)

Windows only.

font−face (string)

The name of the font face (Windows only).

rows (integer)

MicroEmacs '02

print−buffer(2) 1611

Number rows per output page.

cols (integer)

Number of columns per output page.

mtop (integer)

The size of the top margin in character cells (i.e. where printing may commence).

mbottom (integer)

The size of the bottom margin in character cells (i.e. where printing stops).

mleft (integer)

The number of characters of space forming the left magin of the physical page.

mright (integer)

The number of characters of space forming the right magin of the physical page.

header (string)

The ASCII text string for the header line.

footer (string)

The ASCII text string for the footer line.

port (string)

Printer port identity.

buffer (string)

The name of the destination buffer.

file (string)

The name of the destination file.

strip (integer)

If integer value strip spaces from eol.

device (string)

The ASCII name of the device (i.e. /dev/lp).

MicroEmacs '02

print−buffer(2) 1612

eof (string)

The printer codes for the end of the file, may be the empty string if not reqired.

eol (string)

The printer codes for the end of line character.

eop (string)

The printer codes for the end of a page.

sof (string)

The printer codes for the start of a file, may be the empty string if not required.

sol (string)

The printer codes for the start of a line.

sop (string)

The printer codes for the start of a page.

scont (string)

The printer codes for a start of row continuation.

econt (string)

The printer codes for the end of row continuation.

hsep (string)

The horizonal logical page separator character.

vsep (string)

The vertical logical page separator character.

wsep (string)

The depth in character cells of the vertical logical page separator.

xsep (string)

The width in character cells of the logical horizontal separator.

bg−color (integer)

MicroEmacs '02

print−buffer(2) 1613

The background colour number.

command−line (string)

The command line to perform a print operation. Printing Under Microsoft Windows Environments

Printing under Microsoft Windows Environments automatically invokes a dialog box to assign and
configure the printer page characteristics. The dialog box allows the printer to be selected, enables
line numbering, headers and footers.

The dialog allows the user to select the font size, by defining the number of characters that appear on
a logical page, and the number of logical pages that appear on a physical page. Selecting the logical
and physical page characteristics determine the size of the font. For dense pages with a small typeface
then a point size of 6 is appropriate. For clarity, a larger typeface of 10 or 12 points is advised.

NOTES

The last printer configuration selected by the user is held in the registry file "print.erf" which is
loaded into the /print−history registry section. This feature is implemented in the macro file
print.emf.

BUGS

Landscape printing under Microsoft Windows environments is temperamental.

Font selection under Microsoft Windows environments does not always determine the most
appropriate font size.

The printer interface does not support native postscript generation. (In progress).

SEE ALSO

print−setup(3), scheme−editor(3), print−scheme(2), hilight(2), printall(3f), $buffer−hilight(5).

MicroEmacs '02

print−buffer(2) 1614

print−color(2)

NAME

print−color − Create a new printer color
print−scheme − Create a new printer color and font scheme

SYNOPSIS

n print−color "col−no" "red" "green" "blue"
n print−scheme "schemeNum" "fore" "back" "font−mask"

DESCRIPTION

print−color and print−scheme are similar to add−color(2) and add−color−scheme(2) except they
configure MicroEmacs's printer scheme.

print−color creates a new printer color and inserts it into the printer color table, where red, green and
blue are the color components and col−no is the printer color index. The printer color table contains
256 entries indexed by col−no in the range 0−255. print−color may also be used to modify an
existing col−no index by re−assignment, the existing color definition is over−written with the new
color definition.

An argument n of 0 to print−color resets the printer color table, removing all currently defined
colors.

print−scheme creates a new printer scheme. A printer scheme maps the hilight(2) buffer's text into a
print scheme. For example key words could be printed in bold or in blue etc. print−scheme
arguments comprise an identifying index number "schemeNum", two color values, "fore" and "back"
(defined by print−color) and a font setting "font−mask". The font−mask is a bit mask where each bit
is defined as follows:

0x01 Enable bold font.
0x02 Enable italic font.
0x04 Enable light font.
0x08 Enable reverse font.
0x10 Enable underlining.

An argument n of 0 to print−scheme resets the printer scheme table, removing all currently defined
printer schemes.

NOTES

Printer schemes may be created and altered using the scheme−editor(3) dialog, the created printer

MicroEmacs '02

print−color(2) 1615

scheme may then be used directly in the print−setup(3) dialog. Therefore direct use of these
commands is largely redundant.

SEE ALSO

scheme−editor(3), print−setup(3), print−buffer(2), hilight(2), $buffer−hilight(5).

MicroEmacs '02

print−color(2) 1616

print−setup(3)

NAME

print−setup − Configure MicroEmacs's printer interface

SYNOPSIS

print−setup

DESCRIPTION

print−setup provides a dialog interface for configuring MicroEmacs's printing interface. print−setup
may be invoked from the main File menu or directly from the command line using
execute−named−command(2).

The print−setup dialog is broken down into three pages of configuration options, on all pages the
following buttons are available at the bottom of the dialog:−

Print

Prints the current buffer using the current configuration.

Exit

Quits print−setup, changes made to the configuration will be saved.

The following pages appear in the dialog:−

Printer

The Printer page is used to configure the type, style and location of the printer, the items on this page
are defined as follows:−

Driver

Sets the printer type to be used, selecting this item creates a drop down list of available printer
drivers. The drivers inform MicroEmacs which fonts and colors are available and how to
enable/disable them, these are usually special character sequences. The following special
drivers are defined:−

Default Plain Text

This driver does not use any special character sequences so the output it produces is plain

MicroEmacs '02

print−setup(3) 1617

text. This should work with most printers, but it does not support any colors or fonts.

HTML

This is a virtual printer driver as no printer uses HTML directly. However the files produced
by this driver can be loaded by a web−browser and rendered with full color and font support
so provides an efficient way of testing printer schemes. In addition may be used to convert the
text rendered in MicroEmacs into HTML content.

Windows

This utilizes MicroEmacs's built−in Windows printer interface (Windows platforms only). When
selected MicroEmacs communicates directly to the MS Printer Manager.

Print Scheme

Sets the color and font scheme to be used, selecting this item creates a drop down list of available
printer schemes − choose one appropriated for your printer. The Default Plain Text scheme does not
use any color or fonts so should work for all drivers. see the next item for scheme creation and
editing.

Edit

Opens the scheme−editor(3) dialog box to edit the currently selected printer scheme, the editor may
also be used to create and install new printer schemes.

Destination

Specifies the resultant print output, when selected a drop down menu appears containing the
following items:

To buffer only

Creates a "*printer*" buffer and prints to the buffer.

To file only

Creates a new temporary file and prints to it.

To file & print

Prints to a temporary file and then executes the command−line (see next item) to print the
resultant file (option not available when using the Windows printer driver).

Direct to printer

Output is sent directly to the printer, option only available when using the Windows driver.

Command−line

MicroEmacs '02

print−setup(3) 1618

Sets the command−line required to print a generated print file (option not available when the
Windows driver is selected as printing is done by talking to MS Print Manager directly). The
command−line should be a single shell command using "%f" whenever the name of the file to
be printed is required, e.g. on UNIX systems lp(1) or lpr(1) can usually be used as follows:−

lp −s %f

On MS−DOS machines this can usually be achieved by copying the file to the PRN device, as
follows:

copy %f PRN

Page Size

Displays the currently configured page size in the form:

ColumnsxRows Chars−WidexChars−High

the field cannot be edited directly, the settings Page Setup affect these values.

Page Setup

Paper Size

Sets the size of the printer paper, selecting this item will produce a pop down menu listing all
available paper sizes unless the Windows printer driver is being used in which case this field cannot
be selected and the Edit button must be used.

Character Size

Sets the size of a character within the page, expressed in terms of the number of characters which will
fit on the paper (widthxheight). When selected a drop down menu lists all available sizes for the
current paper size unless the Windows driver is selected in which case this field cannot be selected
and the Edit button must be used.

Edit (Windows only)

Opens a Windows printer dialog box allowing the user to specify the windows printer, paper size and
character size etc.

No. of Columns and Rows

Sets the number of sub−columns and rows to divide the page into, creating pages within a page.

Line Numbers

When enabled, prints the line number at the left hand edge for each line.

MicroEmacs '02

print−setup(3) 1619

Split Line ID

When enabled the last right hand text column is reserved for a split identifier. Whenever a line is too
long to fit on a single line it is split over two or more lines, if this option is enabled the right edge will
be set to the split character (usually a '\' char) to clearly indicate that the line is split.

Page Size

As with the Printer Page Size it displays the current page size, the field cannot be edited. Layout

Margins

Configures the top, bottom, left and right margins in characters.

Header

Sets whether a header should be printed and if so what it should be, the following special
strings can be used:

%%

Print a '%' character.

%b

Print the current buffer's name.

%D

Print the current day of the month.

%f

Print the current buffer's file name.

%h

Print the current hour.

%M

Print the current month of the year.

%m

Print the current minute of the hour.

%p

MicroEmacs '02

print−setup(3) 1620

Print the current page number.

%s

Print the current seconds.

%Y

Print the current year as a 2 digit number.

%y

Print the current year as a 4 digit number.

Footer

Sets whether a footer should be printed and if so what it should be, the same special strings can be used as for
the header. NOTES

user−setup is a macro using osd(2), defined in printstp.emf.

The list of available printer drivers and print schemes is stored in the macro file printers.emf.
Using the Install option of the scheme−editor(3) automatically adds the new scheme to the print
schemes list. To create a new printer driver a new configuration registry file (erf file − see
print*.erf for examples) must be created and added to the printer driver lists within
printer.emf.

SEE ALSO

print−buffer(2), scheme−editor(3), osd(2).

MicroEmacs '02

print−setup(3) 1621

printall(3f)

NAME

printall − Formatted print job

SYNOPSIS

me "@printall" <files>

DESCRIPTION

The start−up file printalls.emf may be invoked from the command line to generate a print job
for each file specified on the command line.

Given a list of <files>, the files are loaded into the editor, and then printed through MicroEmacs
printing formatter. This is an alternative to cgrind(1) or some other syntax smart pretty print filter.

The operation of this macro assumes that the printer is functioning correctly.

BUGS

As a guess, I would probably bet that this does not work very well on Windows as a dialog is invoked
for the print.

SEE ALSO

start−up(3).

MicroEmacs '02

printall(3f) 1622

python(9)

SYNOPSIS

python − Python Language File.

FILES

hkpython.emf − Python Language file hook definition

EXTENSIONS

.py − Python file

MAGIC STRINGS

^#![\t]*/.*env[\t]+python

MicroEmacs '02 recognizes the magic string on the first line of the file used to locate the executable. The
Python files may be extension−less and are still recognized. DESCRIPTION

The python file type template provides simple hilighting of Python files, the template provides
minimal hilighting.

File recognition is performed using the standard file extension .py, or by the magic string.

BUGS

There would appear to be too much applied hilighting in this file, it could probably do with
rationalizing.

SEE ALSO

Supported File Types

MicroEmacs '02

python(9) 1623

query−replace−all−string(3)

NAME

query−replace−all−string − Query replace string in a list of files

SYNOPSIS

n query−replace−all−string "from" "to" "files" ["grep−from"]

DESCRIPTION

query−replace−all−string, similar to query−replace−string(2), replaces all occurrences of "from" to
"to" in the given list of files prompting the user before replacing each occurrence.

The command finds all occurrences of "from" by calling the command grep(3) to search for string
"from" in files "files". Thus all relevant edited files must be saved or grep may return the wrong line
numbers. This is achieved by a call to save−some−buffers(2) which prompts the user to save any
changed buffers one at a time.

Each occurrence of "from" is jumped to using get−next−line(2) and the string is replaced by the call:

−1 query−replace−string "from" "to"

This query−replaces all occurrences of "from" to "to" on the current line only, hence the line numbers
must be correct. This also means that the "from" search string must be correctly formatted for both
grep and query−replace−string, unless bit 0x02 is set (see below).

The given argument n is a bit based flag which changes the default behavior described above. The bits
have the following effect:−

0x01

Prompt before saving any changed buffer, enabled by default. If this bit is not set then any changed
buffer is automatically saved before the grep is performed.

0x02

If set then a fourth argument "grep−from" must also be given. This string is used in place of the "from" string
for the grep only. NOTES

query−replace−all−string is a macro defined in search.emf.

The grep command must be working before this command can function properly.

MicroEmacs '02

query−replace−all−string(3) 1624

It is not recommended to use a "from" or "to" string which uses more that one line as the results may
be unpredictable.

As the change is likely to be over several files a single call to undo(2) at the end of execution will not
undo all the changes made. To undo all the changes made, use get−next−line(2) to loop through all
the occurrences and call undo for each occurrence

SEE ALSO

query−replace−string(2), save−some−buffers(2), grep(3), get−next−line(2), undo(2),
replace−all−string(3), search−forward(2).
Regular Expressions

MicroEmacs '02

query−replace−all−string(3) 1625

query−replace−string(2)

NAME

query−replace−string − Search and replace a string − with query

SYNOPSIS

query−replace−string (esc C−r)

DESCRIPTION

query−replace−string operates like the replace−string(2) command. replacing one string with
another. However, it allows you to step through each string and ask you if you wish to make the
replacement. The user is prompted for a replacement response as follows:−

Y

Make the replacement and continue on to the next string.

N

Do not make the replacement, and continue.

!

Replace the rest of the strings without asking.

^G

Stop the command.

.

Go back to place the command started

u

Undo last replacement.

l

Last replacement, do next and stop.

?

MicroEmacs '02

query−replace−string(2) 1626

Help − get a list of options. SEE ALSO

Refer to search−forward(2) for a description of the magic mode search characters.

replace−string(2).
Regular Expressions

MicroEmacs '02

query−replace−string(2) 1627

quick−exit(2)

NAME

quick−exit − Exit the editor writing changes
save−buffers−exit−emacs − Exit the editor prompt user to write changes

SYNOPSIS

quick−exit (esc z)
save−buffers−exit−emacs (C−x C−c)

DESCRIPTION

quick−exit writes out all changed buffers to the files they were read from, saves all changed
dictionaries, killing any running commands and exits the editor.

save−buffers−exit−emacs operates a quick−exit only prompts the user before saving any files.

NOTES

All buffers with a name starting with a '*' are assumed to be system buffer (i.e. *scratch*) and are not
saved.

SEE ALSO

exit−emacs(2), save−buffer(2).

MicroEmacs '02

quick−exit(2) 1628

quiet(2m)

NAME

quiet − Quiet mode

SYNOPSIS

quiet Mode

DESCRIPTION

When quiet mode is enabled, visual warnings are given instead of the default audible warning. This
mode can only be globally changed, an error will occur if an attempt is made to change the mode for a
buffer.

The default state is on, so users of MicroEmacs '02 can relax in the knowledge that they won't annoy
other people when things go wrong.

When disabled the system bell is rung when required, otherwise the usual visual warning is the
"[BELL]" string, printed on the bottom right hand side.

SEE ALSO

global−mode(2).

MicroEmacs '02

quiet(2m) 1629

quote−char(2)

NAME

quote−char − Insert literal character

SYNOPSIS

n quote−char "key" (C−q)

DESCRIPTION

quote−char inserts the next typed character n times, default is 1, ignoring the fact that it may be a
command character. quote−char obeys the current buffer setting of over(2m) mode.

SEE ALSO

insert−string(2), Symbol(3).

MicroEmacs '02

quote−char(2) 1630

RegularExpressions(2)

REGULAR EXPRESSIONS

Regular Expressions are used in the search (and replace) operations. The following notes are
applicable when magic(2m) mode is enabled.

Overview

A "regular expression" (or "regex", or "pattern") is a text string that describes some (mathematical)
set of strings. A regex R "matches" a string S if S is in the set of strings described by R.

MicroEmacs '02 includes the GNU regular expression pattern matcher library, regex which provides
a powerful search engine, using the search engine you can:

see if a string matches a specified pattern as a whole, and♦
search within a string for a substring matching a specified pattern.♦

Some regular expressions match only one string, i.e., the set they describe has only one member. For
example, the regular expression 'foo' matches the string 'foo' and no others. Other regular
expressions match more than one string, i.e., the set they describe has more than one member. For
example, the regular expression 'f*' matches the set of strings made up of any number (including
zero) of 'f's. As you can see, some characters in regular expressions match themselves (such as 'f')
and some don't (such as '*'); the ones that do not match themselves instead let you specify patterns
that describe many different strings.

Syntax of Regular Expressions

Regular expressions have a syntax in which a few characters are special constructs and the rest are
"ordinary". An ordinary character is a simple regular expression which matches that same character
and nothing else. The special characters are '$', '^', '.', '*', '+', '?', '[', ']' and '\'. Any other character
appearing in a regular expression is ordinary, unless a '\' precedes it.

For example, 'f' is not a special character, so it is ordinary, and therefore 'f' is a regular expression
that matches the string 'f' and no other string. (It does not match the string 'ff'.) Likewise, 'o' is a
regular expression that matches only 'o'. (When case distinctions are being ignored, these regexs also
match 'F' and 'O', but we consider this a generalization of "the same string", rather than an exception.)

Any two regular expressions A and B can be concatenated. The result is a regular expression which
matches a string if A matches some amount of the beginning of that string and B matches the rest of
the string.

As a simple example, we can concatenate the regular expressions 'f' and 'o' to get the regular
expression 'fo', which matches only the string 'fo'. Still trivial. To do something nontrivial, you need
to use one of the special characters. Here is a list of them.

MicroEmacs '02

RegularExpressions(2) 1631

. (Period)

is a special character that matches any single character except a newline. Using concatenation, we can
make regular expressions like 'a.b', which matches any three−character string that begins with 'a'
and ends with 'b'.

* (asterisk)

is not a construct by itself; it is a postfix operator that means to match the preceding regular
expression repetitively as many times as possible. Thus, 'o*' matches any number of 'o's (including
no 'o's).

'*' always applies to the smallest possible preceding expression. Thus, 'fo*' has a repeating
'o', not a repeating 'fo'. It matches 'f', 'fo', 'foo', and so on.

The matcher processes a '*' construct by matching, immediately, as many repetitions as can
be found. Then it continues with the rest of the pattern. If that fails, backtracking occurs,
discarding some of the matches of the '*'−modified construct in case that makes it possible to
match the rest of the pattern. For example, in matching 'ca*ar' against the string 'caaar',
the 'a*' first tries to match all three 'a's; but the rest of the pattern is 'ar' and there is only 'r'
left to match, so this try fails. The next alternative is for 'a*' to match only two 'a's. With this
choice, the rest of the regex matches successfully.

+ (plus) is a postfix operator, similar to '*' except that it must match the preceding expression
at least once. So, for example, 'ca+r' matches the strings 'car' and 'caaaar' but not the
string 'cr', whereas 'ca*r' matches all three strings.

'?' (question mark)

is a postfix operator, similar to '*' except that it can match the preceding expression either once or not
at all. For example, 'ca?r' matches 'car' or 'cr'; nothing else.

[...]

is a "character set", which begins with '[' and is terminated by ']'. In the simplest case, the characters
between the two brackets are what this set can match.

Thus, '[ad]' matches either one 'a' or one 'd', and '[ad]*' matches any string composed of
just 'a's and 'd's (including the empty string), from which it follows that 'c[ad]*r' matches
'cr', 'car', 'cdr', 'caddaar', etc.

You can also include character ranges in a character set, by writing the starting and ending
characters with a '−' between them. Thus, '[a−z]' matches any lower−case ASCII letter.
Ranges may be intermixed freely with individual characters, as in '[a−z$%.]', which
matches any lower−case ASCII letter or '$', '%' or period.

Note that the usual regex special characters are not special inside a character set. A
completely different set of special characters exists inside character sets: ']', '−' and '^'.

MicroEmacs '02

RegularExpressions(2) 1632

To include a ']' in a character set, you must make it the first character. For example, '[]a]'
matches ']' or 'a'. To include a '−', write '−' as the first or last character of the set, or put it
after a range. Thus, '[]−]' matches both ']' and '−'.

To include '^' in a set, put it anywhere but at the beginning of the set.

When you use a range in case−insensitive search, you should write both ends of the range in
upper case, or both in lower case, or both should be non−letters. The behavior of a
mixed−case range such as 'A−z' is somewhat ill−defined, and it may change in future Emacs
versions.

[^ ...]

'[^' begins a "complemented character set", which matches any character except the ones specified.
Thus, '[^a−z0−9A−Z]' matches all characters *except* letters and digits.

'^' is not special in a character set unless it is the first character. The character following the
'^' is treated as if it were first (in other words, '−' and ']' are not special there).

A complemented character set can match a newline, unless newline is mentioned as one of the
characters not to match. This is in contrast to the handling of regexs in programs such as
grep(1).

^ (caret)

is a special character that matches the empty string, but only at the beginning of a line in the text
being matched. Otherwise it fails to match anything. Thus, '^foo' matches a 'foo' that occurs at the
beginning of a line.

$ (dollar)

is similar to '^' but matches only at the end of a line. Thus, 'x+$' matches a string of one 'x' or more at
the end of a line.

\ (backslash)

has two functions: it quotes the special characters (including '\'), and it introduces additional special
constructs.

Because '\' quotes special characters, '\$' is a regular expression that matches only '$', and
'\[' is a regular expression that matches only '[', and so on.

Note: for historical compatibility, special characters are treated as ordinary ones if they are in
contexts where their special meanings make no sense. For example, '*foo' treats '*' as
ordinary since there is no preceding expression on which the '*' can act. It is poor practice to
depend on this behavior; it is better to quote the special character anyway, regardless of where
it appears.

MicroEmacs '02

RegularExpressions(2) 1633

For the most part, '\' followed by any character matches only that character. However, there
are several exceptions: two−character sequences starting with '\' that have special meanings.
The second character in the sequence is always an ordinary character when used on its own.
Here is a table of '\' constructs.

\| (bar)

specifies an alternative. Two regular expressions A and B with '\|' in between form an
expression that matches some text if either A matches it or B matches it. It works by trying to
match A, and if that fails, by trying to match B.

Thus, 'foo\|bar' matches either 'foo' or 'bar' but no other string.

'\|' applies to the largest possible surrounding expressions. Only a surrounding '\(
... \)' grouping can limit the grouping power of '\|'.

Full backtracking capability exists to handle multiple uses of '\|'.

\(... \)

is a grouping construct that serves three purposes:

To enclose a set of '\|' alternatives for other operations. Thus,
'\(foo\|bar\)x' matches either 'foox' or 'barx'.

•

To enclose a complicated expression for the postfix operators '*', '+'
and '?' to operate on. Thus, 'ba\(na\)*' matches 'bananana',
etc., with any (zero or more) number of 'na' strings.

•

To record a matched substring for future reference. This last
application is not a consequence of the idea of a parenthetical
grouping; it is a separate feature that is assigned as a second meaning
to the same '\(... \)' construct. In practice there is no conflict
between the two meanings.

•

'\D'

matches the same text that matched the Dth occurrence of a `\(... \)' construct.

After the end of a '\(... \)' construct, the matcher remembers the beginning and
end of the text matched by that construct. Then, later on in the regular expression,
you can use '\' followed by the digit D to mean "match the same text matched the Dth
time by the '\(... \)' construct."

The strings matching the first nine '\(... \)' constructs appearing in a regular
expression are assigned numbers 1 through 9 in the order that the open−parentheses
appear in the regular expression. So you can use '\1' through '\9' to refer to the text
matched by the corresponding '\(... \)' constructs.

For example, '\(.*\)\1' matches any newline−free string that is composed of two
identical halves. The '\(.*\)' matches the first half, which may be anything, but the

MicroEmacs '02

RegularExpressions(2) 1634

'\1' that follows must match the same exact text.

If a particular '\(... \)' construct matches more than once (which can easily
happen if it is followed by '*'), only the last match is recorded.

\`

matches the empty string, but only at the beginning of the buffer or string being matched
against.

NOTE: This currently only matches the start of the current line − it does not match
the start of the buffer.

\'

matches the empty string, but only at the end of the buffer or string being matched against.

NOTE: This currently only matches the end of the current line − it does not match
the end of the buffer.

\=

matches the empty string, but only at point.

\b

matches the empty string, but only at the beginning or end of a word. Thus, '\bfoo\b'
matches any occurrence of 'foo' as a separate word. '\bballs?\b' matches 'ball' or
'balls' as a separate word.

'\b' matches at the beginning or end of the buffer regardless of what text appears next
to it.

\B matches the empty string, but *not* at the beginning or end of a word.

\<

matches the empty string, but only at the beginning of a word. '\<' matches at the beginning
of the buffer only if a word−constituent character follows.

\>

matches the empty string, but only at the end of a word. '\>' matches at the end of the buffer
only if the contents end with a word−constituent character.

\w

matches any word−constituent character. The syntax table determines which characters these
are.

MicroEmacs '02

RegularExpressions(2) 1635

\W

matches any character that is not a word−constituent.

\sC

matches any character whose syntax is C. Here C is a character that represents a syntax code:
thus, 'w' for word constituent, '−' for whitespace, '(' for open parenthesis, etc. Represent a
character of whitespace (which can be a newline) by either '−' or a space character.

\SC

matches any character whose syntax is not C.

\{N,M\}

Matches an integer number of the previous item, where N and M are integer constants
interpreted as follows:−

\{N\}

The preceeding item is matched exactly N times.

\{N,\}

The preceeding item is matched N or more times.

\{N,M\}

The preceeding item is matched at least N times, but no more than M times.

\{,M\}

The preceeding item is optional and is matched at most M times.

The constructs that pertain to words and syntax are controlled by the setting of the syntax table.

Syntax of Replacement Expressions

A regular expression replacement, query−replace−string(2) command (with magic(2m) mode
enabled), replaces exact matches for a single string or pattern. The replacement pattern may be a
constant; it may also refer to all or part of what is matched by the regular expression search string.

\&

In the replacement pattern, \& stands for the entire match being replaced. (as does \0).

\D

MicroEmacs '02

RegularExpressions(2) 1636

In the replacement pattern, where D is a digit 1−9, stands for whatever matched the Dth
parenthesized grouping (\(.. \)) in search pattern. To include a '\' in the text to replace
with, you must enter '\\'. For example,

M−x query−replace−string<RET> c[ad]+r <RET> \&−safe <RET>

replaces (for example) "cadr" with "cadr−safe" and "cddr" with "cddr−safe".

M−x query−replace−string<RET> \(c[ad]+r\)−safe <RET> \1 <RET>

performs the inverse transformation.

\0 is a special case, this represents the whole of the search pattern, it is equivalent to \&.

Searching and Case

Searching may be either case sensitive or case insensitive, and is controlled by the exact(2m) mode.
When exact mode is enabled (default) the then searches are case sensitive; disabled then case is
ignored. The exact(2m) mode is set on a per−buffer basis.

NOTES

The search engine searches for the longest string that matches a given pattern, the longest pattern is
sometimes the pattern that is not actually required. For instance, consider searching for an HTML
bracket set. The simplest search is:−

M−x search−forward "<.*>"

Unfortunately, this pattern is not specific enough, given an HTML line:−

Jasspa Site

Then the pattern matched is actually the whole line as the .* matches everything to the last >, this is
the longest string. To rectify the pattern then we must be more specific, the correct search pattern to
use in this instance is:−

M−x search−forward "<[^>]*>"

In this case we match any character excluding the closing character, this guarantees that we always
find the shortest string match. A search of our HTML line locates two separate instances of the
regular expression and .

SEE ALSO

search−forward(2), search−backward(2), buffer−mode(2), exact(2m), hunt−backward(2),
hunt−forward(2), isearch−forward(2), magic(2m), replace−string(2).

MicroEmacs '02

RegularExpressions(2) 1637

rbin(2m)

NAME

rbin − Reduced binary editor mode

SYNOPSIS

rbin Mode

r − mode line letter.

DESCRIPTION

rbin mode is enabled when a file is edited in reduced binary mode. The mode is automatically
enabled when a file is loaded as a binary data file via find−file(2).

When a file is loaded using rbin mode, every 256 bytes is converted into a line of text, the line is a
single list of hex numbers 512 characters long, 2 bytes for each character. This format is not very user
friend unlike binary(2m) mode, but is much more memory efficient (requiring approximately 2 times
more memory than the file size).

When writing out a file which has rbin mode enabled the format of each line must be correct, namely
an even number of hex numbers with no other characters.

EXAMPLE

Given a single line MSDOS file:−

Live long and prosper.

When loaded in using binary mode the following 2 line buffer will be produced:−

4C697665206C6F6E6720616E642070726F737065722E0D0A1A

Note the "0D 0A 1A" at the end, this is due to MSDOS's "\n\r" carriage returns and ^Z file
termination. The given file could be made UNIX compatible by editing the buffer to:−

4C697665206C6F6E6720616E642070726F737065722E0D

NOTES

rbin and binary modes are mutually exclusive, i.e. they cannot both be enabled at the same time.

MicroEmacs '02

rbin(2m) 1638

SEE ALSO

find−file(2), binary(2m).

MicroEmacs '02

rbin(2m) 1639

rcs−file(2)

NAME

rcs−file − Handle Revision Control System (RCS) files

SYNOPSIS

n rcs−file (C−x C−q)

DESCRIPTION

MicroEmacs '02 RCS support command. The action of this command depends on the current buffer
view(2m) mode state, the argument n, and the existence of an RCS file.

view−mode ON; RCS file does not exist

Removes buffer view mode to enable the user to edit the file.

view−mode ON; RCS file exists

MicroEmacs attempts to check out the file using the command line given by the variable
$rcs−cou−com(5) (co unlock). The file is then reloaded and the view mode status re−evaluated.

view−mode OFF; RCS file does not exist

MicroEmacs attempts to check−in the file into RCS for the first time using the command−line given
by the variable $rcs−cif−com(5) (ci first). The file is then reload.

view−mode OFF; RCS file exists

MicroEmacs attempts to check−in the file into RCS using the command−line given by the variable
$rcs−ci−com(5). The file is then reload.

−ve argument given

MicroEmacs attempts to unedit any changes made to the file using the command−line given by the variable
$rcs−ue−com(5). The file is then reload. SEE ALSO

rcs(1). $rcs−file(5), buffer−mode(2), find−file(2), view(2m).

MicroEmacs '02

rcs−file(2) 1640

read−file(2)

NAME

read−file − Find and load file replacing current buffer

SYNOPSIS

n read−file "file−name" (C−x C−r)

DESCRIPTION

read−file operates like find−file(2), this command either finds the file in a buffer, or creates a new
buffer and reads the file in. The command destroys the current buffer before the new buffer is created
making this command ideal to use when the wrong file was entered on a find−file(2). This command
is also useful for re−loading files that have changed on disk.

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files. SEE ALSO

reread−file(3), find−file(2), view−file(2), binary(2m), crypt(2m), rbin(2m).

MicroEmacs '02

read−file(2) 1641

read−history(2)

NAME

read−history − Read in session history information

SYNOPSIS

n read−history ["hist−file"]

DESCRIPTION

read−history reads in a MicroEmacs '02 history file, setting the current history information. If
argument n is not given then the given "hist−file" is simply read in. If a non−zero argument is
specified then default history is set to the given file−name and the file is read. If an argument of zero
is given then the default history is re−read. Information read in (and saved) from the history file
includes:−

Searching and replacing history.♦
Buffer name history.♦
Command name history.♦
File name history.♦
General (all the rest) history.♦
Buffer and file list with line numbers.♦

MicroEmacs '02's environment may be retained almost intact by the use of the default history and
using the −c (continue) command−line option to re−load all files that were being edited in a previous
session.

NOTES

When running multiple MicroEmacs '02 sessions on the same work−station (or different workstations
sharing the same home directory), the default history is saved when MicroEmacs '02 exits. As a result
the last MicroEmacs '02 sessions that terminates writes the history information used next time.

The history information is saved in a registry format file (see erf(8)). Reference should be made to the
notes included in erf(8) as to how the history file may be edited and effected in the same MicroEmacs
'02 session.

SEE ALSO

erf(8), save−history(2).

MicroEmacs '02

read−history(2) 1642

read−registry(2)

NAME

read−registry − Read in a registry definition file

SYNOPSIS

read−registry "root" "file" "mode"

DESCRIPTION

read−registry loads a registry file erf(8) into the internal registry memory, where the information
may be queried via the registry macro commands. The arguments are defined as follows:−

root

The root node in the registry to into which the registry contents are attached. The root name is limited
to 32 characters in length and is specified without a leading forward slash '/'. The node root is created
at the root of the registry.

file

The name of the registry file erf(8) to load. This may be an absolute, relative or $MEPATH specified
file; typically it is located on $MEPATH.

mode

The mode is string specifying the registry node loading and saving modes, each mode is
represented by a character. Lower case characters add a mode, upper case characters delete a
mode. The modes are defined as follows:−

a − Autosave

Automatically saves the registry when it is deleted or unloaded from the registry. The user is
not prompted for a save.

b − Backup

Automatically performs a backup of the registry file whenever a save operation is performed.

c − Create

If the registry file cannot be loaded then the root node is created and the invocation succeeds.
If this mode is omitted then the call fails if the file cannot be found.

MicroEmacs '02

read−registry(2) 1643

d − Discard

Marks the registry as discardable. This is typically used for registries that are not saved.

r − Reload

If the registry node already exists then it is deleted and reloaded, see also the merge flag (m).
By default, when both the r and m flags are omitted and the registry node already exists the
read operation is not performed and the existing node is used.

m − Merge

The registry file is merged with the contents of any existing registry node. (i.e. the existing
registry tree nodes are not deleted if they already exist). See also the reload flag (r).

h − Hidden

The registry node is created in the Hidden state. (i.e. children will not be shown in
list−registry(2) output).

u − Updated

Marks the registry as modified. The modified bit is removed when the registry file is saved. If the
modified bit is applied to a registry node the user will be prompted to save the registry when it is
deleted (or it will be automatically saved when the Autosave mode is used).

Multiple modes may be applied.

EXAMPLE

The following example is a typical call made from a macro using a registry file where the user may
edit the registry file. In this case this a reload of the registry is forced to ensure that the most
up−to−date contents are retrieved. Note that the name of the registry file is actually retrieved from the
history registry.

set−variable #l1 ® "/history" "address" $MENAME
!if &seq &set #l0 &find #l1 ".ab" "ERROR"
 set−variable #l0 ® "/" "history" ""
 set−variable #l0 &spr "%s%s.ab" &lef #l0 &rsin "/" #l0 #l1
!endif
read−registry "AddressBook" #l0 "rc"

BUGS

At exit only registry nodes attached to the root are saved.

SEE ALSO

MicroEmacs '02

read−registry(2) 1644

save−registry(2), list−registry(2), mark−registry(2), erf(8).

MicroEmacs '02

read−registry(2) 1645

recenter(2)

NAME

recenter − Recenter the window (refresh the screen)

SYNOPSIS

n recenter (C−l)

DESCRIPTION

recenter scrolls the current window so that the cursor position is at the center of the window and
redraws the whole screen. If n is given then scrolls the window so that the cursor is n lines from the
top if n is positive or from the bottom if negative.

recenter is typically used to refresh the screen if it is out of date (i.e. needs to be redrawn).

SEE ALSO

screen−update(2).

MicroEmacs '02

recenter(2) 1646

regex−forward(3)

NAME

regex−forward − Search for a magic string in the forward direction
regex−backward − Search for a magic string in the backward direction

SYNOPSIS

n regex−forward "string"
n regex−backward "string"

DESCRIPTION

regex−forward searches for a regular expression string from the current cursor position to the end of
the file. A case insensitive regular expression search is performed regardless of the magic(2m) and
exact(2m) mode settings.

The numeric argument n is interpreted as follows:−

n > 0

The nth occurrence of the string is located.

n < 0

The first occurrence of the string is located in the next n lines.

regex−backward searches backwards in the file. In all other ways it is like regex−forward.

DIAGNOSTICS

The command returns a status of FALSE if the string could not be located (or nth string where n
occurrences are requested). If the string is found within the given search criteria the return status is
TRUE.

NOTES

The regex−forward and regex−backward commands are not publically available from the command
line, but may be used within macros to perform regular expression searches regardless of the user
mode settings.

These commands are implemented as macros in utils.emf.

MicroEmacs '02

regex−forward(3) 1647

SEE ALSO

buffer−mode(2), exact(2m), isearch−forward(2), magic(2m), replace−string(2), search−backward(2),
search−forward(2).
Regular Expressions

MicroEmacs '02

regex−forward(3) 1648

replace−all−pairs(3)

NAME

replace−all−pairs − Replace string pairs in a list of files

SYNOPSIS

n replace−all−pairs "files"

DESCRIPTION

replace−all−pairs uses the current buffer to extract "from" and "to" pairs and then replaces all
occurrences of "from" to "to" in the given list of files without prompting the user. An optional third
argument "grep" can be given which will be used as the grep string, if not given the "from" string is
used. The format of the current buffer must be:

/from1/to1/
Xfrom2Xto2X
?from3?to3?
/from4/to4/grep4/
 .
 .
/fromN/toN/

For each pair the command finds all occurrences of "from" (or "grep" if specified) by calling the
command grep(3) to search for string "from" in files "files". Thus all relevant edited files must be
saved or grep may return the wrong line numbers. This is achieved by a call to save−some−buffers(2)
between each replace pair, it is called with an argument of 0 to ensure that any changed buffers are
automatically saved.

Each occurrence of "from" is jumped to using get−next−line(2) and the string is replaced by the call:

−1 replace−string "from" "to"

This replaces all occurrences of "from" to "to" on the current line only, hence the line numbers must
be correct. This also means that the "from" search string must be correctly formatted for both grep and
replace−string.

The given argument n is a bit based flag which changes the default behavior described above. The bits
have the following effect:−

0x01

Prompt before saving any changed buffers FIRST time ONLY, enabled by default. If set then the user is also
prompted to continue before any changes are made. If this bit is not set then the command executes without
any user input. NOTES

MicroEmacs '02

replace−all−pairs(3) 1649

replace−all−pairs is a macro defined in search.emf.

The grep command must be working before this command can function properly.

It is not recommended to use a "from" or "to" string which uses more that one line as the results may
be unpredictable.

As the change is likely to be several pair strings with each changed buffer being saved between pairs
undo(2) cannot be used to undo the changes. Neither can the backups be relied on as a buffer may be
saved more than once in this process, therefore it is strongly recommend that a backup of the files is
made before commencing with this command.

SEE ALSO

replace−all−string(3), replace−string(2), save−some−buffers(2), grep(3), get−next−line(2), undo(2),
query−replace−all−string(3), search−forward(2).
Regular Expressions

MicroEmacs '02

replace−all−pairs(3) 1650

replace−all−string(3)

NAME

replace−all−string − Replace string with new string in a list of files

SYNOPSIS

n replace−all−string "from" "to" "files" ["grep−from"]

DESCRIPTION

replace−all−string, similar to replace−string(2), replaces all occurrences of "from" to "to" in the
given list of files without prompting the user.

The command finds all occurrences of "from" by calling the command grep(3) to search for string
"from" in files "files". Thus all relevant edited files must be saved or grep may return the wrong line
numbers. This is achieved by a call to save−some−buffers(2) which prompts the user to save any
changed buffers one at a time.

Each occurrence of "from" is jumped to using get−next−line(2) and the string is replaced by the call:

−1 replace−string "from" "to"

This replaces all occurrences of "from" to "to" on the current line only, hence the line numbers must
be correct. This also means that the "from" search string must be correctly formatted for both grep and
replace−string, unless bit 0x02 is set (see below).

The given argument n is a bit based flag which changes the default behavior described above. The bits
have the following effect:−

0x01

Prompt before saving any changed buffer, enabled by default. If this bit is not set then any changed
buffer is automatically saved before the grep is performed.

0x02

If set then a fourth argument "grep−from" must also be given. This string is used in place of the "from" string
for the grep only. NOTES

replace−all−string is a macro defined in search.emf.

The grep command must be working before this command can function properly.

MicroEmacs '02

replace−all−string(3) 1651

It is not recommended to use a "from" or "to" string which uses more that one line as the results may
be unpredictable.

As the change is likely to be over several files a single call to undo(2) at the end of execution will not
undo all the changes made. To undo all the changes made, use get−next−line(2) to loop through all
the occurrences and call undo for each occurrence

SEE ALSO

replace−string(2), save−some−buffers(2), grep(3), get−next−line(2), undo(2),
query−replace−all−string(3), replace−all−pairs(3), search−forward(2).

MicroEmacs '02

replace−all−string(3) 1652

replace−string(2)

NAME

replace−string − Replace string with new string

SYNOPSIS

n replace−string (esc r)

DESCRIPTION

replace−string replaces all occurrences of one string with another string. The replacement starts at
the current location of the cursor and goes to the end of the current buffer.

A numeric argument positive n limits the number of strings replaced to n. A negative argument n
limits the number of lines in which the replacement may take place, e.g. a value of −15 restricts the
replacement of the string to the next 15 lines from the current cursor position.

SEE ALSO

See Operating Modes for a description of the magic(2m) and exact(2m) modes which change the
search space.

buffer−mode(2), query−replace−string(2), search−forward(2).
Regular Expressions

MicroEmacs '02

replace−string(2) 1653

reread−file(3)

NAME

reread−file − Reload the current buffer's file

SYNOPSIS

reread−file

DESCRIPTION

reread−file reloads from disk the file associated with the current buffer, this command is particularly
useful when the file is continually updated by an external program. If the buffer has been edited and
its name does not start with a '*' then the user is prompted as to whether the changes should be
discarded. Also if the buffer has an active process running in it then confirmation is sort from the user
before the process is killed.

NOTES

reread−file is a macro implemented in tool.emf.

SEE ALSO

find−file(2), read−file(2), view−file(2).

MicroEmacs '02

reread−file(3) 1654

resize−all−windows(2)

NAME

resize−all−windows − Automatically resize the windows

SYNOPSIS

n resize−all−windows

DESCRIPTION

resize−all−windows performs an automatic layout of the windows on the screen, reorganizing the
windows such that each window has an equal amount of space. The argument n determines which
axes reorganization is performed in.

A +ve argument reorganizes the windows vertically, leaving the horizontal arrangement as is.♦
A −ve argument rearranges the windows horizontally, leaving the vertical arrangement as is.♦
An argument of zero performs no vertical or horizontal arrangement.♦
No argument re−arranges both the vertical and horizontal window layout.♦

SEE ALSO

resize−window−vertically(2), resize−window−horizontally(2), split−window−vertically(2).

MicroEmacs '02

resize−all−windows(2) 1655

restyle−buffer(3)

NAME

restyle−buffer − Automatically reformat a buffer's indentation.
restyle−region − Automatically reformat a regions indentation.

SYNOPSIS

restyle−buffer
restyle−region

DESCRIPTION

restyle−buffer automatically re−formats the indentation of a buffer. The indentation only operates if
the indentation method is defined with cmode(2m) or $buffer−indent(5), otherwise the command has
no effect.

restyle−region modifies the indentation between point and mark.

NOTES

restyle−buffer and restyle−region are macros defined in format.emf.

SEE ALSO

cmode(2m), indent(2), $buffer−indent(5).

MicroEmacs '02

restyle−buffer(3) 1656

reyank(2)

NAME

reyank − Restore next yank buffer

SYNOPSIS

n reyank (esc y)

DESCRIPTION

Every region killed goes onto a stack, with the most recent at the top. Immediately after yanking text
out into the current buffer using yank(2), the user may reyank which deletes the region just yanked
and replaces it with n insertions of the next region on the kill stack. Another call to reyank deletes that
region and replaces it with the next in the stack etc.

The last 15 kills are stored.

SEE ALSO

copy−region(2), kill−region(2), set−mark(2), yank(2).

MicroEmacs '02

reyank(2) 1657

rul(9)

SYNOPSIS

rul − Install Shield Rules

FILES

hkrul.emf − Install Shield hook definition
rul.etf − Install Shield template file.

EXTENSIONS

.rul − Install Shield Rules file

DESCRIPTION

The rul file type template provides simple hilighting of Install Shield Rules files.

Hilighting

The hilighting features allow commands, variables, logical, comments, strings and characters of the
language to be differentiated and rendered in different colors.

Auto Layout

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3)
and restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the
whole buffer, respectively.

Folding and Information Hiding

Generic folding is enabled within the rul file. The folds occur about the keywords function...end
located on the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds
the current region.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.
C−c C−e − Comment to the end of the line with stars (*).
f2 − (un)fold the current region

MicroEmacs '02

rul(9) 1658

f3 − (un)fold all regions

BUGS

None reported.

SEE ALSO

fold−current(3), fold−all(3), indent(2), restyle−region(3) restyle−buffer(3)

Supported File Types

MicroEmacs '02

rul(9) 1659

save(2m)

NAME

save − Flag buffer to be saved

SYNOPSIS

save Mode

S − mode line letter.

DESCRIPTION

This mode cannot be set globally and can only be set on a buffer which needs saving. The mode is
used to flag that the buffer is to be saved, the state of the mode is displayed in the output of
list−buffers(2). If the second column is an 'S' the mode is set, otherwise it is not. Only the execute
command in list−buffers(2) (bound to 'x') uses this flag to actually save the buffer and the flag is
automatically removed as soon as the buffer is saved.

SEE ALSO

list−buffers(2), del(2m).

MicroEmacs '02

save(2m) 1660

save−all(3)

NAME

save−all − Save all modified files (with query)

SYNOPSIS

n save−all

DESCRIPTION

save−all cycles through all buffers, dictionaries and registry files writing back any changes made. For
each buffer, dictionary or registry file which has been modified the user is prompted before the
changes are saved, a value of y initiates the save, n skips the save.

The argument n can be used to change the default behavior of save−all described above, n is a bit
based flag where:−

0x01

Enables the user prompt before the file is saved (default). If this flag is not supplied then all modified files
will automatically be written. NOTES

save−all is a macro defined in me.emf, using commands save−some−buffers(2), save−dictionary(2)
and save−registry(2).

SEE ALSO

save−some−buffers(2), save−dictionary(2), save−registry(2).

MicroEmacs '02

save−all(3) 1661

save−buffer(2)

NAME

save−buffer − Save contents of changed buffer to file

SYNOPSIS

n save−buffer (C−x C−s)

DESCRIPTION

save−buffer saves the contents of the current buffer if the contents have been changed, writing the
buffer back to the file it was read from.

On saving the file, if time(2m) mode is enabled then the time stamp string is searched for in the file
and modified if located, to reflect the modification date and time.

If backup(2m) mode is enabled then a backup copy of the file existing is created and the contents of
the buffer are written to the file. Any automatic save copies of the file are deleted.

If the buffer contains a narrow(2m) it will automatically be removed before saving so that the whole
buffer is saved and restored when saving is complete

If auto(2m) mode is enabled the the file is written out in the style indicated by modes crlf(2m) and
ctrlz(2m). Otherwise the file is written out in the style on the current platform.

The argument n can be used to change the default behavior of save−buffer described above, n is a bit
based flag where:−

0x01

Enables validity checks (default). These include check that the buffer has been modified, if not an
error occurs. Also the time stamp of the file to be written is checked, if the file systems file exists and
is newer the confirmation of writing is requested from the user. If this flag is not supplied then the
buffer is written whenever possible and without any prompts to the user.

0x02

Disables the expansion of any narrows (see narrow−buffer(2)) before saving the buffer. NOTES

undo(2) information is discarded when the file is saved.♦
Refer to $auto−time(5) for a description of the file extensions used by MicroEmacs '02 for
backup and temporary files.

♦

MicroEmacs '02

save−buffer(2) 1662

Buffers may also be saved via the list−buffers(2) command.♦

SEE ALSO

$auto−time(5), $timestamp(5), buffer−mode(2), find−file(2), narrow−buffer(2),
save−some−buffers(2), undo(2), backup(2m), time(2m), undo(2m), narrow(2m), auto(2m), crlf(2m),
ctrlz(2m), write−buffer(2), append−buffer(2).

MicroEmacs '02

save−buffer(2) 1663

save−dictionary(2)

NAME

save−dictionary − Save changed spelling dictionaries

SYNOPSIS

n save−dictionary ["dictionary"]

DESCRIPTION

save−dictionary may be used to save one, or all changed, dictionaries back to disk. By default
save−dictionary prompts for a single dictionary, which is then saved. If the dictionary to be saved
has been created within the session (rather than read from disk) the user is always prompted to save
and enter a full dictionary file name (pathname) to save to. If the dictionary was not created then the
user is only prompted to save if,

a non−zero argument is supplied♦
and the users history registry node "/history/spell/autosave" does not exist or its value is zero.♦

Otherwise the dictionary is automatically saved.

The argument n may be used to control the effect of the command, n is a bit based flag defined as
follows:−

0x01

Enables prompting before saving, only used when saving all dictionaries.

0x02

Save all changed dictionaries. NOTES

This command is called to save all dictionary changes whenever MicroEmacs is exited.

The dictionary auto−save registry value can be changed via the user−setup(3) dialog.

SEE ALSO

add−dictionary(2), delete−dictionary(2), spell(2).

MicroEmacs '02

save−dictionary(2) 1664

save−history(2)

NAME

save−history − Write history information to history file

SYNOPSIS

n save−history "hist−file"

DESCRIPTION

save−history writes out MicroEmacs '02's current history information into the given history file.

The command read−history(2) can set a default history file in which case the history is automatically
written out to this file if an argument of zero is given; the user is not prompted for a file. MicroEmacs
'02 automatically tries to write the default history whenever it is exited.

NOTES

The history information is saved in a registry format file (see erf(8)). Reference should be made to the
notes included in erf(8) as to how the history file may be edited and effected in the same MicroEmacs
'02 session.

SEE ALSO

erf(8), read−history(2).

MicroEmacs '02

save−history(2) 1665

save−registry(2)

NAME

save−registry − Write a registry definition file

SYNOPSIS

n save−registry ["root" "file"]

DESCRIPTION

save−registry saves a registry tree, defined by root, to a registry file file in the erf(8) format. By
default the user is prompted for the registry root to save, which must already exist. If the file given is
the empty string "", the registry node root must be a root node with an associated file name stored,
this file name is used.

The argument n may be used to control the effect of the command, n is a bit based flag defined as
follows:−

0x01

Enables prompting before saving, only used when saving all registries.

0x02

Save all changed registries except the history node which should be saved using the command
save−history(2). NOTES

This command is called to save all registry changes whenever MicroEmacs is exited.

SEE ALSO

read−registry(2), save−history(2), erf(8).

MicroEmacs '02

save−registry(2) 1666

save−some−buffers(2)

NAME

save−some−buffers − Save contents of all changed buffers to file (with query)

SYNOPSIS

n save−some−buffers

DESCRIPTION

save−some−buffers cycles through all visible buffers (buffers without mode hide(2m) set) and
attempts to save all modified ones, writing the contents back to the file from where it was read. For
each buffer that has been modified the user is prompted to save the buffer, a value of y initiates a save
for the buffer, n skips the buffer.

The argument n can be used to change the default behavior of save−some−buffers described above, n
is a bit based flag where:−

0x01

Enables the user prompt before the buffer is saved (default). If this flag is not supplied then all modified
visible buffers will be written. SEE ALSO

save−buffer(2), save−buffers−exit−emacs(2), write−buffer(2), hide(2m).

MicroEmacs '02

save−some−buffers(2) 1667

scheme(9)

SYNOPSIS

scheme − Scheme File.

FILES

hkscheme.emf − Scheme file hook definition

EXTENSIONS

.scm, .sch − Scheme file

DESCRIPTION

The scheme file type template provides simple hilighting of Scheme files, the template provides
minimal hilighting.

File recognition is performed using the standard file extensions .scm or .sch.

NOTES

JASSPA have no idea as to the state of this file hook definition.

SEE ALSO

Supported File Types

MicroEmacs '02

scheme(9) 1668

scheme−editor(3)

NAME

scheme−editor − Color Scheme Editor

SYNOPSIS

scheme−editor

DESCRIPTION

scheme−editor is a color and font scheme editor that provides a dialog interface to configure the
display schemes used by the editor. The schemes may be created or modified within the scheme editor
and then committed to the configuration files for general use.

The editor can be used to create both screen and printer color/font schemes, they are typically stored
in the macros directory and are executed as macro files at start up or when printing. The standard
screen schemes are called schemeX.emf and printer ones printX.emf.

The scheme−editor is displayed within a single dialog box, tab selections at the top of the dialog box
enable color and scheme creation and/or modification. Navigation is typically performed using the
mouse, where the mouse is absent then the TAB key may be used to move between the fields. The
information presented is defined as follows:−

File Name

The name of the color scheme to be modified. This is the name of the schemeX.emf file, omitting the
file extension. See the FILES section below for a list of standard screen and printer scheme supplied
with MicroEmacs '02.

Type

Defines whether the scheme is a screen or printer type.

Description

An ASCII description of the color scheme, used to identify the color scheme.

Buffer Hilight

Available when scheme is a screen type. Defines whether buffer hilighting should be enabled, when
Completely Disable all buffers are displayed character for character in the standard text scheme, this
will ensure maximum update performance but some file formats such as the on−line help will become
unreadable so this option is really selected. Similarly Reformat Only disables the majority of buffers,

MicroEmacs '02

scheme−editor(3) 1669

hilighting is only enabled when the file would be unreadable without it, such as the on−line help or
man page files. The default Fully Enabled setting enables all buffer hilighting.

Print Option

Available when scheme is a printer type. Defines what components of a scheme is to be used when printing.
Colors

The colors tab allows the basic palette colors of the editor to be created and modified. The left−hand
side of the dialog contains a scrolling window containing the existing color entries. The right−hand
side of the dialog provides the controls to add and change the color assignment. The controls operate
on the currently selected palette entry.

Add

Creates and adds a new color entry into the palette. The new palette entry is created with a default
color that may be subsequently modified.

Change

Commits the current selection color to the palette.

Red/Green/Blue

The color entries allow the currently selected palette color entry to be modified. The color values may be
changed by direct numeric entry (0..255) or via the ^/v controls; the color is committed to the palette using the
Add or Change button. Schemes

The schemes tab allows the schemes to be edited. The left−hand side of the dialog contains a
scrolling window of the available color palette (created from the Colors tab). The right−hand side of
the window shows the variants of the scheme.

Selection

The selection item provides a pull−down menu containing gross scheme categories used by the editor.

Scheme

A pull−down menu containing the schemes of the selection, modifying this entry shows the variants
of the scheme in the Normal, Current, Select and Sel−Cur dialogs.

There are 4 variants, or styles, for a single scheme; each style is comprised of a foreground and
background color, and a row of toggle button to enable/disable fonts, defined as follows.

B − Bold.
I − Italic.
L − Light (typically not supported).

MicroEmacs '02

scheme−editor(3) 1670

R − Reverse video (fore/back−ground swapped).
U − Underline.
V − Toggle reverse video when inverted.

The last mode V needs a little more explanation; commands such as screen−poke(2) are able to invert
the color scheme, i.e. use the fore color for the background etc. Enabling this mode will toggle the
reverse video mode (R) when this feature is used.

The style displayed by a particular scheme depends upon the selection/current status of the text:

Normal

The normal style, when the text object is not selected or current (i.e. out of focus).

Current

The style used when the text object is current (i.e. in focus)

Select

The style used when the text object is selected (i.e. by the mouse) and is not current.

Sel−Cur

The style used when the text object is selected and is current.

Note that a printer scheme only uses the Normal style.

Setting of the selection and scheme shows the current scheme in the Normal, Current, Select and
Sel−Cur dialogs. New colors are assigned by selecting a color in the palette area and making it
current. The current color is applied by selecting the Fore / Back boxes of the scheme dialog. The
assigned color is displayed in the text box The big brown fox....

Controls

The controls at the bottom of the dialog apply the edits to the configuration files.

Current

Makes the changes to the palette and schemes current, they are applied to the current editing session
but are not committed to file. This allows the palette changes to be used prior to commitment. Note
that all modifications are lost if they are not saved and the editing session is terminated.

Save

Saves the scheme modifications to file, effectively making the changes permanent. Note however that
the scheme macro file will be saved in the first directory in the $search−path(5), regardless of the
location of the original. For network systems this typically means that the changes will only effect the

MicroEmacs '02

scheme−editor(3) 1671

current user.

Install

Installs the current color scheme into the configuration files, making the color scheme accessible to
the user−setup(3) dialog.

Exit

Quits the scheme editor without modifying the settings. FILES

scheme.emf − Defines the standard scheme variables, including the available scheme list, and
associated text.
schemed.emf − Default white on black color scheme.
schemej.emf − Black on cream color scheme.
schemevi − Sandy shores.
schemesf − Sherwood Forest.
schemebh − Blue Hue.
schemepd − Plain Black on Cream.
schemepl − Plain White on Black.
schemel − Black on grey.
schememd − Microsoft Developer Studio Colors.
printers.emf − Defines the list of available printer schemes and drivers.
printd − Default plain print−out.
printf − Print using fonts.
printepc − Print using Epson base colors and fonts.

NOTES

scheme−editor is a macro that is implemented in file schemosd.emf. The scheme editor uses
osd(2) to create and manage the dialogs.

Only the Normal scheme style is used by printer schemes.

The setting of Buffer Hilight can effect the way buffer hooks are load so changing from one scheme
to another with differing Buffer Hilight settings may not fully work. This can be rectified by restart
MicroEmacs with the new scheme as default.

The current screen scheme can effect the printing due to the Buffer Hilight setting, e.g. if the screen
scheme is set to completely disable hilighting then any print−out will also have no hilighting.

SEE ALSO

user−setup(3), add−color−scheme(2), print−scheme(2), osd(2).

MicroEmacs '02

scheme−editor(3) 1672

screen−poke(2)

NAME

screen−poke − Immediate write string to the screen

SYNOPSIS

n screen−poke row column colorScheme "string"

DESCRIPTION

screen−poke writes a string to the screen at position (row, column) using the given color scheme. The
screen coordinates are defined with (0,0) at the top left of the screen.

screen−poke by−passes the conventional buffer update and writes directly to the screen buffer. The
command has no effect on buffers already showing on the screen and is erased on the next screen
update. The string is clipped to the screen area hence the caller need not continually check on the size
of the client area.

The numeric argument n is a bitwise flag which has the following meaning
0x01 Don't mark the poke area for update.
0x02 Don't flush poke to screen.
0x04 colorScheme is an array of values, one for each letter.
0xf0 colorScheme pair offset to use.

If the 0x01 flag is absent then the parts of the screen over written by screen−poke are marked and
refreshed on the next screen−update operation, thereby erasing the poked information. If the flag is
present the poked information remains on the screen until a forced refresh is performed (i.e.
1 screen−update) or the window information under the poked screen data is modified.

In macros using many consecutive screen−pokes (e.g. Patience(3) to display a pack of cards) most
pokes use the 'No flush' flag to improve performance and look on some platforms.

The use of screen−poke has largely been reduced to games such as Metris(3) since the introduction
of osd(2) to create dialogs.

NOTES

Some platforms do not allow all character values to be poked, illegal characters are replaced with a
'.'.

SEE ALSO

MicroEmacs '02

screen−poke(2) 1673

osd(2), screen−update(2), Mahjongg(3), Metris(3).

MicroEmacs '02

screen−poke(2) 1674

screen−update(2)

NAME

screen−update − Force screen update

SYNOPSIS

n screen−update (redraw)

DESCRIPTION

screen−update updates the current screen, usually used in macros. The argument n can be used to
change the behaviour of this command as follows:

−ve

Disables the next −n screen updates, i.e. if n is −1 then the next time the screen needs to be redrawn
nothing will happen.

0

Resets the screen update disable count to zero, useful to remember when the the disable feature has
been used incorrectly.

1

Full screen update (default), the screen is completely cleared and redrawn (as if garbled).

2

Partial screen update, only the parts of the screen which require updating are redrawn.

3

No screen redraw, only window variables are up−dated. This feature is provided for macros which manipulate
the screen view and need to know where the cursor is in the window without redrawing the screen (which may
cause unwanted flickering). Note that as the screen is not redrawn not all variables may have the correct value,
for example the frame store variable @fs(4) could be out of date. EXAMPLES

The following macro demonstrates the problems encountered when trying to use screen variables in
macros after the current position has changed. The first value printed is the starting cursor Y position
and the next value should be one less than the first value due to the call to backward−line(2). But it is
the same as the first because the screen (and its variables) have not been updated. The subsequent call

MicroEmacs '02

screen−update(2) 1675

to screen−update ensures that the third value is the correct one although by giving it an argument of 3
the screen is not visibly updated thus avoiding any annoying screen flicker:

define−macro test−screen−update
 set−variable #l0 $cursor−y
 backward−line
 set−variable #l1 $cursor−y
 3 screen−update
 set−variable #l2 $cursor−y
 forward−line
 ml−write &spr "%d %d %d" #l0 #l1 #l2
!emacro

NOTES

Every time the screen requires updating, MicroEmacs executes the redraw key, it is similar in
mechanism to the user pressing C−l to refresh the screen. The user can therefore re−bind the redraw
key to another command or macro, thereby allowing the user complete control of what is displayed.
For example if redraw was bound to void(2) the screen would not be up−dated (Note: this is difficult
to get out of and may require MicroEmacs to be killed).

This feature is often exploited by macros which take control of the input and output, such macros
include gdiff(3), Metris(3), and Mahjongg(3).

SEE ALSO

recenter(2), screen−poke(2).

MicroEmacs '02

screen−update(2) 1676

scroll−down(2)

NAME

scroll−down − Move the window down (scrolling)
scroll−up − Move the window up (scrolling)

SYNOPSIS

n scroll−down (C−n)
n scroll−up (C−p)

DESCRIPTION

scroll−down moves the window in the current buffer down by n lines, the default when n is omitted is
1 windows worth of lines i.e. a next page operation. A −ve value of n causes the window to move up.

scroll−up moves the window in the current buffer up by n lines, default when n is omitted is 1
windows worth of lines, i.e. a previous page operation. A −ve value of n causes the window to move
down.

SEE ALSO

scroll−left(2), scroll−right(2), $window−y−scroll(5).

MicroEmacs '02

scroll−down(2) 1677

scroll−left(2)

NAME

scroll−left − Move the window left (scrolling)
scroll−right − Move the window right (scrolling)

SYNOPSIS

n scroll−left (C−x <)
n scroll−right (C−x >)

DESCRIPTION

scroll−left moves the window in current buffer left by 1 screen width. If an argument n is supplied
then the resolution of movement is specified in characters relative to the current displacement.
Moving the window in the current buffer left by n characters (that is if the current left−hand margin of
the screen is column 0, the left hand margin becomes column n).

scroll−right moves the window in current buffer right by 1 screen width. If an argument n is supplied
then the resolution of movement is specified in characters relative to the current displacement.

The ends of the lines of a scrolled screen are delimited with a dollar ($) character indicating that the
text continues. When no scroll is in effect the left hand margin of the screen does not show the $
symbol. i.e. The line This text is scrolled on this line with a current scroll offset of
2 in a 22 column window would appear as follows:

 22
|<−−−−−−−−−−−−−−−−−−−>|

|$s text is scrolled $|

The amount of scroll (n) is effectively unlimited, it is possible to scroll all of the text in a buffer out of
the window, when only $'s appear in the left margin, in the last highlighting color of the line (blank
lines always remain blank and are not delimited with a $). Text on the current line is handled
according to the value of $scroll(5) as follows:

$scroll 0

The current line ONLY is scrolled (about the current scroll position) to enable the current
buffers cursor position to be viewed. To enable the user to determine where the current line is
in relation to the scrolled lines then the first character of the current line is interpreted as
follows:−

All of user text appears

MicroEmacs '02

scroll−left(2) 1678

|$f line of te$|
|At start of l$|
|$f line of te$|

Surrounding lines commence with "$" indicates at the start of the line.

$ in column 0

|$f line of te$|
|$f line of te$|
|$f line of te$|

Text column is the same as the surrounding text i.e. the line and window scroll are the
same.

> Left of scroll position

|$f line of te$|
|>f line of te$|
|$f line of te$|

The current line is to the left of the scrolled position. forward−char (i.e. interpret as
−−> indicating the direction of travel) moves the cursor, and therefore the line,
towards the natural scroll position ($ in column).

< Right of scroll position

|$f line of te$|
|<f line of te$|
|$f line of te$|

The current line is to the right of the scrolled position. backward−char (i.e. interpret
as <−− indicating the direction of travel) moves the cursor, and therefore the line,
towards the natural scroll position ($ in column).

$scroll 1

The position of the cursor on the line determines the scrolled position. In this case all lines in the window are
scrolled to ensure that the cursor is always visible. This mode is only useful when dealing with large blocks of
text whose line lengths do not vary. NOTES

The scrolling is an attribute of the WINDOW and not the BUFFER. If the window is closed, or
contents swapped to a different buffer then the scroll setting is reset for the next buffer. A return to the
previous buffer does not restore the scroll setting. The only case where scrolling is inherited is when a
window is split (see split−window−vertically(2)).

When binding scroll−left to the keyboard then it is important to note that when no argument is
specified the resolution is frame−width's. A key binding would operate on character multiples, hence
the command should be bound with a numeric argument to perform the perform the keyboard action.
e.g.

MicroEmacs '02

scroll−left(2) 1679

1 global−bind−key scroll−left "A−left"
1 global−bind−key scroll−right "A−right"

To move 5 columns on a key stroke, for an accelerated scroll, then the binding may be re−written as:−

5 global−bind−key scroll−left "A−left"
5 global−bind−key scroll−right "A−right"

SEE ALSO

$scroll(5), scroll−up(2), scroll−down(2), $window−x−scroll(5).

MicroEmacs '02

scroll−left(2) 1680

scroll−next−window−down(2)

NAME

scroll−next−window−down − Scroll next window down
scroll−next−window−up − Scroll next window up

SYNOPSIS

n scroll−next−window−down (esc C−v)
n scroll−next−window−up (esc C−z)

DESCRIPTION

scroll−next−window−down scrolls the next window down n lines, if n is omitted then the next
window is scrolled by window number of lines (i.e. next screen page).

scroll−next−window−up scrolls the next window up n lines, as scroll−next−window−down.

These commands are useful in macros to control other windows.

SEE ALSO

scroll−up(2), scroll−down(2).

MicroEmacs '02

scroll−next−window−down(2) 1681

search−forward(2)

NAME

search−forward − Search for a string in the forward direction
search−backward − Search for a string in the backward direction

SYNOPSIS

n search−forward "string" (C−x s)
n search−backward "string" (C−x r)

DESCRIPTION

search−forward searches for a string from the current cursor position to the end of the file. The
string is typed on the bottom line of the screen, and terminated with the <ESC> key. Special
characters can be typed in by preceding them with a ^Q. A single ^Q indicates a null string. On
successive searches, hitting <ESC> alone causes the last search string to be reused.

Searching is affected by magic(2m) mode, which allows regular expression pattern matching, and
exact(2m) mode which makes the search case sensitive.

The numeric argument n is interpreted as follows:−

n > 0

The nth occurrence of the string is located.

n < 0

The first occurrence of the string is located in the next n lines.

search−backward searches backwards in the file. In all other ways it is like search−forward.

DIAGNOSTICS

The command returns a status of FALSE if the string could not be located (or nth string where n
occurrences are requested). If the string is found within the given search criteria the return status is
TRUE.

SEE ALSO

buffer−mode(2), exact(2m), hunt−backward(2), hunt−forward(2), isearch−forward(2), magic(2m),

MicroEmacs '02

search−forward(2) 1682

replace−string(2).
Regular Expressions

MicroEmacs '02

search−forward(2) 1683

set−alpha−mark(2)

NAME

set−alpha−mark − Place an alphabetic marker in the buffer

SYNOPSIS

set−alpha−mark "?" (C−x C−a)

DESCRIPTION

set−alpha−mark places an alpha mark at the current location in the buffer which can be returned to
from anywhere in the buffer using the command goto−alpha−mark(2). The user is prompted for a
mark name which can be any alphabetic character. the mark is destroyed if the line is deleted.

SEE ALSO

goto−alpha−mark(2).

MicroEmacs '02

set−alpha−mark(2) 1684

set−char−mask(2)

NAME

set−char−mask − Set character word mask

SYNOPSIS

n set−char−mask "flags" ["value"]

DESCRIPTION

set−char−mask returns or modifies the setting of MicroEmacs internal character tables. The
argument n defines the action to be taken, as follows:−

−1

Removes characters from the given set.

0

Returns characters in the given set in $result(5).

1

Adds characters to the given set.

The first argument "flags" determines the required character set as follows:−

d

Is Displayable. Characters in this set can be directly displayed to the screen (as a single character)
when occurring in a buffer. When a character not in this set is to be displayed it is performed using
more than one character. Characters in the range 1−31 are displayed as "^?" where ? is the ASCII
character plus 64, (e.g. 0x01 −> 65, i.e. "^A") otherwise the character is displayed in the form "\xhh"
where hh is the hex form of the ASCII value. One notable exception is the tab character (0x09), by
default this character is not displayable, instead it is displayed as a sequence of one or more spaces up
to the next tab stop.

p

Is Pokable. Similar to d, characters in this set can be poked to the screen when using screen−poke(2).
When found in a binary file the character is displayed in the right hand column. Unlike d, any
character outside this set will be displayed as a single period '.', indicating that it cannot be displayed.

MicroEmacs '02

set−char−mask(2) 1685

P

Is Printable. Similar to d, characters in this set may be printed as a single character when using
print−buffer(2) or print−region(2). Any character not in this set is printed in a similar fashion to d.

M

Character font Map. Internally MicroEmacs uses ISO−8859−1 (Latin 1) to configure alphabetic
classes and the spell−checker, however the system font being by the native platform may not be the
same, for example a small 'e' acute is character 0xe9 in ISO−8859−1 but character 0x82 in Windows
OEM fonts. To change the characteristics of the 'e' acute character (such as making it an alphabetic
character), the ISO−8859−1 character should always be used, but a correct mapping of ISO−8859−1
to the display font (such as Windows OEM) must also be supplied.

Unlike other sets, this set cannot be incrementally altered, any calls to alter this set leads to
the resetting of all the character tables so the character mapping must be performed first and
in a single call. No other set may be altered in the same call. When setting, the "value" must
supply pairs of characters, an ISO−8859−1 character followed by its system font equivalent.

L

ISO−8859−1 (Latin 1) character map list. This set cannot be altered using this flag, character
mappings must be set up using flag M. The order of the characters in the returned $result string is the
same as the order for flag U.

U

User font character map list. This set cannot be altered using this flag, character mappings must be set
up using flag M. The order of the characters in $result when returned is the same as the order for flag
L.

a

Is Alphabetic letter. Characters in this set are alphabetical characters, used by many MicroEmacs
commands such as forward−word(2). When setting, the "value" must specify pairs of ISO−8859−1
(Latin 1) characters, an Upper−case character followed by its lower−case equivalent. This enables
commands such as lower−case−word(2) to operate correctly regardless of the font and language being
used. Some fonts may not have all the characters available for rendering, for instance PC Code page
437 does not have an upper−case 'e' grave. In this case an ordinary 'E' should be used as a sensible
replacement, i.e. "E`e" (where `e is an 'e' grave). However, this will lead to all upper−case 'E's to map
to a lower−case 'e' grave in a case changing operation, this may be corrected by adding a further
mapping of 'E' to 'e' to over−ride the 'e' grave mapping, i.e. "E`eEe". This technique does fail when
changing the case more than once, when all lower case 'e' graves will be lost.

Note that the returned character list will pair all lower−case characters with their upper−case
equivalent letters first.

l

MicroEmacs '02

set−char−mask(2) 1686

Is Lower case letter. This set cannot be altered using this flag, alterations to the alphabetic set must be
performed using flag a. Characters in this set are all the lower−case letters, typically the characters 'a'
to 'z'. The order may not be the same as returned by flag u.

u

Is Upper case letter. This set cannot be altered using this flag, alterations to the alphabetic set must be
performed using flag a. Characters in this set are all the upper−case letters, typically the characters 'A'
to 'Z'. The order may not be the same as returned by

h

Is Hex−decimal Digit. The set is rarely used as it is invariably the digits '0' to '9' and the letters 'a' to
'f' in upper and lower case. It is often used in the setting of $buffer−mask(5).

A

Is Alpha−numeric. This set cannot be altered using this flag, alterations to the alphabetic set must be
performed using flag a. Characters in this set are either alphabetic characters or the digits 0−9.

s

Is Spell extended word character. The characters in this set are recognized by the spell checker as
characters which may be considered part of a word, for example the period '.'s in e.g. or the hyphen
'−' in hyphenated−words. Typically this set contains the characters ''', '−' and '.'.

1, 2, 3 & 4

Is in Word. These user definable sets are used to add characters to a buffer's word character set,
affecting the operation of commands like forward−word(2). Many different file types operate better
with a different word character set, e.g. it is preferable to include the '_' character when editing C
files. See variable $buffer−mask(5).

Unless stated otherwise, multiple flags may be specified at the same time returning a combined
character set or setting multiple properties for the given "value" characters.

EXAMPLE

For many UNIX XTerm fonts the best characters to use for $box−chars(5) (used in drawing osd(2)
dialogs) lie in the range 0x0B to 0x19. For example the vertical bar is '\x19', the top left hand corner
is '\x0D' etc. These characters are by default set to be not displayable or pokable which renders them
useless. They can be made displayable and pokable as follows:−

set−char−mask "dp" "\x19\x0D\x0C\x0E\x0B\x18\x15\x0F\x16\x17\x12"

MicroEmacs variables have either '$', '#', '%', ':' or a '.' character prepended to their name, they may
also contain a '−' character in the body of their name. It is preferable for these characters to be part of
the variable 'word' so commands like forward−kill−word(2) can work correctly. This may be achieved

MicroEmacs '02

set−char−mask(2) 1687

by adding these characters to user set 2 and setting the buffer−mask variable to include set 2, as
follows:

set−char−mask "2" "$#%:.−"

define−macro fhook−emf
 set−variable $buffer−mask "luh2"
 .
 .
!emacro

For the examples below only the following subset of characters will be used:−

Character ISO−8859−1 Windows OEM PC Page 437

Capital A (A) A A A
Capital A grave (`A) \xC0 \xB7 No equivalent
Capital A acute ('A) \xC1 \x90 No equivalent
Small a (a) a a a
Small A grave (`a) \xE0 \x85 \x85
Small A acute ('a) \xE1 \xA0 \xA0

As the spell checker only operates in ISO−8859−1 (Latin 1), the character font mapping (flag M)
must be correctly setup for spell checking to operate correctly. For ISO−8859−1 (ISO) this is an
empty string as the default mapping is correct, but for both Windows OEM (OEM) and PC Code Page
437 (PC−437) the mappings should be set as follows:−

; OEM font mapping setup
set−char−mask "M" "\xC0\xB7\xC1\x90\xE0\x85\xE1\xA0"
; PC−437 font mapping setup
set−char−mask "M" "\xC0A\xC1AAA\xE0\x85\xE1\xA0"

As all the characters in ISO have equivalents in OEM, the mapping for OEM is a simple ISO to OEM
character list. However the missing capital A's in PC−437 cause problems, for the command
charset−iso−to−user(3) it is preferable for a mapping of `A to be given, otherwise the document being
converted may remain unreadable. Therefore a mapping of `A to A is given to alleviate this problem,
similarly 'A is also mapped to A.

This leads to a similar problem with the conversion of PC−437 back to ISO (the operation of
command charset−user−to−iso(3)). If only the mapping of "\xC0A\xC1A" was given, the last
mapping ('A to A) would also be the back conversion for A, i.e. ALL A's would be converted back to
'A's. To solve this problem, a further seemingly pointless mapping of A to A is given to correct the
back conversion.

For languages which use these characters, the alphabetic character set must be extended to include
these characters for letter based commands like forward−word(2) and upper−case−word(2) to operate
correctly. The addition of extra letters must achieve two goals, firstly to define whether a character is
a letter, enabling commands like forward−word to work correctly. The second is to provide an upper
case to lower case character mapping, enabling commands like upper−case−word to work correctly.
This is achieved with a single call to set−char−mask using the a flag as follows:−

set−char−mask "a" "\xC0\xE0\xC1\xE1"

MicroEmacs '02

set−char−mask(2) 1688

Note that this flag always expects a ISO−8859−1 character, this allows the same map character list to
be used regardless of the font set being used, i.e. the above line can be used for ISO, OEM and
PC−437 fonts. But it does mean that the ISO to user font character mapping (flag M) must already
have been performed.

Similar problems are encountered with the M flag with font PC−437. This problem is not
immediately obvious because the mapping is given in ISO, but when this is converted to PC−437, the
mapping string becomes "A\x85A\xA0". As can be seen, A is mapped last to 'a so an upper to lower
character operation will convert a A to 'a. A similar solution is used, a further mapping of A to a is
given to correct the default case mapping for both A and a, i.e. the following line should always be
used instead:−

set−char−mask "a" "\xC0\xE0\xC1\xE1Aa"

SEE ALSO

forward−word(2), $buffer−mask(5), screen−poke(2), spell(2), $tabwidth(5).

MicroEmacs '02

set−char−mask(2) 1689

set−cursor−to−mouse(2)

NAME

set−cursor−to−mouse − Move the cursor to the current mouse position

SYNOPSIS

n set−cursor−to−mouse

DESCRIPTION

set−cursor−to−mouse sets the current window and cursor position to the location of the mouse on it's
last event (button press or release). This command may change the current window. If the line on
which the mouse was located was the message line then the no action is taken, if the line was a
window mode line the that window is made the current window but the cursor location within the
window remains the same. This is usually used in user defined macros that control the functionality of
the mouse.

An argument n determines if the command is permitted to change windows, when omitted a window
change is permitted on set−cursor−to−mouse. When specified, the mouse is not permitted to change
windows and returns an error condition in $mouse−pos(5) indicating that the mouse is not within the
current window.

Invocation of this command sets the variable $mouse−pos(5) which determines where the mouse is
within the window. Interrogation of the variable following the command may be used to determine if
the mouse is located on one of the more specialized window or screen regions.

When writing macros to cut and paste using the mouse, care should be taken to ensure that the
window at the button release is the same is at the button press. If this is not undertaken, undesired
effects could result. The use of set−position(2) and goto−position(2) are most usefully used with this
command to restore existing window context.

SEE ALSO

$mouse−pos(5), $mouse−x(5), $mouse−y(5), $window−mode−line(5), $window−scroll−bar(5),
set−scroll−with−mouse(2), set−position(2), goto−position(2).

MicroEmacs '02

set−cursor−to−mouse(2) 1690

set−encryption−key(2)

NAME

set−encryption−key − Define the encryption key

SYNOPSIS

set−encryption−key (esc e)

DESCRIPTION

set−encryption−key sets the encryption key for files loaded or saved with crypt(2m) mode enabled.
This must be performed for each file, key is not entered into the history. The key can be set for each
file on the command line using the −k flag. When saving a buffer in encryption mode the key will be
prompted for if not already set.

SEE ALSO

buffer−mode(2), crypt(2m), find−file(2), find−cfile(3).

MicroEmacs '02

set−encryption−key(2) 1691

set−mark(2)

NAME

set−mark − Set starting point of region

SYNOPSIS

set−mark (esc space)

DESCRIPTION

set−mark is used to delimit the beginning of a marked region. Many commands are effective for a
region of text. A region is defined as the text between the mark and the current cursor position. To
delete a section of text, for example, one moves the cursor to the beginning of the text to be deleted,
issues the set−mark command by typing esc space, moves the cursor to the end of the text to be
deleted, and then deletes it by using the kill−region(2) (C−w) command. Only one mark can be set in
one window or one buffer at a time, and MicroEmacs '02 will try to remember a mark set in an off
screen buffer when it is called back on screen.

A region is a block of text to be acted upon by some MicroEmacs '02 commands. It is demarcated by
the POINT on one end and the MARK at the other. The point is the primary location identifier where
most of the action takes place and is always between two characters. The point is indicated by the
cursor position in that it is just behind the cursor. The point is also significant in that it defines one
end of the region. The mark, on the other hand, is invisible, and is used to demarcate the other end of
the region and is set through set−mark.

SEE ALSO

copy−region(2), exchange−point−and−mark(2), kill−region(2). reyank(2), yank(2),

MicroEmacs '02

set−mark(2) 1692

set−scroll−with−mouse(2)

NAME

set−scroll−with−mouse − Scroll the window with the mouse

SYNOPSIS

n set−scroll−with−mouse

DESCRIPTION

The set−scroll−with−mouse command controls the scrolling of a window by the mouse. This is a two
stage process, the first stage locks the cursor to the mouse, the second stage scrolls the screen.

The first stage (locking) is performed when the mouse is located on the scroll−box (typically when
the left button is depressed i.e. pick−mouse−1). set−scroll−with−mouse is invoked with an argument
n, this causes the mouse position to be recorded ready for a scroll. Depending on the scroll method,
the blank lines present at the end of the buffer are scrolled off the screen.

Subsequent calls to the set−scroll−with−mouse are made with no argument, the window is scrolled
by the relative displacement of the mouse from it's locked position, motion is limited at the end of the
scrolling region. Scrolling is proportional to the buffer length. The command is typically bound to
move−mouse−1 which results in an update whenever the mouse is moved by the user.

When the button is released drop−mouse−1 then the scrolling is stopped by unbinding
move−mouse−1, thereby breaking the binding between the mouse moving and the scroll command.

The scrolling utilizes fractional mouse positional information (i.e. units smaller than a character cell),
if available, resulting in a smoother scrolling motion.

EXAMPLE

The following example shows how the command is used.

0 define−macro mouse−scroll−pick
 1 set−scroll−with−mouse ; Lock mouse position to scroller
 global−bind−key set−scroll−with−mouse "mouse−move−1"
!emacro

0 define−macro mouse−scroll−drop
 global−unbind−key "mouse−move−1"
!emacro

global−bind−key mouse−scroll−pick "mouse−pick−1"
global−bind−key mouse−scroll−drop "mouse−drop−1"

MicroEmacs '02

set−scroll−with−mouse(2) 1693

When the left button is 'picked', mouse−scroll−pick lock the cursor to the mouse and binds mouse
movement to set−scroll−with−mouse so that whenever the mouse is moved the cursor will be
repositioned appropriately. When the button is 'dropped', the mouse movement is unbound so that the
cursor will no longer be locked to the mouse.

SEE ALSO

$mouse−pos(5), $scroll−bar(5), set−cursor−to−mouse(2).

MicroEmacs '02

set−scroll−with−mouse(2) 1694

set−variable(2)

NAME

set−variable − Assign a new value to a variable
unset−variable − Delete a variable

SYNOPSIS

set−variable "variable" "value" (C−x v)
unset−variable "variable"

DESCRIPTION

set−variable sets the given register (# name), system ($ name), global (% name), buffer (: name) or
command (. name) variable to the given value, erasing its current value. The returned value of an
undefined variable is the string "ERROR", this maybe used to determine whether a variable has been
set.

unset−variable unsets the given variable so that it no longer exists. The variable must be a global
(%), buffer (:) or command (.) variable, system ($) variables cannot be unset.

The value may be quoted or unquoted, if there are any white space characters, or characters open to
other interpretation (e.g. @wc) in value then quotes should be used.

value may contain control characters which are delimited by a back slash (\) which include:−

\n newline
\t tab
\\ backslash

Confusion sometimes arises in macros with the back slash, as the back slashes are dereferenced when
set. Commands such as replace−string(2) where the command itself utilizes back slashes. In this case
the number of back slashes should be doubled as the variable contents under go two stages of
dereferencing.

SEE ALSO

describe−variable(2), list−variables(2), &set(4).

Variables
Introduction to Variable Functions
Register Variables

MicroEmacs '02

set−variable(2) 1695

shell(2)

NAME

shell − Create a new command processor or shell

SYNOPSIS

shell (C−x c)

DESCRIPTION

shell−command creates a new command processor or shell. Upon exiting the shell, MicroEmacs '02
redraws its screen and continues editing. The exceptions to this are as follows:

X−Windows

A new xterm is spawned off and editing control is returned to MicroEmacs '02 once the xterm has
initialized.

Microsoft Windows

A new MS−DOS shell is created and control is returned to MicroEmacs '02 once the DOS console window
has initialized. The shell created is determined by the MS−DOS environment variable COMSPEC, this may be
a replacement shell e.g. 4DOS. SEE ALSO

ipipe−shell−command(2), pipe−shell−command(2), suspend−emacs(2).

MicroEmacs '02

shell(2) 1696

shell−command(2)

NAME

shell−command − Perform an operating system command

SYNOPSIS

shell−command "string"

DESCRIPTION

shell−command performs an operating system call with the given string as its argument. The
command only fails if the shell−command call returns −1. The $result(5) variable is set the return
value and can be used to test the result.

SEE ALSO

$result(5), ipipe−shell−command(2), pipe−shell−command(2), suspend−emacs(2).

MicroEmacs '02

shell−command(2) 1697

show−cursor(2)

NAME

show−cursor − Change the visibility of the cursor

SYNOPSIS

n show−cursor

DESCRIPTION

show−cursor hides the cursor if a negative argument is given and restores it if a positive or no
argument is given. Note that this is not supported on all platforms.

show−cursor internally performs a counting operation, if the cursor is hidden m times then it must
also be shown m times before the cursor becomes visible again, giving no argument will restore the
count ensuring it is visible.

MicroEmacs '02

show−cursor(2) 1698

show−region(2)

NAME

show−region − Show the current copy region

SYNOPSIS

n show−region

DESCRIPTION

show−region manipulates the currently defined region, it can be used to inquire the state of the
current region, if any. It can also be used to define a region, enable and disable the region hilighting,
as well as move the cursor to the start or end of the region.

Region hilighting occurs between the mark (see set−mark(2)) and point (current cursor) positions
within the current buffer. A region is defined when text is copied to the kill buffer, by using any of the
kill commands such as kill−region(2), or copy−region(2). However, the kill region is only visible after
a copy−region(2) or a yank(2) operation. A hilight region is also created on a successful search using
commands like search−forward(2), the region encloses the search matching string. Spell(2) also
creates a hilight region around the current spell word. The user can also define their own region using
the numeric argument to show−region.

The argument n supplied to the command indicates the require functionality and can take the
following values:−

−3 − Set the start position of the region.
−2 − Move the cursor the Mark position.
−1 − Disable the hilighting of the current region.
 0 − Return the current status of the region in
$result(5).
 1 − Enable the hilighting of the current region.
 2 − Move the cursor the Dot position.
 3 − Set the end position of the region.
 4 − Reactivate the current region.

Where an argument of 0 is used to return the current state the value of $result is a bit based flag
where:−

0x01

Indicates a region is currently active (visible).

0x02

MicroEmacs '02

show−region(2) 1699

Indicates a region has been fixed (may not visible).

0x04

Indicates the region is in the current buffer.

0x08

Indicates the cursor is in the current region.

The color of the selection hilight is defined by add−color−scheme(2) and is determined by
$buffer−scheme(5), $global−scheme(5) or $buffer−hilight(5).

DIAGNOSTICS

The following errors can be generated, in each case the command returns a FALSE status:

[No current region]

There is no current defined region on which to operate.

[Current region not in this buffer]

An argument of 2 or −2 was used and the defined region isn't in the current window so the cursor can not be
moved to it. NOTES

If no argument is given to the command it hilights the current region, similar to an argument of 1. But
the properties of the hilight, namely how long it will be hilighted for, are inherited from the setting of
$show−region(5), whereas if an argument of 1 is passed in then the hilighting is set to be kept until
the region becomes invalid (i.e. as if $show−region(5) is set to 3).

SEE ALSO

$show−region(5), $buffer−hilight(5), $buffer−scheme(5), $global−scheme(5), add−color−scheme(2),
copy−region(2), yank(2), search−forward(2), spell(2), set−mark(2).

MicroEmacs '02

show−region(2) 1700

start−up(3)

NAME

start−up − Editor startup callback command
shut−down − Editor exit callback command

SYNOPSIS

start−up
shut−down

DESCRIPTION

By default start−up is not defined, if the command is defined (via a user macro) then it is executed
immediately after MicroEmacs '02 has completed its initialization.

This command may initially seem redundant as the user may execute any command at start−up by
editing the "me.emf" file or using the '@' command−line argument. At the point of "me.emf" file
execution none of the files specified on the command−line will be loaded, thus any actions required
on the given command−line files will not work (the only buffer present will be the "*scratch*"
buffer).

The start−up command is executed AFTER the execution of "me.emf" and initialization of buffers,
but before MicroEmacs '02 waits for user input.

The shut−down command is also not defined by default, but if it is defined during the running of
MicroEmacs the command will be called when MicroEmacs exits. The command is not called if
MicroEmacs has to perform an emergency exit (due to the system being shut down or process being
killed etc).

SEE ALSO

me(1).

MicroEmacs '02

start−up(3) 1701

sort−lines(2)

NAME

sort−lines − Alphabetically sort lines

SYNOPSIS

n sort−lines

DESCRIPTION

sort−lines alphabetically sorts lines of text in the current buffer from the mark position to the current
cursor position. If the buffer mode exact(2m) is enabled then the sort is case sensitive, otherwise the
sort is case insensitive. By default the text is compared from left to right from column 0 (the left hand
edge), if a positive argument n is given then the text is compared left to right from the nth column,
any lines shorter than n characters are moved to the top and sorted from column 0.

If a negative argument n is given then the text is sorted in reverse order. The comparison starts at
column −1−n, i.e. an argument of −1 sorts in reverse order from column 0.

EXAMPLE

The following table gives the results of sort−lines for different exact modes and values of n.

 Original Sorted Lines

 exact − n n y y n n
 n − − 1 − 1 −1 −2

 B a2 B Aa B CA Aa
 CA Aa c B c c CA
 b1 B b1 CA b1 b1 a2
 Aa b1 a2 a2 a2 B b1
 c c CA b1 CA Aa c
 a2 CA Aa c Aa a2 B

NOTES

Typically MicroEmacs is executed with exact(2m) mode enabled, the macro command
sort−lines−ignore−case provides a command to sort lines case insensitively while exact mode is

MicroEmacs '02

sort−lines(2) 1702

enabled. The macro is defined as follows:−

define−macro sort−lines−ignore−case
 set−variable #l0 &bmod exact
 −1 buffer−mode "exact"
 !if @?
 @# sort−lines
 !else
 sort−lines
 !endif
 &cond #l0 1 −1 buffer−mode "exact"
!emacro

sort−lines−ignore−case(3) is a macro defined in format.emf.

SEE ALSO

buffer−mode(2), exact(2m), sort−lines−ignore−case(3), transpose−lines(2), uniq(3).

MicroEmacs '02

sort−lines(2) 1703

sort−lines−ignore−case(3)

NAME

sort−lines−ignore−case − Alphabetically sort lines ignoring case"

SYNOPSIS

n sort−lines−ignore−case

DESCRIPTION

sort−lines−ignore−case forces the current buffers exact(2m) mode to off and then calls sort−lines(2)
which will perform a case insensitive alphabetical line sort from the mark position to the current
cursor position. The state of the current buffers exact mode is restored on completion.

NOTES

sort−lines−ignore−case is a macro defined in format.emf, see help on command sort−lines(2) for
a complete definition.

SEE ALSO

sort−lines(2), buffer−mode(2), exact(2m), transpose−lines(2).

MicroEmacs '02

sort−lines−ignore−case(3) 1704

spell(2)

NAME

spell − Spell checker service provider

SYNOPSIS

n spell ["word"] ["rules"] ["correction"] ["rule"]

DESCRIPTION

spell is a low level command which provides spell checking capabilities for MicroEmacs '02, it is not
designed to be used directly. The action of spell depends on the argument given, which is a bitwise
flag defined as follows:−

0x001

If set then gets the input word from the user, i.e. "word" must be supplied. Otherwise the word input
is taken from the current buffer.

0x002

If set then keeps getting words from the current buffer until either the end of the buffer is reached or
an error is found. If the end of the buffer is reached then the command succeeds setting $result(5) to
the value "F". This bit is ignored if bit 0x001 is set. spell sets the current show−region to enclose the
problematical word and the command show−region(2) can be used to move around the word.

0x004

Adds the given word to a dictionary determined by the state of bit 0x008. If the word is flagged as
erroneous (see bit 0x010) then a "correction" word must be supplied, otherwise a list of "rules" which
can be applied to the word must be given, this list can be empty. Note that if the word is not flagged
as erroneous and it already exists in the dictionary, the word is not removed, instead a combined rule
list is created.

0x008

When set flags that word additions (bit 0x004) and deletions (bit 0x200) should be made to the ignore
dictionary. Otherwise word additions are made the last added dictionary and deletions are made to all
main dictionaries.

0x010

When set flags that the given word is erroneous, used solely by word additions to create

MicroEmacs '02

spell(2) 1705

auto−corrections.

0x020

Returns a '|' separated guest guess list for the given word in $result.

0x040

If bit 0x100 is also set a complete list of valid words derivable from the given word are
inserted into the current buffer. Otherwise spell returns $result(5) set to the derivative word
created when the given "rule" is applied to "word". The rule applied is the first found of the
given rule letter with a matching base ending (see add−spell−rule(2)). The word need not
exist as not tests for the legality of the resultant word is used, for example in American,
executing

65 spell "spelling" "V"

returns "spellingive" in $result. Returns the empty string if no rule could be applied.

0x080

Used with bit 0x002 to enable double word checking.

0x100

Return information in $result about the given word, or the word which is used to derive the given
word. The information consists of the spell status, the word as stored in the dictionary, and either the
list of valid rules, or the correction word. See also bit 0x040.

0x200

Delete the given word from a dictionary determined by bit 0x008

If none of the main functions are used (bits 0x004, 0x020, 0x040 & 0x200) then the status flag is
returned in the first column of $result. These are defined as follows:−

A

Auto−replace. The word was found and flagged as erroneous. The correction word is given in $result,
either next to the flag, or if bit 0x100 is set then after the '>' character.

D

Double word. Indicates that the first problem found is a double occurrence of the same word one after
the other.

E

Erroneous. The word was not found, so is Erroneous

MicroEmacs '02

spell(2) 1706

N

Not a word. The current word found contains no alphabetic characters so is not deemed to be a word,
e.g. 3.141593.

O

Okay. The word was found and is not an erroneous word. SEE ALSO

add−dictionary(2), add−spell−rule(2), delete−dictionary(2), save−dictionary(2), show−region(2),
spell−buffer(3), spell−word(3), Locale Support.

MicroEmacs '02

spell(2) 1707

spell−add−word(3)

NAME

spell−add−word − Add a word to the main dictionary

SYNOPSIS

n spell−add−word ["word"]

DESCRIPTION

spell−add−word adds words to the last dictionary added using the command add−dictionary(2). If no
argument is supplied the user is prompted for the word and rule flags, only a 'Good' word can be
added (see below). If an argument n is given then the next n words from the current buffer are added.
The words must take one of the following three forms:

xxxx − Good word xxxx with no spell rules allowed
xxxx/abc − Good word xxxx with spell rules abc allowed
xxxx>yyyy − Erroneous word with an auto−replace to yyyy

NOTES

spell−add−word is a macro defined in file spellutl.emf. It is not defined by default so
spellutl.emf must be executed first using execute−file(2).

SEE ALSO

add−dictionary(2), edit−dictionary(3), save−dictionary(2), delete−dictionary(2).

MicroEmacs '02

spell−add−word(3) 1708

split−window−horizontally(2)

NAME

split−window−horizontally − Split current window into two (horizontally)

SYNOPSIS

n split−window−horizontally (C−x 5)

DESCRIPTION

split−window−horizontally splits the current window horizontally into two near equal windows,
each displaying the buffer displayed by the original window.

A numeric argument n of 1 forces the left window to be the new current window, and an argument of
2 forces the right window to be the new current window. The default when omitted is the left window.

SEE ALSO

$scroll−bar(5), $scroll−bar−scheme(5), $window−chars(5), grow−window−horizontally(2),
split−window−vertically(2).

MicroEmacs '02

split−window−horizontally(2) 1709

split−window−vertically(2)

NAME

split−window−vertically − Split the current window into two

SYNOPSIS

n split−window−vertically (C−x 2)

DESCRIPTION

split−window−vertically splits the current window vertically into two near equal windows, each
displaying the buffer displayed by the original window. A numeric argument n of 1 forces the upper
window to be the new current window (default), and an argument of 2 forces the lower window to be
the new current window.

SEE ALSO

grow−window−vertically(2), next−window−find−buffer(2), next−window−find−file(2),
resize−window−vertically(2), split−window−horizontally(2).

MicroEmacs '02

split−window−vertically(2) 1710

sql(9)

SYNOPSIS

sql − SQL files

FILES

hksql.emf − SQL hook definition
sql.etf − SQL template file.

EXTENSIONS

.sql − SQL file

DESCRIPTION

The sql file type template provides simple hilighting of SQL files, the template provides minimal
hilighting.

BUGS

None reported.

SEE ALSO

Supported File Types

MicroEmacs '02

sql(9) 1711

suspend−emacs(2)

NAME

suspend−emacs − Suspend editor and place in background

SYNOPSIS

n suspend−emacs

PLATFORM

Supported on UNIX platforms − irix, hpux, sunos, freebsd or linux.

DESCRIPTION

suspend−emacs suspends the editing processor and puts it into the background. The "fg" command
restarts MicroEmacs. The prompt to suspend is disabled if a 0 numeric argument n is given to the
command.

SEE ALSO

shell(2).

MicroEmacs '02

suspend−emacs(2) 1712

symbol(3)

NAME

symbol − Insert an ASCII character

SYNOPSIS

symbol

DESCRIPTION

symbol draws the ASCII character table to the screen, displaying decimal, hexadecimal and character
notations in a tabular form. A character is selected using the mouse or cursor characters inserting the
selected character into the current buffer at the current position.

NOTES

symbol is a macro defined in misc.emf.

The dialog is created using osd(2).

SEE ALSO

insert−string(2), &atoi(4), osd(2).

MicroEmacs '02

symbol(3) 1713

Triangle(3)

NAME

Triangle − MicroEmacs '02 version of Triangle patience game

SYNOPSIS

Triangle

DESCRIPTION

Triangle is a solitaire game using a standard set of playing cards. The object of the game is to use all
of the cards in the deck to build up four suit stacks from Ace to King.

The board is laid out so that every card is used to create a triangle shape. In the first column there is
one up−turned card, in the second column there is one down−turned card and 2 up−turned, third has 2
down 3 up etc. The only break form this pattern is in the last 3 columns where there is an extra
up−turned card so that all the deck is used.

Cards may be moved around the playing area by stacking the same suit cards in descending order on
the row stacks. When a row stack has no up−turned cards on the stack then the top card may be turned
over and may be played. If a stack becomes empty then only a King may be moved into the vacant
position.

If the last card in a stack is an Ace then it can be moved to its suit stack, then the 2 of that suit etc.
until finally the King is removed.

Cards are moved around the board using the mouse. Cards may be moved from one row stack to
another row stack by placing the mouse over the 'from' stack and pressing the left mouse button.
Move the cursor to the 'to' stack and release the left mouse button. If the move is legal then the card(s)
are moved to the new stack. Multiple cards may be moved from the row stacks, the appropriate
card(s) to be moved is automatically determined.

Cards may be moved onto the suit stacks by a single left mouse press and release on the same card,
the card is moved to the appropriate suit stack. The same technique is used to turn cards over in the
suit stacks.

Note that once a card is played onto the suit stacks then it cannot be removed.

To the right of the board are a number of control buttons. To select an option, click the left mouse
button on it, the buttons are labeled:

DEAL

MicroEmacs '02

Triangle(3) 1714

Start a new game by dealing new cards.

QUIT

Exit the game

HELP

This help page

Note that the screen may be updated at any time using "C−l".

NOTES

Triangle is a macro defined in triangle.emf.

The game is best played with a mouse, it is possible to play with the keyboard, as follows:−

"esc h" for help

To move a card between stacks enter the source and destination column number
("1","2",.."7").

To overturn a card on the row stacks then enter the card column twice i.e. source and
destination are the same.

To move a card from the row to the suit stacks then either enter the card column twice, or
enter the destination as "h","d","c","s" (i.e. "2 2" or "2 s" to move the card in column 2 to the
spades stack).

"C−c C−c" to deal the cards again.

"C−l" redraw the screen.

"q" to quit the game.

SEE ALSO

Games, Patience(3), Mahjongg(3).

MicroEmacs '02

Triangle(3) 1715

tab(2)

NAME

tab − Handle the tab key

SYNOPSIS

n tab (tab)

DESCRIPTION

tab manages the tab key, typically inserts n tabs. The effect of the command is determined by:

$buffer−indent

If $buffer−indent(5), is non−zero then the effect of tab is defined by the setting of bit 0x1000 of
variable $system(5), typically it resets the current line indentation or inserts a tab.

cmode

If cmode is enabled then the effect of tab is defined by the setting of bit 0x1000 of variable
$system(5), typically it resets the current line indentation or inserts a tab.

tab

If a tab is to be inserted and this mode is enabled then multiple spaces are used instead of tab characters, see
tab(2m) mode. SEE ALSO

cmode(2m), $buffer−indent(5), tab(2m), backward−delete−tab(2), insert−tab(2), normal−tab(3),
$tabsize(5), $tabwidth(5).

MicroEmacs '02

tab(2) 1716

tab(2m)

NAME

tab − Tabulation mode

SYNOPSIS

tab Mode

T − mode line letter.

DESCRIPTION

tab mode, when enabled, simulates all tab stops with spaces. This allows 'variable' tab sizes (see
variable $tabsize(5)) and fixes indentation. If tab mode is not enabled literal tab characters are
inserted, their displayed width may be controlled with the variable $tabwidth(5).

SEE ALSO

buffer−mode(2), global−mode(2). $tabsize(5), $tabwidth(5), tabs−to−spaces(3).

MicroEmacs '02

tab(2m) 1717

tabs−to−spaces(3)

NAME

tabs−to−spaces − Converts all tabs to spaces

SYNOPSIS

tabs−to−spaces

DESCRIPTION

tabs−to−spaces converts all tab characters found in the current buffer with spaces. The number of
spaces a tab is replaced with depends on the column of the tab character and the setting of
$tabwidth(5).

The cursor is restored to the start of the current line after completion.

NOTES

tabs−to−spaces is a macro defined in format.emf.

SEE ALSO

$tabwidth(5), tab(2), tab(2m), clean(3).

MicroEmacs '02

tabs−to−spaces(3) 1718

tcl(9)

SYNOPSIS

tcl, tk − TCL Programming language templates

FILES

hktcl.emf − TCL/TK programming language hook definition
tcl.etf − TCL/TK programming language template file

EXTENSIONS

.tcl, .tk − TCL/TK file

MAGIC STRINGS

^#![\t]*/.*wish

MicroEmacs '02 recognizes the magic string on the first line of the file used to locate the executable. The tcl
files may be extension less and are still recognized. DESCRIPTION

The tcl provides hilighting and automatic formatting features, in addition to a number of tools to
handle the file type.

General Editing

On creating a new file, a new header is automatically included into the file. time(2m) is by default
enabled, allowing the modification time−stamp to be maintained in the header.

Hilighting

The hilighting features allow commands, variables, logical, preprocessor definitions, comments,
strings and characters of the language to be differentiated and rendered in different colors.

Auto Layout

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3)
and restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the
whole buffer, respectively.

Tags

MicroEmacs '02

tcl(9) 1719

A C−tags file may be generated within the editor using the Tools −> Tcl−Tools −> Create Tag File.
find−tag(2) takes the user to the file using the tag information.

Folding and Information Hiding

Generic folding is enabled within the C and C++ files. The folds occur about braces {...} located on
the left−hand margin. fold−all(3) (un)folds all regions in the file, fold−current(3) (un)folds the current
region. Note that folding does not operate on K&R style code.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.
C−c C−e − Comment to the end of the line with stars (*).
A−C−i − Restyle the current region.
f2 − (un)fold the current region
f3 − (un)fold all regions

SEE ALSO

indent(2), find−tag(2), fold−all(3), fold−current(3), restyle−buffer(3), restyle−region(3), tcltags(3f),
time(2m).

Supported File Types

MicroEmacs '02

tcl(9) 1720

tcltags(3f)

NAME

tcltags − Generate a Tcl/Tk tags file

SYNOPSIS

me "@tcltags" <files>

DESCRIPTION

The start−up file tcltags.emf may be invoked from the command line to generate a tags file for
Tcl/Tk files.

Given a list of files a tags file tags is generated in the current directory, which may be used by the
find−tag(2) command. If no files are specified the default file list is "./", i.e. process the current
directory. If a directory name is given (such as the default "./") all Tcl/Tk files within the directory
will be processed.

The value of variable %tag−option is used to control the tag generation process, its value <flags>
can contain any number of the following flags:

a

Append new tags to the existing tag file, note that if also using flag 'm' multiple 'tags' to the same item
may be created.

m

Enable multiple tags. This enables the existence of 2 tags with the same tag name, but typically with
different locations. See help on find−tag(2) for more information on multiple tag support.

r

Enables recursive mode, any sub−directory found within any given directories will also be processed.
NOTES

This function is invoked from menu

Tools −> Tcl Tools −> Create Tags File

when the user requests a tags file to be generated.

MicroEmacs '02

tcltags(3f) 1721

The following variables are set within "tcltags.emf" and are used to control the process:−

%tag−option

Tags options flag, default value is "". See above for more information.

%tag−filemask

A list of source file masks to be processed when a directory is given, default value is
":*.tcl:*.tk:".

%tag−ignoredir

A list of directories to be ignored when recursive option is used, default value is ":SCCS/:CVS/:".

These variables can be changed using the −v command−line option or via the "mytcltags.emf"
file

SEE ALSO

find−tag(2), start−up(3), tcl(9).

MicroEmacs '02

tcltags(3f) 1722

texinfo(9)

SYNOPSIS

texinfo − GNU Texinfo documentation file.

FILES

hktexi.emf − Texinfo file hook definition

EXTENSIONS

.texi − Texinfo file

MAGIC STRINGS

−*− texinfo −*−

Recognized by GNU Emacs and MicroEmacs. DESCRIPTION

The texinfo file type template provides simple hilighting of GNU Texinfo files (.texi), the
template provides minimal hilighting.

File recognition is performed using the standard file extensions, or the magic string.

NOTES

This template file could benefit from some of the hklatex.emf technology for generating the info
file.

SEE ALSO

Supported File Types

MicroEmacs '02

texinfo(9) 1723

textags(3f)

NAME

textags − Generate a LaTeX/BibTeX tags file

SYNOPSIS

me "@textags" <files>

DESCRIPTION

The start−up file textags.emf may be invoked from the command line to generate a tags file for
LaTeX and BibTeX files.

Given a list of files a tags file tags is generated in the current directory, which may be used by the
find−tag(2) command. If no files are specified the default file list is "./", i.e. process the current
directory. If a directory name is given (such as the default "./") all LaTeX files within the directory
will be processed.

The value of variable %tag−option is used to control the tag generation process, its value <flags>
can contain any number of the following flags:

a

Append new tags to the existing tag file, note that if also using flag 'm' multiple 'tags' to the same item
may be created.

m

Enable multiple tags. This enables the existence of 2 tags with the same tag name, but typically with
different locations. See help on find−tag(2) for more information on multiple tag support.

r

Enables recursive mode, any sub−directory found within any given directories will also be processed.
NOTES

This function is invoked from menu

Tools −> LaTeX Tools −> Create Tags File

when the user requests a tags file to be generated.

MicroEmacs '02

textags(3f) 1724

The following variables are set within "textags.emf" and are used to control the process:−

%tag−option

Tags options flag, default value is "". See above for more information.

%tag−filemask

A list of source file masks to be processed when a directory is given, default value is
":*.tex:*.bib:".

%tag−ignoredir

A list of directories to be ignored when recursive option is used, default value is ":SCCS/:CVS/:".

These variables can be changed using the −v command−line option or via the "mytextags.emf"
file

SEE ALSO

find−tag(2), start−up(3), tex(9).

MicroEmacs '02

textags(3f) 1725

time(2m)

NAME

time − File time stamping

SYNOPSIS

time Mode

t − mode line letter.

DESCRIPTION

time mode, when enabled, performs automatic time stamping of files on file write operations. A time
stamp string, defined by $timestamp(5) is searched for in the file and updated with the current data
and time information, providing a record in the file of the last edit.

SEE ALSO

buffer−mode(2), global−mode(2). $timestamp(5).

MicroEmacs '02

time(2m) 1726

time(3)

NAME

time − Command time evaluator

SYNOPSIS

time "string"

DESCRIPTION

time evaluates the time take to execute line "string". time uses command execute−line(2) to execute
the given string.

EXAMPLE

The following example simply times the time take to save the current buffer:−

time "save−buffer"

NOTES

time is a macro defined in misc.emf.

On multi−task systems like UNIX time cannot take into account the number of other processes
running at the same time, it can only return the actual time elapse. This leads to inaccuracies and
variation in results.

SEE ALSO

execute−line(2).

MicroEmacs '02

time(3) 1727

translate−key(2)

NAME

translate−key − Translate key

SYNOPSIS

n translate−key ["from" ["to"]]

DESCRIPTION

translate−key may be used to convert any given input key sequence to another single key.
translate−key operates at a very low level, before MicroEmacs attempts to evaluate keyboard
bindings, so it may be used to solve a variety of keyboard problems such as special language
characters and UNIX termcap key sequence bindings (see below).

If a +ve numeric argument n is given it is used to set the time in milliseconds MicroEmacs waits for
another key to be pressed before continuing, the default time use when no argument is supplied is
250ms.

If a numeric argument n of −1 is specified then the "to" argument is not required and the "from"
character sequence is removed from the translate key table.

If a numeric argument n of 0 is specified then no arguments are required; the current translation table
is dumped to buffer "*tcap−keys*". Following is a sample output:−

 "C−h" "backspace"
 "C−[" "esc"
 "C−[[1 ~" "delete"
 "C−[[1 1 ~" "f1"
 "C−[[1 2 ~" "f2"
 "C−[[1 3 ~" "f3"
 "C−[[1 4 ~" "f4"
 "C−[[B" "down"
 "C−[[4 ~" "end"
 "C−[[2 ~" "insert"
 "C−[[3 ~" "home"
 "C−[[D" "left"
 "C−[[6 ~" "page−down"
 "C−[[5 ~" "page−up"
 "C−[[C" "right"
 "C−[[A" "up"
 "C−[[V" "page−up"
 "C−[[U" "page−down"
 "C−m" "return"
 "C−i" "tab"
 "\x7F" "backspace"

MicroEmacs '02

translate−key(2) 1728

FOREIGN KEYBOARDS

Foreign keyboards (non−US/UK) use a variety of key sequences, not recognized by MicroEmacs, to
expand the keyboard character range to cope with accented characters. For example, on a German
keyboard 'AltGr−m' (recognized as 'A−C−m') is used to insert a Greek mu (or micro sign). On a
Belgian keyboard 'AltGr−9' inserts a '{' character.

Many foreign keyboards are already directly supported by MicroEmacs and the keyboard specifics of
a country have been understood and resolved. In these cases the Keyboard configuration in
user−setup(3) may be used for the country location.

If MicroEmacs does not support your keyboard, translate−key may be used to fix any key input
problems. For the aforementioned examples the following translate−key commands would be
required:

; translate AltGr−m to a Greek mu (char 0xb5)
translate−key "A−C−m" "\xB5"
; translate AltGr−9 to a '{'
translate−key "A−C−9" "{"

The problem is complicated further on Microsoft Window's platforms by the simultaneous generation
of 2 keys for some Alt−Gr key combinations (this is a side effect of endeavoring to capture all key
combinations in this environment). For the Belgian keyboard example, on Win32 platforms an
'AltGr−9' generates an 'A−C−9' key first followed immediately by an 'A−C−{'. As both keys are
generated in quick succession this is unexpected and confusing.

When the key is first pressed on a poorly configured system the error "[Key not bound "A−C−{"]" is
given even when using the command describe−key(2) as the key described will be 'A−C−9' and then
the 'A−C−{' key is generated and interpreted creating the error message.

The variable $recent−keys(5) can be used to diagnose this problem and to obtain the 2 keys
generated; alternatively use the macro below:

define−macro report−2−keys
 ml−write "Press key 1"
 set−variable #l0 @cgk
 ml−write "Press key 2"
 set−variable #l1 @cgk
 ml−write &spr "[The following keys where pressed: \"%s\" \"%s\"]" #l0 #l1
!emacro

When executed the user is prompted for the first key; press the required key sequence (in this case
'AltGr−9'), if you are not prompted for the second key and the result is immediately returned then
the key you pressed has generated 2 keys, both of which will be given in the print out, i.e.:

"[The following keys where pressed: "A−C−9" "A−C−{"]"

The translate−key required to fix this type of problem would be:

translate−key "A−C−9 A−C−{" "{"

MicroEmacs '02

translate−key(2) 1729

If your keyboard is not directly supported by MicroEmacs, please submit the keyboard name and
platform with a working translate−key configuration to JASSPA as a BUG.

UNIX TERMCAP

translate−key may also be used to interpret non−standard key sequences for UNIX termcap
platforms to standard MicroEmacs keys. Non−standard keys, such as the cursor keys, have system
dependent key sequences. The output from these keys usually take the form:

^[[X or ^[[DX or ^[[DDX or ^[[DDD

where ^[is the escape key (27), D is a digit and X is any character. These keys may be bound to the
standard keys, for example the typical output of the cursor keys may be translated as follows:−

^[[A = up, ^[[B = down, ^[[C = right and ^[[D = left

The "from" string is specified as this key sequence and the "to" string is simply the key it is to be
bound to, see global−bind−key(2) for a guide to the string format. For the above example the
following set of translations are required:−

translate−key "esc [A" "up"
translate−key "esc [B" "down"
translate−key "esc [C" "right"
translate−key "esc [D" "left"

Note that MicroEmacs interprets \e as an escape key. More obscure keys tend to be very platform
specific, following are some examples:

translate−key "esc [2 ~" "insert"
translate−key "esc [5 ~" "page−up"
translate−key "esc [5 ^" "C−page−up"

EXAMPLE

Using the +ve numeric argument it is possible to reduce the delay and there by increase usability is
some features. For instance, in the Mouse configuration of user−setup there is an option to 'Simulate
3 Buttons' which translates a rapid left and right button press into a middle button press. This is
implemented using translate−key as follows:

10 translate−key "mouse−pick−1 mouse−pick−3" "mouse−pick−2"
10 translate−key "mouse−pick−3 mouse−pick−1" "mouse−pick−2"
10 translate−key "mouse−drop−1 mouse−drop−3" "mouse−drop−2"
10 translate−key "mouse−drop−3 mouse−drop−1" "mouse−drop−2"

When a mouse−pick−1 key is generated MicroEmacs must wait to see if a mouse−pick−3 key is
next and therefore translate both to a single mouse−pick−2 key. This wait time is usually a quarter
of a second but this makes the left button unusable for dragging regions etc as the delay is too long.
By giving a argument of 10ms the delay is long enough for a simultaneous left and right button press
but short enough for the left button to still be usable on its own.

MicroEmacs '02

translate−key(2) 1730

The +ve numeric argument can be very useful for delaying MicroEmacs as well, for example, the
character string "'e" can be converted to e−accute using expand−iso−accents(3). This could be
performed automatically using translate−key as follows:

1000 translate−key "' e" "\xE9"

The larger 1 second delay give the user enough time to type the 'e' after the ''' character.

NOTES

The concept of standardized key−bindings is very important for cross platform use and maintenance.

Refer to global−bind−key(2) for a list of standard bindings.

One of the easiest ways of obtaining a key sequence is to run sh(1) which does not attempt to interpret
these keys so when a key is pressed (followed by <RETURN>) the following type of error message is
usually generated:−

sh: ^[[2~: not found.

where ^[[2~ is the required key sequence. Another method of obtaining these key sequences is to
start MicroEmacs '02, use start−kbd−macro(2) to start a macro definition, press the required keys and
then use end−kbd−macro(2) followed by name−kbd−macro(2) and insert−macro(2) to display the
keys pressed.

The key sequences generated for these keys are dependent on the machine displaying MicroEmacs '02
as opposed to the machine running it. Often they are the same machine, but when they are not there is
no easy method of determining the displaying machine and therefore correctly configuring
MicroEmacs '02.

A better way of obtaining this cross platform consistency is to create an XTerm app−defaults setup
file with the correct VT100 key translations, e.g. the setup file could contain the following

*vt100.translations: #override \
 Shift<Key>Tab: string("\033[Z") \n\
 <Key>BackSpace: string("\177") \n\
 <Key>Delete: string("\033[1~") \n\
 <Key>Insert: string("\033[2~") \n\
 <Key>Home: string("\033[3~") \n\
 <Key>End: string("\033[4~") \n\
 <Key>Prior: string("\033[5~") \n\
 <Key>Next: string("\033[6~") \n\
 Ctrl<Key>Up: string("\033Oa") \n\
 Ctrl<Key>Down: string("\033Ob") \n\
 Ctrl<Key>Right: string("\033Oc") \n\
 Ctrl<Key>Left: string("\033Od") \n\
 Shift<Key>Up: string("\033[a") \n\
 Shift<Key>Down: string("\033[b") \n\
 Shift<Key>Right: string("\033[c") \n\
 Shift<Key>Left: string("\033[d") \n

MicroEmacs '02

translate−key(2) 1731

By using the environment variable XUSERFILESEARCHPATH to ensure that this configuration file is
found instead of the system one (found in /usr/lib/X11/app−defaults), the key sequences
will then be the same across all platforms. See manual page on xterm(1) for more information.

SEE ALSO

expand−iso−accents(3), user−setup(3), describe−key(2), global−bind−key(2), start−kbd−macro(2),
xterm(1), sh(1).

MicroEmacs '02

translate−key(2) 1732

transpose−chars(2)

NAME

transpose−chars − Exchange (swap) adjacent characters transpose−lines − Exchange (swap) adjacent
lines

SYNOPSIS

transpose−chars (C−t)
n transpose−lines (C−x C−t)

DESCRIPTION

transpose−chars exchanges (swaps) the current character under the cursor with the previous
character. transpose−characters does not operate in column 0 (since there is no previous character).
If the cursor is at the end of a line when the command is initiated then the cursor is moved to the
previous character and the operation performed from the new position.

transpose−lines swaps the next line for the current line and moves to the next line, effectively
retaining the same text position. Repeating this n times moves the current line n lines down.

EXAMPLE

transpose−character performs the following operations (cursor at ^):−

abcde => acbde [Middle of line]
 ^ ^

abcde => abced [End of line]
 ^ ^

SEE ALSO

sort−lines(2).

MicroEmacs '02

transpose−chars(2) 1733

User Profiles(2)

USER PROFILES

This section describes how a user profile should be incorporated into MicroEmacs '02. A user profile
defines a set of extensions to MicroEmacs which encapsulates settings which are used by an
individual user.

The user profile allows:−

Saving of the last session (history), allowing the next invocation of MicroEmacs '02 to restore
your previous session.

♦

Personalized spelling dictionaries.♦
Redefinition of MicroEmacs '02, allowing the editor to be tailored to an individual's
requirements. Including the re−binding of keys, modification of the screen colors. Definition
of personal macros etc.

♦

Identification

In order to identify a user MicroEmacs '02 uses information in the system to determine the name of
the user, and in turn the configuration to use. On all systems the value of the environment variable
$MENAME(5) takes priority over any other means of user identification. If this variable is not
defined then the host system typically provides a mechanism to determine the current user. DOS and
Windows systems present problems where a login prompt is not supplied.

Each of the supported platforms are now described.

UNIX

The environment variable $LOGNAME is defined. This is the user name used by the system.

DOS

MS−DOS typically has no concept of the user name. The user name should be defined in the
autoexec.bat file, choose a name of 8 characters or less, i.e. to fix the user name to
fred then add the following line:−

SET MENAME=fred

Remember to re−boot the system before the new command takes effect. (see the next step,
there is another change to autoexec.bat).

Microsoft Windows

Microsoft windows environments may, or may not, have logging enabled. If you have to log into your
system then a login identification has been supplied and will be recognized by MicroEmacs, setting
the environment variable $MENAME(5) to this value.

MicroEmacs '02

User Profiles(2) 1734

If login is not enabled then the me32.ini(8) file may be modified to provide a default login
name. To add the user fred then add the following lines to the ini file:−

[guest]
MENAME=fred

If login is subsequently enabled on the system then these lines should be removed. These
lines force the user identification to be fred.

The above technique may be used within the windows environment to modify your login
name. Assuming that the system administrator has assigned fred a user login name of fwhite,
and fred requires all of his configuration files to be the same name as his UNIX login which is
fred. Then fred may force his user name to fred from the me32.ini file as follows:−

[fwhite]
MENAME=fred

Once fred has entered MicroEmacs he will adopt his new login name which will be used to
identify his own files etc. The action of this statement is to force the environment variable
$MENAME to a new value. Any other environment variables may be forced in this way i.e.
$HOSTNAME is a good candidate here as the me32.ini is local to the machine.

Shared Platforms

Platforms may share the same set of configuration files. Consider a system which may boot under MS−DOS,
Windows '98, NT and Linux. Provided that the macro files are located on a file system that may be mounted
by all of the other operating systems and the $MEPATH is set appropriately, then a single set of MicroEmacs
macro files may be shared across all platforms. Personal MicroEmacs Directory

The private user profile is stored in a separate directory. The directory that MicroEmacs uses must be
created by the user, create the directory in your local file system. In addition, the MicroEmacs search
path $MEPATH(5) should be modified to include your new MicroEmacs personal directory.

UNIX

Create in your local directory, typically called microemacs or .microemacs (if it is to be
hidden).

Add/modify the $MEPATH(5) environment variable to include your personal directory in
your .login, .chsrc or .profile file, the file and exact syntax will depend upon your
shell. For a Korn shell the following line would be added to the .profile file:−

export MEPATH=$HOME/.microemacs:/usr/local/microemacs

Where $HOME is assumed to be the users login home directory, or use the directory location
of your new directory.

DOS

MicroEmacs '02

User Profiles(2) 1735

For MS−DOS environments, there is typically no user directory, it is suggested that the user
directory is created in the MicroEmacs directory, use the $MENAME defined in the previous
step i.e.

mkdir c:\me\fred

Change the $MEPATH(5) in the autoexec.bat to include the new directory i.e.

SET MEPATH=c:\me\fred;c:\me

Windows

Windows environments, the me32.ini(8) userPath entry defines the location of the user
profile directories, within the Install Shield installation, the me32.ini is typically defined
as:−

userPath=C:\Program Files\JASSPA\MicroEmacs

Create your MicroEmacs personal directory in this folder, the name of the folder should be
your login name or $MENAME, depending upon how your name is identified.

Creating Your Profile

Once you have created a new directory to store your user profile, create a default profile for yourself
from MicroEmacs using the user−setup(3) dialog:−

Help => User Setup

Fill in the entries in the dialog, and ensure that Save is depressed on exit to write the files.

The dictionaries often present difficulties the first time, a prompt to save the dictionary requires the
full pathname and the name of the file, the pathname is the path to your personal folder, the filename
is typically your username.edf. Once the file is created you will not have a problem in the future.

The User Profile

Files created in the user directory include:−

Setup registry and previous session history username.erf, see erf(8)). This stores the
user−setup settings and also the context from your previous edit session.

♦

Users start−up file username.emf, see emf(8) the user may make local changes to
MicroEmacs in this file, this may include changing key bindings, defining new hook
functions etc. You should over−ride the standard MicroEmacs settings from your start−up file
rather than modifying the standard MicroEmacs files.

♦

Personal spelling dictionary username.edf, see edf(8). This file contains your personal
spelling modifications, any words that are added to the spelling dictionary are added to this
file.

♦

MicroEmacs '02

User Profiles(2) 1736

In addition to the above, if new file hooks are defined then they should be added to this directory (if
they are not global to the company).

EXAMPLE

The following are examples of some individuals start−up files:−

; Jon's special settings
;
; Last Modified <190698.2226>
;
; Macro to delete the whitespace, or if an a word all of the
; word until the next word is reached.
define−macro super−delete
 set−variable #l0 0
 !while ¬ &sin @wc " \t\n"
 forward−char
 set−variable #l0 &add #l0 1
 !done
 !repeat
 !force forward−char
 !if $status
 set−variable #l0 &add #l0 1
 !endif
 !until &or &seq @wc "" ¬ &sin @wc " \t\n"
 #l0 backward−delete−char
 !return
!emacro
; Make a previous−buffer command.
define−macro previous−buffer
 &neg @# next−buffer
!emacro
; spotless; Perform a clean and remove any multi−blank lines.
define−macro spotless
 −1 clean
!emacro
; comment−adjust; Used for comments in electric−c mode (and the other
; electic modes. Moves to the comment fill position, saves having to mess
; around with comments at the end of the line.
0 define−macro comment−adjust
 ; delete all spaces up until the next character
 !while &sin @wc " \t"
 forward−delete−char
 !done
 ; Fill the line to the current $c−margin. We use this as
 ; this is the only variable that tells us where the margin
 ; should be.
 !if &gre $window−acol 0
 backward−char
 !if &sin @wc " \t"
 forward−delete−char
 !jump −4
 !else
 forward−char
 !endif
 !endif

MicroEmacs '02

User Profiles(2) 1737

 ; Now fill to the $c−margin
 &sub $c−margin $window−acol insert−string " "
!emacro
; Macro to force buffer to compile buffer for C−x '
define−macro compile−error−buffer
 !force delete−buffer *compile*
 change−buffer−name "*compile*"
!emacro
;
; Set up the bindings.
;
global−bind−key super−delete "C−delete"
global−bind−key beginning−of−line "home"
global−bind−key end−of−line "end"
global−bind−key undo "f4"
!if &seq %emulate "ERROR"
 global−bind−key comment−adjust "esc tab"
 global−bind−key comment−adjust "C−insert"
 ; Like a korn shell please.
 ml−bind−key tab "esc esc"
!endif
;
; Setup for windows and UNIX.
;
; Define my hilighting colour for Windows and UNIX.
!if &equ &band $system 0x001 0
 !if ¬ &seq $platform "win32"
 ; Small bold font is better for me.
 change−font "−*−clean−medium−r−*−*−*−130−*−*−*−*−*−*"
 ; Small non−bold font.
 ; change−font "−misc−fixed−medium−r−normal−−13−*−*−*−c−70−iso8859−1"
 ; Change the size of the screen
 82 change−frame−width
 50 change−frame−depth
 !endif
!endif
; Change the default diff command−line for GNU diff utility all platforms
set−variable %diff−com "diff −−context −−minimal −−ignore−space−change −−report−identical−files −−recursive"
set−variable %gdiff−com "diff −−context −−ignore−space−change −w"
; Setup for cygnus
!if &seq $platform "win32"
 set−variable %cygnus−bin−path "c:/cygwin/bin"
 set−variable %cygnus−hilight 1
 set−variable %cygnus−prompt "$"
!endif
; Set up the ftp flags. The letters have the following meaning:
; c − Create a console (*ftp−console* for ftp, *http−console* for http)
; s − Show the console
; p − Show download progress ('#' every 2Kb downloaded)
set−variable %ftp−flags "csp"
; Info files
;To hilight the .info and also the dir file
add−file−hook ".info dir" fhook−info ; Info−files
;To hilight all info files without the extension .info
;but starting with the text "This is info file..
−2 add−file−hook "This is Info file" fhook−info

; Finished
ml−write "Configured to Jon's requirements"

MicroEmacs '02

User Profiles(2) 1738

SEE ALSO

$MEPATH(5), $MENAME(5), user−setup(3), Company Profiles, File Hooks, File Language
Templates, Installation.

MicroEmacs '02

User Profiles(2) 1739

undo(2)

NAME

undo − Undo the last edit

SYNOPSIS

n undo (C−x u)

DESCRIPTION

undo removes the last n edits made to the current buffer. The undo(2m) buffer mode must be enabled
for this command to operate.

The undo information is retained up until the next save operation, at which point the undo information
is discarded. When editing large files with gross changes then it is advisable to either disable undo
mode, or save frequently to flush the undo buffer, thereby keeping MicroEmacs '02 memory
requirements reasonable (most UNIX users have restrictions on the amount of memory that may be
consumed by a single process. Windows is restricted by the amount of virtual memory (or swap
space)).

SEE ALSO

buffer−mode(2), save−buffer(2), undo(2m).

MicroEmacs '02

undo(2) 1740

undo(2m)

NAME

undo − Retain edit modifications

SYNOPSIS

undo Mode

U − mode line letter.

DESCRIPTION

undo mode, when enabled, stores a history of all user edits so that the command undo(2) may be used
to undo the last n edits to a buffer. If this mode is not enabled the undo command has no effect.

Obviously memory is required to store this information, particularly storing deleted, reformed or
replaced text, users editing large files or operating in restricted memory environments may wish to
use this mode selectively.

NOTES

The undo information is flushed, and is effectively lost, when a save operation is performed on the
buffer.

SEE ALSO

buffer−mode(2), global−mode(2). undo(2).

MicroEmacs '02

undo(2m) 1741

uniq(3)

NAME

uniq − Make lines in a sorted list unique

SYNOPSIS

uniq

DESCRIPTION

uniq reduces a sorted lines of text in the current buffer to a unique list such that no entries are
repeated. The list is made unique from the mark position to the current cursor position (point). The
operation is case sensitive.

NOTES

uniq is a macro implemented in tools.emf.

For uniq to operate correctly then the list must have been previously sorted, see sort−lines(2).

SEE ALSO

sort−lines(2), sort−lines−ignore−case(3), transpose−lines(2),

MicroEmacs '02

uniq(3) 1742

universal−argument(2)

NAME

universal−argument − Set the command argument count

SYNOPSIS

universal−argument (C−u)

DESCRIPTION

universal−argument sets the argument number passed to a command to 4^n (4 to the power of n)
where n is the number of calls to universal−argument, e.g. the key sequence "C−uC−n" moves
down 4 lines, "C−uC−uC−uC−n" moves down 4*4*4 = 64 lines.

After invoking the universal−command a '−' character can be pressed to negate the argument value,
and an alternative numeric argument can be entered using the '0' to '9' keys.

Invoking this command via execute−named−command(2) or by a macro has no effect. The command
should be treated as a command key prefix (like prefix(2)) in that it may be bound to only one key
sequence which must be a single key stroke. Re−binding this command to another key unbinds the
new key and also the current universal−argument key.

The prefix 1 key (by default bound to esc) may also be used to enter a numeric argument at the
message line, e.g. "esc 1 0 C−f" will move forward 10 characters.

SEE ALSO

prefix(2).

MicroEmacs '02

universal−argument(2) 1743

user−setup(3)

NAME

user−setup − Configure MicroEmacs for a specific user

SYNOPSIS

user−setup

DESCRIPTION

user−setup provides a dialog interface to enable the user to configure the editor. user−setup may be
invoked from the main Help menu or directly from the command line using
execute−named−command(2). user−setup configures the user's setup registry file,
"<logname>.erf" which is used by MicroEmacs to initialize the environment to a user's preference.

Note, if your screen is too small to display the whole dialog, it may be moved using any key bound to
the scroll commands such as scroll−up, e.g. A−up, C−z, A−down, C−v, A−left etc. For systems
without mouse support, the tab key may be used to move between fields.

On all pages the following buttons are available at the bottom of the dialog and have the following
effect:

Save

Saves the changes made to the users registry file, i.e. "<Log−Name>.erf" but does not re−initialize
MicroEmacs. Some changes, such as color scheme changes, only take effect when the Current button
is used or when MicroEmacs is restarted.

Current

Makes the current user and the changes made Current to this MicroEmacs session, dismissing the
user−setup dialog and reinitializing MicroEmacs. This also saves the registry file out!

Exit

Quits user−setup, if changes where not Saved or made Current they will be lost.

The following pages, which appear in the dialog, are defined as follows:−

Start−up

Log Name

MicroEmacs '02

user−setup(3) 1744

Sets the name of the current user to setup, this can be set to any valid file base name (no extension)
which need not be the current user. The rest of the user−setup entries are then initialized to the
settings defined for the given user (or standard defaults if not defined).

Default User

Creates a small macro file, "default.emf", setting $MENAME(5) to the current setting of Log
Name. This may be executed at start−up to determine the current user. See $MENAME(5) for more
information.

Setup Path

Sets the location of the user files, the files are searched for and created in this directory.
$MEPATH(5) should be defined to include this path.

Setup File

Sets the personal user setup macro file name which is executed at start−up. A user macro file should
contain all personal settings such as preferred key bindings etc. See Setting Up A User Profile for
more information. The Edit check box can be used to enable/disable the automatic loading of the
setup file ready for editing when the Current button is used.

Company File

Sets the company setup macro file name which is executed at start−up. A company macro file should
contain all company wide standard settings such as %company−name, No .emf extension is
supplied. See Setting Up a Company Profile for more information.

Emulate

Sets an emulation mode which changes the behaviour on MicroEmacs to emulate another
editor/program; this is done by executing a macro file at start−up. An emulation macro file should
contain the macro code required to simulate the environment of the other editor. MicroEmacs '02 is
released with two emulation modes, MicroEmacs v3.8 which executes macro file meme3_8.emf
(See Compatibility for more information) and NEdit v5 which is at best a demonstration of what can
be achieved, this executes macro file menedit.emf.

MS Friendly Keys

When enabled the following key bindings are created to ease frustration for MS users:

home

Bound to beginning−of−line instead of beginning−of−buffer.

end

Bound to end−of−line instead of end−of−buffer.

MicroEmacs '02

user−setup(3) 1745

C−home

Bound to beginning−of−buffer.

C−end

Bound to end−of−buffer.

C−v

Bound to yank (paste).

esc−v

Bound to reyank.

Note that the "C−x" and "C−c" keys are just to intrinsic to MicroEmacs to rebind (sorry).

MS Shift Region

Enables/disables cursor key manipulation with the shift key similar to the conventional Microsoft region
selection. When enabled, pressing the shift key in conjunction with the cursor movement keys selects a region
which is hilighted. Once the region is selected then the <DELETE> or <BACKSPACE> key erases the selected
region. This also enables a similar behaviour with the Mouse Drag region driver, see below. Locale Setup

Keyboard

Configures MicroEmacs to the user's keyboard. Accent character generation keys present on foreign
keyboards cannot be automatically supported on Windows platforms. MicroEmacs must be informed
of the keyboard being used to correctly interpret the keys. If a required keyboard is not supported
please see FAQ38 on how to setup the keyboard, also see Locale Support.

Language

Sets the user language, this sets the word (or letter) characters and if available sets up spell(2) with
appropriate spelling rules and dictionaries. For more information on adding support for a language see
Locale Support.

NOTES

Earlier versions MicroEmacs had "(Ext)" languages which use extended language dictionaries,
vastly increasing the word list. New versions automatically test for and use these dictionaries if
available.

In earlier versions a personal dictionary name could be set in the next field, this option was
removed on Oct 2001. Instead a personal dictionary for each language is automatically
created for you, any words or auto−corrected words will be added to the current languages
personal dictionary. The name of dictionary is "lsdp<lang−id>.edf" where "<lang−id>"

MicroEmacs '02

user−setup(3) 1746

is the 4 letter MicroEmacs language name (e.g. "enus" for American), simply rename any
existing personal dictionary to this new name.

Auto Spell

Enables Auto Spell Checking in file types which support this feature (usually text based files such as
txt(9) or nroff(9) files etc). Auto spell detects word breaks as you type and checks the spelling of
every completed word hilighting any erroneous words in the error color scheme (usually red). The
feature can be manually enabled and disabled by invoking the auto−spell(3) command (usually bound
to "f5").

Auto Save Dics

Enables auto−saving of any changed dictionaries on exit. If this is disabled the user is prompted to save for
each changed dictionary. General

Full Name

This should be set to the user's name and is used in a variety of places, e.g. by etfinsrt(3) to set the
"Created By" field in a template.

Organizer

Sets the organizer file base name, defaults to the Log Name. When notes and addresses are stored
using organizer(3) the file "<Organizer>.eof" is used.

Auto−Save Time

Sets the length of time in seconds between buffer auto−saves, a setting of 0 or an empty string
disables auto−saving. The default setting is 300 seconds or 5 minutes. This indirectly sets the
auto−time(5) variable and the autosv(2m) global mode.

Global Modes

Sets the initial state of the global quiet(2m) mode. This indirectly executes global−mode(2) to set the
required modes.

Buffer Modes

Sets the initial state of the global modes auto(2m), backup(2m), tab(2m) and undo(2m), any buffers
created will inherit the state of these modes. However, as changing these modes directly effects only
the global modes, any existing buffers (including ones re−created using the −c command−line option,
see me(1)) will not be effect by the setting of these modes. For them to take effect, the buffers should
be reloaded. These modes can be changed on a per file type basis using the command buffer−setup(3),
also some file hooks override these global settings, such as the makefile(9) hook which overrides the
tab mode. This indirectly executes global−mode(2) to set the required modes.

Search Modes

MicroEmacs '02

user−setup(3) 1747

Sets the initial state of the global search modes exact(2m) and magic(2m). This indirectly executes
global−mode(2) to set the required modes.

Keep Undo History

If this is enabled the undo history is kept after a save allowing the undo(2) command to back−up
changes beyond the last save. When clear the undo history is discarded after the buffer is saved. This
indirectly sets bit 0x8000 of the $system(5) variable.

Hide Backups

Enables hiding MicroEmacs generated backup files. On Windows and Dos platforms the Hidden file
attribute is used to hide the file, whereas on UNIX the backup file name is prepended with a '.'. This
indirectly sets bit 0x100000 of the $system(5) variable.

Main Menu

Enables the top main menu bar.

Alt −> Main Menu

If enabled the main menu Alt hot−key bindings are enabled. These are dynamic bindings
automatically generated from the main menu. Typically the first item in the main menu is "File"
with a hot key of 'F', with this enabled 'A−f' will open this menu item. Note that global and local key
bindings override these. This indirectly sets bit 0x2000 of the $system(5) variable.

Alt −> Esc Prefx

If enabled the Alt key acts as a prefix 1 modifier key. By default 'A−n' is not bound, with this bit set
the key is inferred to 'esc n' which is bound to forward−paragraph. Note that global, local and
menu hot−key bindings override these. This indirectly sets bit 0x4000 of the $system(5) variable.

Abbrev Expansion

Configures which expansion methods are enabled by default when the expand−abbrev−handle(3) is
executed. Accent enables expand−iso−accents(3), Lookbk enables expand−look−back(3) and Dict'n
enables expand−word(3).

Tab To Indent

Sets the tab(2) behavior in a buffer which has cmode(2m) enabled or an indentation method. This
indirectly sets bits 0x1000 and 0x200000 of the $system(5) variable.

Show Modes

Selects which modes are to be displayed on the mode−line whenever a "%e" token is used in the
$mode−line(5) variable. This indirectly sets the $show−modes(5) variable. Platform − UNIX Setup

MicroEmacs '02

user−setup(3) 1748

Only present on UNIX platforms using the X interface, see below for the Console setup.

Font

Sets the X font name to be used. This indirectly executes change−font(2) with the given font name.
e.g.

"−misc−fixed−bold−r−normal−−13−*−*−*−c−70−iso8859−1"

Display Char Set

Selects the display character set being used by the system to render the MicroEmacs window,
dependent on the Font being used. The setting of this option effects the configuration of
MicroEmacs's internal character maps (using command set−char−mask(2)) enabling the character sets
of foreign languages to be correctly supported. It also changes the definition of variables
$box−chars(5) and $window−chars(5) to their best values for the given font.

Extend Char Set

When enabled MicroEmacs replaces the display of characters 0x00 to 0x1f with forms which are
useful for variables $box−chars(5) and $window−chars(5) greatly improving the look of osd(2)
dialogs, the scroll bars etc.

Use Fonts

When enabled the bold, italic, light and underline characteristics of the font will be used depending on
their availability and the Color Scheme being used. This indirectly sets bit 0x10 of the $system(5)
variable.

Draw White Spaces

Enables the drawing of visible white spaces, i.e. space, tab and new−line characters. This indirectly
sets bit 0x80000 of the $system(5) variable.

Enable Toolbar

Enables the Toolbar − configurable, managed windows giving easy access to many features and tools.

Client Server

The client/server enables the file based external macro command driver to be enabled − see
Client−Server. This by default is disabled, when enabled it is used by command−line options −m and
−o.

DOS File Names

DOS has a restricted 8.3 file naming system (i.e. "BBBBBBBB.XXX"), if this option is enabled the
MicroEmacs '02 will adhere to this system for auto−save and backup file names whenever possible.
See $auto−time(5) for more information on the naming convention used. This indirectly sets bit

MicroEmacs '02

user−setup(3) 1749

0x400 of the $system(5) variable.

Backups

This option only has an effect when DOS File Names is disabled. Setting this to a number greater
than zero enables multiple backup files to be created, the number determined by this value. If set to
zero (or less) then only a single backup file is created. This indirectly sets the $kept−versions(5)
variable.

Ignore Files

Sets a list extensions of files to be ignored in file completion, e.g. MicroEmacs backup files (~). This
indirectly sets the $file−ignore(5) variable.

Cursor Blink Rate

Sets the cursor blink period in millisecond. The first entry box sets the cursor visible time, a setting of
zero disables blinking. The second box sets the hidden time. A visible time of 600 and hidden time of
200 gives a reasonable blink cycle. This indirectly sets the $cursor−blink(5) variable.

Fence Display

Sets the preferred method of displaying a matching fence, a fence is one of the following
brackets:

{...} (...) [...]

Jumping to the opening fence only occurs when the closing brace is typed, whereas the drawing of
matching fences occurs whenever the cursor is on an open fence or one character past the close fence.
When this option is set to "Never Display" the buffer−setup(3) setting is ignored.

Scroll Bars

Selects the scroll bar support required. When Splitter is enabled, the first character of the scroll bar
and mode−line is a split character used for splitting the window into two using the mouse. This
indirectly sets the $scroll−bar(5) variable.

Horizontal Scroll

Selects the horizontal scrolling method used with the scroll−left(2) and scroll−right(2) commands.
This indirectly sets the $scroll(5) variable.

Vertical Scroll

Selects the vertical scrolling method used with the forward−line(2) and backward−line(2) commands.
This indirectly sets the $scroll(5) variable.

Color Scheme

MicroEmacs '02

user−setup(3) 1750

Sets the color scheme setup macro file name which is executed at start−up. MicroEmacs by default comes
with 4 color schemes. Color schemes can be created and altered using the scheme−editor(3) dialog. Platform
− UNIX Console Setup

Only present on UNIX platforms when using the termcap interface, all the Console platform settings
are kept independent of the X interface settings.

Termcap Color

This option determines whether Termcap based colors should be used. These are typically the
standard eight colors and may not be supported on all terminals. If this option is disabled Termcap
fonts (such as bold) are used instead to create a primitive hi−lighting. This indirectly sets bit 0x004 of
the $system(5) variable.

Use Fonts

See Platform UNIX Setup above.

Display Char Set

See Platform UNIX Setup above.

Draw White Spaces

See Platform UNIX Setup above.

Client Server

See Platform UNIX Setup above.

DOS File Names

See Platform UNIX Setup above.

Backups

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

MicroEmacs '02

user−setup(3) 1751

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

Color Scheme

See Platform UNIX Setup above. Platform − Win32 Setup

Only present on Microsoft Windows based machines.

Font Name

Sets the windows font name and size. This indirectly executes change−font(2) with the given font
name. MicroEmacs may only use a Fixed Mono Font, either an OEM font as used by the MS−DOS
command line, or the more conventional ANSI fonts. The fonts are selected using the Change Font
button which invokes a dialog to allow the available fonts to be selected. True−Type mono fonts such
as Courier New or Lucida Console are typically used.

Weight & Size

Allows the size and weight of the font to be selected, specified as weight, width and height. The
weight is typically 4, this corresponds to a regular weighting, 7 is bold. width is the width of the font
in pixels, this may be 0 when the height is specified as −ve. height is the height of the font, typically a
−ve value (where the width is 0), which produces a proportionally sized font, values of in the range
−11 .. −14 generally produce reasonably sized fonts. The hight and width may be specified as +ve
values and allow explicit font dimensions to be specified, generally used to achieve a precise font size
requirement.

Use Fonts

See Platform UNIX Setup above.

Display Char Set

See Platform UNIX Setup above.

Extend Char Set

See Platform UNIX Setup above.

Choose Font

MicroEmacs '02

user−setup(3) 1752

Opens a windows dialog allowing the user to select a font, the selection is used to configure the above
font fields.

Draw White Spaces

See Platform UNIX Setup above.

Capture Alt Space

Used to enable/disable the capture and interpretation of the 'A−space' key sequence. If this key
sequence is not captured by MicroEmacs it is passed back to Windows which opens the top left
window menu, allow keyboard access to Window commands like Maximize.

Client Server

See Platform UNIX Setup above. Note that on windows based systems the client/server is also used
by memsdev(1) to drive the editor from the Microsoft Developer environment.

DOS File Names

See Platform UNIX Setup above. Note that some early version of Windows '95 have problems with
~ extensions. Service release 2 fixed these problems − if you experience problems then return to 8.3
filename mode − note that MicroEmacs will still store longer file names, only the backup naming
convention changes.

Backups

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

MicroEmacs '02

user−setup(3) 1753

Color Scheme

See Platform UNIX Setup above. Platform − Win32 Console Setup

Only present on Windows NT and Win95+ platforms when using the console interface, all the
Console platform settings are kept independent of the Window interface settings.

Display Char Set

See Platform UNIX Setup above.

Draw White Spaces

See Platform UNIX Setup above.

Client Server

See Platform Win32 Setup above.

DOS File Names

See Platform Win32 Setup above.

Backups

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

Color Scheme

MicroEmacs '02

user−setup(3) 1754

See Platform UNIX Setup above. Platform − DOS Setup

Only present on DOS machines.

Graphic Mode # and Double Lines

Sets the DOS graphics mode number and whether the number of text lines can be doubled. This
indirectly executes change−font(2) with the given font name.

Display Char Set

See Platform UNIX Setup above.

Draw White Spaces

See Platform UNIX Setup above.

Ignore Files

See Platform UNIX Setup above.

Cursor Blink Rate

See Platform UNIX Setup above.

Scroll Bars

See Platform UNIX Setup above.

Horizontal Scroll

See Platform UNIX Setup above.

Vertical Scroll

See Platform UNIX Setup above.

Color Scheme

See Platform UNIX Setup above. Mouse

The mouse device creates keys in a similar way to regular keyboard keys and, like keyboard keysm
they must be bound before they are used. MicroEmacs '02 does not have the mouse functionality hard
coded into the editor, it provides a macro interface to the mouse for ultimate flexibility and a set of
default functionality which can be bound to the mouse in a variety of ways.

MicroEmacs '02

user−setup(3) 1755

All the mouse controlling macros are stored in mouse.emf and mouseosd.emf although some
buffers have local functionality over−rides, such as file−browser(3). The user can expand the range of
mouse functionality but how this is achieved is beyond the scope of this documentation.

The user−setup dialog allows the user to configure the mouse to use the default functionality, as
follows:−

Enable Mouse

Enables or disables the mouse, when disabled the mouse can not be used and will not generate any
key events. This does not apply to UNIX Termcap systems as the mouse cut and paste operation is
performed by the Xterm. This indirectly sets bit 0x010 of the $mouse(5) variable.

Number Buttons

Sets the number of buttons on the mouse, may be 1, 2 or 3. MicroEmacs usually obtains the correct
number for the system, but sometimes this can be wrong. This entry can be used to correct this
problem. For one button mice, the button is considered to be the left mouse button, two button mice
have an left and right button. This indirectly sets the $mouse(5) variable.

Swap Buttons

If enabled then the left and right buttons are swapped, i.e. when the left button is pressed it
executes the right button bindings. This indirectly sets bit 0x020 of the $mouse(5) variable.

Simulate 3 Buttons

If enabled then pressing the left and right buttons together with generate a middle button press
event, this feature is for people with a 2 button mouse who want more. The two buttons must be
pressed or release within 10 millisecond of each other.

The following four fields determine which mouse button binding the user wishes to view and
change:−

Button

The mouse button, Left, Right or Middle for the normal buttons and Whell Up or Whell
Down for the pilot wheel events.

Shift Pressed

The action of the mouse can be different for every modifier key setting, if this is enabled then the
binding being modified is for the Button being pressed with the Shift key held down.

Control Pressed

If enabled then modifying the action when the Button is pressed with the Control key held down.

Alt Pressed

MicroEmacs '02

user−setup(3) 1756

If enabled then modifying the action when the Button is pressed with the Alt key held down.

The following two fields determine the functionality of the button defined by the previous four
fields:−

Handle Scroll

When enabled, if the button is pressed with the mouse on the main menu, a scroll bar or mode−line
the standard action is performed, such as opening the main menu or scrolling up or down the window
etc. The bound To command is only called if the mouse is in a main window. If disabled, the Bound
To command is always called.

Bound To

The function to be performed. The functions available depend on the type of button being
bound, the following is a list of functions available for normal buttons:−

Not bound

The Button is not bound.

Drag region

set−mark(2) is called at the pick location, until the button is dropped, the area of text between
this point and the current mouse position is hi−lighted. When the mouse button is dropped, if
the drop position is the same as the pick then the double click is tested for, if a double click is
entered then the Select Word function is executed, otherwise the cursor is simply moved to
the drop position. If the pick and drop position are different then the enclosed text is copied to
the kill buffer using copy−region(2). Note this behaviour is altered by the setting of MS Shift
Region on the Start−Up page.

Select Word

Also executed from a double click bound to Drag Region, Select Word copies the word
under the mouse into the kill buffer using copy−region(2), unless a double click is entered in
which case the whole line is copied.

Default Pan

While the mouse button is pressed the current buffer pans with any mouse movement.

MS Pan

MicroSoft style Pan; while the mouse button is pressed the current buffer pans vertically
according to the mouse position relative to the point where the button was pressed.

Find Tag

Executes find−tag(2) with the word currently under the mouse.

MicroEmacs '02

user−setup(3) 1757

Find ME Help

Executes help−item(2) with the word currently under the mouse.

Undo

Simply executes undo(2) without moving the cursor to the position of the mouse. Subsequent
calls to this binding will undo multiple edits.

No move yank

Simply executes yank(2) without moving the cursor to the position of the mouse.

Replace yank

Simplar to "No move yank" except when the is a current region (typically defined by
"Drag region" above), in which case the region is first deleted.

Move to yank

Moves the cursor to the current position of the mouse and executes yank(2).

Reyank

Executes reyank(2) without moving the cursor. Note, to enable this functionality some sanity
checks have had to be removed, as a result it should not be misused as seeming bizarre things
can occur.

Fold current

Toggles the fold status of the current block, only applicable in buffers supporting
fold−current(3), such as c and emf files.

Fold all

Toggles the fold status of the whole buffer, opening or closing all found blocks. Only
applicable in buffers supporting fold−all(3), such as c and emf files.

Main menu

Simply opens the main menu from any where on the screen.

Multi−Menu

Opens a context sensitive menu dependent on the position of the mouse, i.e. opens the main
menu if over it, opens a different menu when executed on the mode−line etc.

The following is a list of functions available for pilot wheel events:−

MicroEmacs '02

user−setup(3) 1758

Not bound

The Button is not bound.

Scroll Up 1 Line

Scrolls the current buffer by the specified amount.

Defaults

Rests the mouse configuration to the default settings. File Types

The file type list is used in two places, the main menu's File => Quick Open sub−menu list and
the File => Open => File Type list. In each case the file type "All Files" is
automatically added. The user can add, remove and change the list of file types by using this dialog.
An entry can be selected for editing or deletion by simply selecting it with the left mouse button. A
new entry may be added by simply filling in the 3 entry boxes and selecting Add. Items in the Dialog
are as follows.

No.

The file type entry number. A new entry is always added to the end of the list, ignoring this value.
The position of an existing entry can be changed by altering this field to the desired position and
selecting the Change button to move it to its new position.

Name

The file type name, the string printed in the sub−menus.

File Mask List

A comma (',') separated list of file masks which match the file type, e.g. for C and C++ source files
use "*.c,*.cc,*.cpp".

Add

Adds a new entry to the list, only the Name and FileMask List fields are used, the No. field is
ignored as the new entry is always added to the end of the list. The position can be altered by using
the Change button.

Change

Alters an existing file type entry, all 3 fields must be set.

Delete

Deletes the current entry number, only the No. entry is used. Tools

MicroEmacs '02

user−setup(3) 1759

The Tools dialog allows the user to configure up to 10 system commands, or tools, which can be
executed via MicroEmacs Main Tools Menu. The dialog configures the user's registry for the
command execute−tool(3) to be used. The execution of a tool can also be bound to a key, see
execute−tool for more information.

The top half of the dialog consists of the 10 Tools (0−9) configuration buttons. Selecting one of these
selects the current tool to be configured, the current tool is shown by the title in the middle of the
dialog.

The lower half of the dialog configures the currently selected tool, as follows:−

Tool Name

Sets the displayed name of the tool. The tool name is used in the buttons in the top half of this dialog
and in the MicroEmacs Main Tools Menu.

Tool Command Line

Sets the system command−line to be launched whenever the tool is executed, the following
special tokens may be used in the command−line which are substituted at execution:−

%ff

The current buffer's full file name, including the path.

%fp

The current buffer's file path.

%fn

The current buffer's file name without the path.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the file name does
not have an extension.

Note that "%ff" is always the same as "%fp%fn" and "%fp%fb%fe". If any of these tokens
are used, the tool will fail to execute if the current buffer does not have a file name.

Save Current Buffer and Prompt

If the current buffer has been edited, enabling Save Current Buffer will automatically save the
current buffer before executing the tool. This is particularly useful when the tool operates on the

MicroEmacs '02

user−setup(3) 1760

current buffer's file (e.g. compiles the file). If Prompt is also enabled the user will be prompted
before the file is saved.

Save All Buffers and Prompt

If Save All Buffers is enabled, all edited buffers will be automatically saved before executing
the tool. This is particularly useful when the tool may operate on multiple files (e.g. compilation of a
project). If Prompt is also enabled the user will be prompted before each file is saved.

Capture Output

If enabled any output produced from the execution of the tool will be captured and inserted into a new
buffer. When enabled the following two items, Buffer and Hide, may be specified. When disabled
the command used to execute the tool is shell−command(2), otherwise the command used is either
pipe−shell−command(2) or ipipe−shell−command(2) depending on the setting of Run
Concurrently.

Buffer

Specifies the buffer name the captured output should be dumped to, this option is only visible
when Capture Output is enabled. The following special tokens may be used in the buffer
name which are substituted at execution:−

%fn

The current buffer's file name without the path, set to the buffer name if the current buffer
does not have a file name.

%fb

The current buffer's file base name, i.e. the file name without the path or the extension. Set to
the buffer name if the current buffer does not have a file name.

%fe

The current buffer's file extension with the '.' (e.g. ".emf"), set to the empty string if the current buffer
does not have a file name or it does not have an extension.Note that "%fn" is always the same as
"%fb%fe". Default buffer name when this field is left empty is "*command*", or "*icommand*" if
Run Concurrently is enabled.

Hide

When enabled the tool output capture buffer is hidden, this option is only visible when Capture
Output is enabled.

Run Concurrently

If enabled, when the tool is executed the command is launched and run concurrently, allowing the user to
continue working in MicroEmacs during the tools execution. This option is not available for all versions on

MicroEmacs '02

user−setup(3) 1761

MicroEmacs and forces the output to be captured. Enabling this option will force the use of command
ipipe−shell−command(2) to launch the tool. E−Mail

MicroEmacs '02 provides a simple E−Mail manager, see vm(3) for more information and example
entries. It must be stressed that vm has only been tested in one environment, caution should be used as
system differences may cause problems, such as loss of data, which the author does not except any
responsibility for.

The E−Mail Setup dialog configures a user to use part or all of the vm E−Mail manager, as follows:−

Platform ALL Mail Setup

The following field is used for both sending and receiving mail:

User Mail Dir

Sets the user mail−box directory where all files are to be found and stored (except usually the
Incoming Mail box). The value of this field is platform independent and must be setup for each one.

The following fields are used for sending mail:

Send Mail Signature

Sets the signature file name which is inserted at the bottom of every out−going email message, if
empty the no signature is inserted. The value of this field is platform independent, is value use by all.
The file must be located in the User Mail Dir and no path entered for it to work across platforms.

Carbon−Copy File

Sets the sent−mail carbon−copy file, creating the "Fcc:" line of the mail buffer. All out−going
emails are appended to the end of this file if the "Fcc:" line is not altered. If this field is left empty
then no "Fcc:" line is created. The value of this field is platform independent, the file must be
located in the User Mail Dir.

Insert Data (^C^I)

Sets the first embedded data command line, bound to "C−c C−I". The value of this field is platform
dependent.

Insert Data (^C^Z)

Sets the second embedded data command line, bound to "C−c C−z". The value of this field is
platform dependent.

Send Mail Command

MicroEmacs '02

user−setup(3) 1762

Sets the command−line used for sending email messages. The value of this field is platform
dependent.

The following fields are used for receiving mail:

Check for mail

Sets the time interval between the automatic checking for incoming mail in seconds, when set to 0 the
automatic checking is disabled. When enabled, the check is performed by mail−check(3) which also
sends any queued mail and gets any new mail if the Get Mail Command is used. The value of this
field is platform dependent.

Get Mail Command

The command used to get new mail from the server, if empty it is assumed the Incoming Mail Box is
automatically updated by the system. If used the command must append new mail to the end of the
Incoming Mail Box specified below. The value of this field is platform dependent.

Incoming Mail Box

Sets the incoming mail box file which new incoming mail is appended to, either automatically by the
system or by the Get Mail Command. The value of this field is platform dependent.

VM Main In Box

Sets the main current mail box, or inbox. The value of this field is platform independent, the file must
be located in the User Mail Dir.

VM Gets Mail

When enabled, executing the command vm will not only create the mail box windows, it will also get
and process any new mail. When disabled only the vm 'g' command can be used to get and process
new mail.

Mime Data Extract

Sets the command−line used for extracting Mime encoded embedded data. The value of this field is
platform dependent.

Uuencode Extract

Sets the command−line used for extracting Uuencoded embedded data. The value of this field is
platform dependent.

Auto−Archive Setup

Sets up the auto−archive of messages in the current inbox to other mail boxes. NOTES

MicroEmacs '02

user−setup(3) 1763

user−setup is a macro using osd(2), defined in userstp.emf.

SEE ALSO

User Profiles, Company Profiles, Installation, buffer−setup(3), scheme−editor(3).

MicroEmacs '02

user−setup(3) 1764

usr(2m)

NAME

usr1 − usr8 − User buffer modes

SYNOPSIS

usr1−usr8 Mode

1−8 − mode line letters.

DESCRIPTION

usr1 through usr8 modes have no predefined purpose, they are present to provide the user with the
ability to store some buffer state. All of these modes are off by default. For example, the user may
wish to have two commands bound to the same key, with another command to toggle which one is
currently active.

NOTES

The toolbar 'Buffer File Info' tool uses usr8 mode to track the status of the buffer, when using this
tool the mode should not be used.

SEE ALSO

buffer−mode(2), global−mode(2).

MicroEmacs '02

usr(2m) 1765

vhdl(9)

SYNOPSIS

vhdl − VHDL hardware simulation files

FILES

hkvhdl.emf − VHDL hook definition
vhdl.etf − VHDL template file.

EXTENSIONS

.vhdl, .vhd − VHDL file

DESCRIPTION

The vhdl file type template provides simple hilighting of VHDL files, the template provides minimal
hilighting.

BUGS

None reported. Template could probably benifit from some form of auto indentation.

SEE ALSO

Supported File Types

MicroEmacs '02

vhdl(9) 1766

view(2m)

NAME

view − Read only

SYNOPSIS

view Mode

V − mode line letters.

DESCRIPTION

view mode sets the buffer to read−only, disabling the ability to alter the contents of the buffer. This
mode is automatically set for any files attributed with a read−only status on the file system when read
into MicroEmacs '02. Files loaded via view−file(2) are also assigned view mode.

While in view mode, any attempt to alter the buffer contents results in the following message:−

[Key Illegal in view Mode]

SEE ALSO

buffer−mode(2), global−mode(2), view−file(2).

MicroEmacs '02

view(2m) 1767

view−file(2)

NAME

view−file − Load a file read only

SYNOPSIS

n view−file "file−name" (C−x C−v)

DESCRIPTION

view−file is like find−file(2), and either finds the file in a buffer, or creates a new buffer and reads the
file in. A new file is left in view(2m) mode if the file was found (i.e. cannot be edited).

The numeric argument n can be used to modify the default behaviour of the command, where the bits
are defined as follows:

0x01

If the file does not exist and this bit is not set the command fails at this point. If the file does not exist
and this bit is set (or no argument is specified as the default argument is 1) then a new empty buffer is
created with the given file name, saving the buffer subsequently creates a new file.

0x02

If this bit is set the file will be loaded with binary(2m) mode enabled. See help on binary mode for
more information on editing binary data files.

0x04

If this bit is set the file will be loaded with crypt(2m) mode enabled. See help on crypt mode for more
information on editing encrypted files.

0x08

If this bit is set the file will be loaded with rbin(2m) mode enabled. See help on rbin mode for more
information on efficient editing of binary data files. SEE ALSO

buffer−mode(2), find−file(2), read−file(2), view(2m), binary(2m), crypt(2m), rbin(2m).

MicroEmacs '02

view−file(2) 1768

void(2)

NAME

void − Null command

SYNOPSIS

n void

DESCRIPTION

void does nothing except return FALSE if the given argument n is zero, TRUE otherwise. Used to
bind any frequently miss hit keys to something harmless.

SEE ALSO

global−bind−key(2).

MicroEmacs '02

void(2) 1769

vrml(9)

SYNOPSIS

vrml − VRML File

FILES

hkvrml.emf − VRML File hook definition

EXTENSIONS

<none> − Uses the Magic String only.

MAGIC STRINGS

#VRML

A generic tag that appears on the first line at the top of a VRML (or wrl) file. MicroEmacs automatically
recognises the tag and adopts the appropriate mode. DESCRIPTION

The vrml file type template handles the hilighting of VRML files.

Hilighting

The hilighting features allow commands, variables, logical, comments, strings and characters of the
language to be differentiated and rendered in different colors.

Auto Layout

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3)
and restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the
whole buffer, respectively.

Short Cuts

The short cut keys used within the buffer are:−

A−C−tab − Restyle a region.

BUGS

MicroEmacs '02

vrml(9) 1770

No bugs reported

SEE ALSO

indent(2), restyle−buffer(3), restyle−region(3).

Supported File Types

MicroEmacs '02

vrml(9) 1771

wrap(2m)

NAME

wrap − Line wrap entered text

SYNOPSIS

wrap Mode

W − mode line letters.

DESCRIPTION

wrap mode causes automatic text wrapping when text passes then fill column (see $fill−col(5)),
allowing text to be entered non−stop on a standard screen without bothering to use the RETURN key.

wrap mode is usually used in conjunction with the justify(2m) and indent(2m) modes for editing text
documents.

wrap mode also automatically wraps long lines in the output of an ipipe−shell−command(2) to the
width of the MicroEmacs window.

SEE ALSO

buffer−mode(2), global−mode(2), ipipe−shell−command(2) justify(2m), indent(2m), pipe(2m).

MicroEmacs '02

wrap(2m) 1772

wrap−word(2)

NAME

wrap−word − Wrap word onto next line

SYNOPSIS

wrap−word

DESCRIPTION

wrap−word wraps the current word onto the next line, justifying the current line if the justify(2m)
mode is enabled. The justification method is defined by $fill−mode(5).

SEE ALSO

buffer−mode(2), fill−paragraph(2), $fill−mode(5), justify(2m).

MicroEmacs '02

wrap−word(2) 1773

write−buffer(2)

NAME

write−buffer − Write contents of buffer to named (new) file

SYNOPSIS

n write−buffer "file−name" (C−x C−w)

DESCRIPTION

write−buffer is used to write the contents of the buffer to a NEW file, use save−buffer(2) if the buffer
is to be written to the existing file already associated with the buffer.

write−buffer writes the contents of the current buffer to the named file file−name. The action of the
write also changes the file name associated with the current buffer to the new file name.

Unlike append−buffer(2), write−buffer always replaces an existing file and the new file inherits the
buffers file characteristics instead of the old file's.

On writing the file, if time(2m) mode is enabled then the time stamp string is searched for in the file
and modified if located, to reflect the modification date and time.

If the buffer contains a narrow(2m) it will automatically be removed before saving so that the whole
buffer is saved and restored when saving is complete

If backup(2m) mode is enabled and the buffer is associated with a different file (compared with
file−name) then any automatic save copies of the file associated with the buffer are deleted.

The argument n can be used to change the default behavior of write−buffer described above, n is a bit
based flag where:−

0x01

Enables validity checks (default). These include a check that the proposed file does not already exist,
if so confirmation of writing is requested from the user. Also MicroEmacs '02 checks all other current
buffers for one with the proposed file name, if found, again confirmation is requested. Without this
flag the command will always succeed wherever possible.

0x02

Disables the expansion of any narrows (see narrow−buffer(2)) before saving the buffer. NOTES

MicroEmacs '02

write−buffer(2) 1774

undo(2) information is discarded when the file is written.

SEE ALSO

$auto−time(5), backup(2m), time(2m), buffer−mode(2), file−attrib(3), change−file−name(2),
save−buffer(2), append−buffer(2).

MicroEmacs '02

write−buffer(2) 1775

x86(9)

SYNOPSIS

x86 − Intel .x86 Assembler File

FILES

hkasmx86.emf − Intel .x86 Assembler hook definition
asmx86.etf − Intel .x86 Assembler template file.

EXTENSIONS

.x86 − Intel .x86 Assembler File

MAGIC STRINGS

−!− asmx86 −!−

Recognized by MicroEmacs only, defines the file to be a Intel x86 assembler file. DESCRIPTION

The x86 file type template provides simple hilighting of Intel x86 assembler files.

Hilighting

The hilighting features allow commands, variables, logical, comments, strings and characters of the
language to be differentiated and rendered in different colors.

Auto Layout

The indentation mechanism is enabled which performs automatic layout of the text. restyle−region(3)
and restyle−buffer(3) are available to reformat (re−layout) selected sections of the buffer, or the
whole buffer, respectively.

Short Cuts

The short cut keys used within the buffer are:−

C−c C−c − Comment out the current line.
C−c C−d − Uncomment the current line.

BUGS

MicroEmacs '02

x86(9) 1776

None reported.

SEE ALSO

indent(2), restyle−region(3) restyle−buffer(3) asm(9)

Supported File Types

MicroEmacs '02

x86(9) 1777

yank(2)

NAME

yank − Paste (copy) kill buffer contents into buffer

SYNOPSIS

n yank (C−y)

DESCRIPTION

When a non negative argument is supplied to yank, the command copies the contents of the kill
buffer n times into the current buffer at the current cursor position. This does not clear the kill buffer,
and therefore may be used to make multiple copies of a section of text. On windowing systems which
support clip−boards, such as windows and X−terms, MicroEmacs will also cut to and paste from the
global clip−board.

If yank is IMMEDIATELY followed by a reyank(2) then the yanked text is replaced by text of the
next entry in the kill ring. (another reyank replaces the text with the previous reyank text and so on).

If an −ve argument is given, yank removes the last 0−n items from the kill ring.

Text is inserted into the kill buffer by one of the following commands:−

backward−kill−word(2), copy−region(2), forward−kill−word(2), kill−line(2),
kill−paragraph(2), kill−region(2), forward−delete−char(2), backward−delete−char(2).

All the above commands (except copy−region) cut text out of the buffer, the last 2 commands require
the letter(2m) mode enabled to add the text to the kill buffer. If any of these commands are executed
immediately after any other (including itself) or the @cl(4) variable is set to one of these command,
the new kill text is appended to the last kill buffer text.

NOTES

Windowing systems such as X−Windows and Microsoft Windows utilize a global windowing kill
buffer allowing data to be moved between windowing applications (cut buffer and clipboard,
respectively). Within these environments MicroEmacs '02 automatically interacts with the windowing
systems kill buffer, the last MicroEmacs '02 kill buffer entry is immediately available for a paste
operation into another application (regardless of how it was inserted into the kill buffer). Conversely,
data placed in the windowing kill buffer is available to MicroEmacs '02, via yank, until a new item
has been inserted into the kill buffer (the data may still be available via reyank(2)).

EXAMPLE

MicroEmacs '02

yank(2) 1778

The following example is a basic macro code implementation of the transpose−lines(2) command,

beginning−of−line
kill−line
forward−line
yank
−1 yank
backward−line

Note that similar to transpose−lines it does not leave the moved line in the kill buffer, effectively
tidying up after itself.

SEE ALSO

yank−rectangle(2), copy−region(2), kill−region(2), letter(2m), reyank(2), @y(4), @cc(4).

MicroEmacs '02

yank(2) 1779

Frequently Asked Questions
FAQ

This page contains frequently asked questions submitted to JASSPA.

FAQs − FAQ Contact information
faq00 − New functionality; what is useful to me as an old MicroEmacs user ??
faq01 − Languages; Are any foreign languages supported other than English ??
faq02 − C++ is not default, C is − how do I change this ??
faq03 − GNU Emacs; are there any GNU Emacs bindings. ?
faq04 − Icons are not displayed correctly in Microsoft Windows environments !!
faq05 − ipipes not working on Microsoft Windows network drives ?
faq06 − Language not supported − will it be ??
faq07 − Language file is incomplete
faq08 − Input locked up and not accepting keys; how do I unlock ?
faq09 − MicroEmacs Bindings; How do I get the original MicroEmacs bindings ?
faq10 − Microsoft Windows Locks up after killing an ipipe.
faq11 − Mouse support under Microsoft windows is strange !!
faq12 − Scroll bars too narrow !!
faq13 − Tab key; Why does the tab key not operate in some windows ??
faq14 − Termcap; On a color terminal why is there no color ??
faq15 − Termcap; Some of the keys do not work − how can I bind them ?
faq16 − Timestamp; Format incorrect, how can I change to MMDDYY.hhmm ?
faq17 − Windows; Component characters rendered incorrectly, how do I fix ?
faq18 − Windows Autosave and Backup files; are these potentially a problem ?
faq19 − Printing; Why in Windows does the output come out in a buffer ??
faq20 − Printing; On Windows which font should I use ??
faq21 − Printing; My printer is not supported ?
faq22 − Alt key maps to the Menu, how do I change ?
faq23 − me32.ini − Where does it go, how do I know it's being processed ??
faq24 − Windows − Where is app850.fon ?
faq25 − Time; mode line is showing the date in DD/MM/YY format how do I change ?
faq26 − C or C++ indentation and effects; how can I turn off ?
faq27 − fill−paragraph function does not fill ??
faq28 − Key modifier which acts as the ESC key; what is it ?
faq29 − find−file start location; where is it ?
faq30 − Re−using a MicroEmacs session; how to ??
faq31 − Microsoft Drag and Drop; is it supported ??
faq32 − Cut and Paste to/from other applications; is it supported ??
faq33 − Fonts; how can I change the font ??
faq34 − Colors; how can I change screen colors ??
faq35 − File Types; how do I interchange between UNIX, Windows and DOS files ??
faq36 − Non−English Languages; What font should I select ??
faq37 − MicroEmacs '99; How do I up−grade from MicroEmacs'98 ??
faq38 − Some keys on my foreign keyboard do not work properly, how do I get them working ??
faq39 − Tabs; How to change the tab width ??

Frequently Asked Questions 1780

faq40 − Windows/DOS; Where do I get grep/diff etc. ??
faq41 − Home/End Keys; How do I change the default bindings ??
faq42 − tags; How do I generate a MicroEmacs compatible tags file ??

MicroEmacs '02

Frequently Asked Questions 1781

FAQs(0f)

FREQUENTLY ASKED QUESTIONS − Contact Information

This document contains frequently asked questions submitted to JASSPA. Use the E−Mail reflector
and associated logs, described in the Contact Information section, alternatively questions may be
submitted to:−

Email:support@jasspa.com

We cannot promise to resolve all questions, but will endeavor to answer most. We would also
appreciate comments on how to improve the readability of the documentation or suggestions for
improvements where you think the documentation is deficient.

MicroEmacs '02

FAQs(0f) 1782

FAQ(00) − New functionality; what is useful to me as an old
MicroEmacs user ??

QUESTION (00)

New functionality; what is useful to me as an old MicroEmacs user ??

ANSWER

There are a lot of new features in this distribution. Assuming that you just want to use the editor (and
have cottoned onto the fact that there are now scroll bars etc.) then the most frequent commands that
we use are:−

grep(3) − May need to set up in <user>.emf.♦
diff(3) − May need to set up in <user>.emf.♦
compile(3) − May need to set up in <user>.emf.♦
clean(3) − cleans a buffer, removing spaces etc.♦
restyle−buffer(3) − Reformats 'C' + known languages.♦
spell−buffer(3) − For documentation work, spells the buffer.♦
C−s − isearch−forward(2) incremental search.♦
C−x u or C−_ − undo(2) undoes edits.♦
F10 − file−browser(3) allows the file system to be browsed♦

Other useful macros include:−

tabs−to−spaces(3) − Good for sorting out the mess made by Microsoft Developer Studio.♦
sort−lines(2) − Two versions of this, allows marked lines to be sorted alphabetically.♦

Be wary of:−

esc−o − fill−paragraph(2). The default mode is an automatic mode which attempts to guess at
the format required. It works most of the time. Also works in 'C'.

♦

Most of the other new features are in the background, such as the macro processor, indentation
control, color hilighting, indentation control, auto−saving etc.

MicroEmacs '02

FAQ(00) − New functionality; what is useful to me as an old MicroEmacs user ?? 1783

FAQ(01) − Languages; Are any foreign languages supported
other than English ??

QUESTION (01)

Languages; Are any foreign languages supported other than English ??

ANSWER

Unfortunately as we started with V3.8 as a base many years ago, we missed the distribution with
foreign language extensions. We have not incorporated them into the release.

The May 1999 release improves the language support by supporting the ISO−Latin character sets.

We do have spelling dictionaries for French, Spanish, Portuguese and German. Other languages may
be supported by transforming native ispell(1) dictionaries.

If there is enough interest in this release from people with foreign languages then we may consider
including support for foreign language(s). However we would be very much reliant on external help
for local testing and translation. We would be open to suggestions.

MicroEmacs '02

FAQ(01) − Languages; Are any foreign languages supported other than English ?? 1784

FAQ(02) − C++ is not default, C is − how do I change this ??

QUESTION (02)

C++ is not default, C is − how do I change this ??

ANSWER

If your main programming language is C++, then you will require the .def and .h files to be loaded
in C++ mode by default, rather than 'C'. To modify this hen the order of the file hooks has to be
re−defined.

Within your <user>.emf, over−ride the default ordering by including the line:−

add−file−hook ".h .def" fhook−cpp

This adds a newer binding for ".h" and ".def" to C++, over−riding the existing 'C' binding.

MicroEmacs '02

FAQ(02) − C++ is not default, C is − how do I change this ?? 1785

FAQ(03) − GNU Emacs; are there any GNU Emacs bindings. ?

QUESTION (03)

GNU Emacs; are there any GNU Emacs bindings. ?

ANSWER

No not at the moment. The GNU Emacs bindings would be added as a compatibility file
(meemacs.emf) in much the same way that the me3.8 bindings are added, see meme3_8.emf.

From the user−setup(3), the user would then ask for "gnu" compatibility.

We would welcome submissions for a gnu compatibility file, gnu.emf, to add to the release.

The Meta key (typically Alt) may be bound to key strokes, as opposed to the menu short−cut from
the user−setup(3) as follows:−

Help −> User Setup −> General −> Alt −> Main Menu = N
Help −> User Setup −> General −> Alt −> Esc Prefix = Y

MicroEmacs '02

FAQ(03) − GNU Emacs; are there any GNU Emacs bindings. ? 1786

FAQ(04) − Icons are not displayed correctly in Microsoft
Windows environments !!

QUESTION (04)

Icons are not displayed correctly in Microsoft Windows environments !!

ANSWER

After installing on Microsoft platforms, the Icons in the Explorer window may not be showing
correctly. To remedy the situation then the following steps may be taken.

Windows '95

Try re−starting the system first. If the icons are still incorrect then re−start in Safe mode and delete
the file:

c:\windows\ShellIconCache

Restart and the Icons should be correct.

Window '98

Try re−starting the system first. If the Icons are still incorrect then re−start in Safe mode, this should
re−generate the Icon cache. Restart windows.

NT

Restart the system.

MicroEmacs '02

FAQ(04) − Icons are not displayed correctly in Microsoft Windows environments !! 1787

FAQ(05) − ipipes not working on Microsoft Windows network
drives ?

QUESTION (05)

ipipes not working on Microsoft Windows network drives ?

ANSWER

We are aware of a problem with the ipipe commands with '95 and '98 (not sure about NT) when the
current drive is a Novel network drive.

Although we have not been ably to fully characterize the problem, we know that:−

Old Novel Clients prior to 2.2 − Does not work♦
Novel Intranetware Client 2.2 − Does not work.♦
Novel Network Client 2.5 − Does work.♦
Novel Client 3.01 − Does work.♦

Any other information in this area would be appreciated to fully characterize the problem.

To get around the problem then disable ipipes using $system(5). From within your <user>.emf knock
off bit 0x800 from $system(5). This will enable regular pipes, which will work, albeit not in the
background.

MicroEmacs '02

FAQ(05) − ipipes not working on Microsoft Windows network drives ? 1788

FAQ(06) − Language not supported − will it be ??

QUESTION (06)

Language not supported − will it be ??

ANSWER

We only support the (programming) languages that we have come into contact with. If you are using a
language that we are not supporting then you will need to write a new hk<language>.emf file.
See Language Templates on how to map a new programming language. The list of currently
supported file types is defined in Supported File Types.

Jasspa would appreciate any new templates that people define for standard file types so that we can
add them to the distribution.

For Microsoft Windows, any associated "me" icons types would also be appreciated.

MicroEmacs '02

FAQ(06) − Language not supported − will it be ?? 1789

FAQ(07) − Language file is incomplete

QUESTION (07)

Language file is incomplete

ANSWER

For a number of the (programming) language templates we have only provided a sub−set of the
commands, this is typically because we only use a sub−set ourselves.

For a number of templates, there is no indent support (see indent(2) and Supported File Types).

Note that when extending the template then only standard words should be added. Words which are
local extensions should be added to a myXXX.emf.

Jasspa would appreciate completed template definitions.

SEE ALSO

FAQ06

MicroEmacs '02

FAQ(07) − Language file is incomplete 1790

FAQ(08) − Input locked up and not accepting keys; how do I
unlock ?

QUESTION (08)

Input locked up and not accepting keys; how do I unlock ?

ANSWER

This sometimes happens if a macro has been aborted badly. Typically a few "Ctrl−G"s (see
abort−command(2)) will terminate the macro and return control back to the caller.

MicroEmacs '02

FAQ(08) − Input locked up and not accepting keys; how do I unlock ? 1791

FAQ(09) − MicroEmacs Bindings; How do I get the original
MicroEmacs bindings ?

QUESTION (09)

MicroEmacs Bindings; How do I get the original MicroEmacs bindings ?

ANSWER

From user−setup(3) set the Emulation to "MicroEmacs v3.8". On re−starting (or Current) the
macro file meme3_8.emf is executed and the bindings loaded. This file should restore your familiar
execution set.

MicroEmacs '02

FAQ(09) − MicroEmacs Bindings; How do I get the original MicroEmacs bindings ? 1792

FAQ(10) − Microsoft Windows Locks up after killing an ipipe.

QUESTION (10)

Microsoft Windows Locks up after killing an ipipe.

ANSWER

This is a known problem for '95/'98 (not NT), on killing an ipipe. Sometimes the "Winoldapp" locks
up, if this is the case use "Alt−Ctrl−Del" to bring up the "Close Program" dialogue, kill off the
"WinOldApp" if it is not responding.

MicroEmacs will then come back. We are looking for ways around this problem at the moment. From
the programming perspective Windows is just not as nice as UNIX − which just works !!

MicroEmacs '02

FAQ(10) − Microsoft Windows Locks up after killing an ipipe. 1793

FAQ(11) − Mouse support under Microsoft windows is strange !!

QUESTION (11)

Mouse support under Microsoft windows is strange !!

ANSWER

The mouse operation under Microsoft windows (and DOS) is biased towards a 3−button mouse
operation (Logitech is ideal !!), operating in a similar way to UNIX. i.e. <select> operation gets text
<Middle button> yanks text back.

This stems from the fact that we all came from UNIX backgrounds. We have had a number of
comments about this already and do plan to address this issue.

Note:− Those of you that have already had a little dip into the operation of the mouse will have
probably worked out that the whole of the visible mouse/screen interaction is driven through macros,
so this functionality is actually a macro change.

MicroEmacs '02

FAQ(11) − Mouse support under Microsoft windows is strange !! 1794

FAQ(12) − Scroll bars too narrow !!

QUESTION (12)

Scroll bars too narrow !!

ANSWER

You can change the width of the scroll bars to double width from user−setup(3) "Wide Scroll Bars".
Alternatively, you may do this yourself from <user>.emf by:−

set−variable $scroll−bar &bor $scroll−bar 1

See $scroll−bar(5).

Remember if you have enabled wide scroll bars, under windows, or X−Windows, you may want to
change your start−up screen width to 82 characters rather than 80 − see change−frame−width(2).

MicroEmacs '02

FAQ(12) − Scroll bars too narrow !! 1795

FAQ(13) − Tab key; Why does the tab key not operate in some
windows ??

QUESTION (13)

Tab key; Why does the tab key not operate in some windows ??

ANSWER

In buffers with indentation information the tab key re−computes the indentation of the line. This
behavior may be changed from the user−setup.

Refer to documentation for $system(5) and user−setup(3).

MicroEmacs '02

FAQ(13) − Tab key; Why does the tab key not operate in some windows ?? 1796

FAQ(14) − Termcap; On a color terminal why is there no color ??

QUESTION (14)

Termcap; On a color terminal why is there no color ??

ANSWER

MicroEmacs has to be enabled to show color by default. From user−setup(3) enable "Termcap Color".
This will give you basic colors.

You may also try enabling "With Bold" − this may increase the range of colors.

MicroEmacs '02

FAQ(14) − Termcap; On a color terminal why is there no color ?? 1797

FAQ(15) − Termcap; Some of the keys do not work − how can I
bind them ?

QUESTION (15)

Termcap; Some of the keys do not work − how can I bind them ?

ANSWER

In your user setup <user>.emf add the new keys. You have to be careful as to the environment and
probably need to do something like the following:−

; First check we are not an Xterm
!if ¬ $use−x
 ; Quick check on the terminal type. We probably need to
 ; distinguish between terminal types for different bindings
 !if &seq $TERM "myterm"
 translate−key "<from>" "<to>"
 ...
 translate−key "<from>" "<to>"
 !endif
!endif

See translate−key(2) for details of translating termcap keys. See describe−key(2) to help identify the
key.

MicroEmacs '02

FAQ(15) − Termcap; Some of the keys do not work − how can I bind them ? 1798

FAQ(16) − Timestamp; Format incorrect, how can I change to
MMDDYY.hhmm ?

QUESTION (16)

Timestamp; Format incorrect, how can I change to MMDDYY.hhmm ?

ANSWER

From within your <user.emf> set the time stamp default format i.e.

set−variable $timestamp "<%M%D%Y.%h%m>"

See $timestamp(5).

MicroEmacs '02

FAQ(16) − Timestamp; Format incorrect, how can I change to MMDDYY.hhmm ? 1799

FAQ(17) − Windows; Component characters rendered
incorrectly, how do I fix ?

QUESTION (17)

Windows; Component characters rendered incorrectly, how do I fix ?

ANSWER

If some of the components of the windows are rendered incorrectly, typically caused by local
variations of character sets, then new window component characters may be defined. See
$window−chars(5) for details on how to define new character replacements.

MicroEmacs '02

FAQ(17) − Windows; Component characters rendered incorrectly, how do I fix ? 1800

FAQ(18) − Windows Autosave and Backup files; are these
potentially a problem ?

QUESTION (18)

Windows Autosave and Backup files; are these potentially a problem ?

ANSWER

For windows '95 up until OEM service release 2, the OS could not distinguish the difference between
the files:−

.xxx

.xxx~

on a read, we have managed to find a work around for this, however we would advise that the 3 letter
extension is adhered to for these releases. For releases of '95 OEM service release 2 and greater, '98
and NT we have not found a problem with any of the auto save and backup naming.

Obviously, the backup naming will depend on the native file system. For instance if your system
administrator has not enabled long file names on your Novel server.

MicroEmacs '02

FAQ(18) − Windows Autosave and Backup files; are these potentially a problem ? 1801

FAQ(19) − Printing; Why in Windows does the output come out
in a buffer ??

QUESTION (19)

Printing; Why in Windows does the output come out in a buffer ??

ANSWER

Use the File −> Printer Setup dialog and change the destination to the "Direct to printer".

MicroEmacs '02

FAQ(19) − Printing; Why in Windows does the output come out in a buffer ?? 1802

FAQ(20) − Printing; On Windows which font should I use ??

QUESTION (20)

Printing; On Windows which font should I use ??

ANSWER

We suggest that "Courier New" is used as the print font. This scales well and supports the full
character set. Problems have been reported with networked postscript printers when used in
conjunction with fixed fonts.

MicroEmacs '02

FAQ(20) − Printing; On Windows which font should I use ?? 1803

FAQ(21) − Printing; My printer is not supported ?

QUESTION (21)

Printing; My printer is not supported ?

ANSWER

We are in the process of providing native postscript generation − UNIX users can stream their output
through "a2ps" and then into their standard printer queues.

Windows, the support is already built in.

For DOS then you need to get your printer manual out and sort out how to map the printer codes onto
fonts. The printer codes are added to "printer.erf". We have already provided support for the HP
DeskJet printer (PCL), look at this printer definition for some help as to the type of information that
you need to set up. It's all a bit fiddley, but you do not get much choice if you want more than plain
ASCII out.

MicroEmacs '02

FAQ(21) − Printing; My printer is not supported ? 1804

FAQ(22) − Alt key maps to the Menu, how do I change ?

QUESTION (22)

Alt key maps to the Menu, how do I change ?

A−f opens the main File menu instead of executing forward−word (esc f). How do I make the Alt key
act like the Meta key all the time?

ANSWER

The Meta key (typically Alt) may be bound to key strokes, as opposed to the menu short−cut from
the user−setup(3) as follows:−

Help −> User Setup −> General −> Alt −> Main Menu = N
Help −> User Setup −> General −> Alt −> Esc Prefix = Y

MicroEmacs '02

FAQ(22) − Alt key maps to the Menu, how do I change ? 1805

FAQ(23) − me32.ini − Where does it go, how do I know it's being
processed ??

QUESTION (23)

me32.ini − Where does it go, how do I know it's being processed ??

ANSWER

Question posed as:−

> 1) Am I right in assuming that for NT the file me32.ini goes
> into %windir%, i.e. into c:

Yes, this is where the other .ini files are.

> 2) How do I know me32.ini is being processed? Creating one,
> as described in the readme.txt file doesn't seem to have
> any visible effect.

From within the editor, if you show the variable $MEPATH(5), then it should echo the paths that you
have defined in the me32.ini file.

esc−x describe−variable
$MEPATH

See: me32.ini(8), Installation Information, Setting Up A User Profile.

> 3) What does the "fontfile" statement do ?

For releases after May 1999 then the fontfile statement may be omitted as typically Lucida Console
or Courier New is used. If you want to use the fixed OEM fonts then fontfile should be defined as
app860.fon (or local language equivalent), this forces the font to be loaded as a resource, prior to use.

MicroEmacs '02

FAQ(23) − me32.ini − Where does it go, how do I know it's being processed ?? 1806

FAQ(24) − Windows − Where is app850.fon ?

QUESTION (24)

Windows − Where is app850.fon ?

ANSWER

"app850.fon" is the font file used for the DOS window under '95/'95/NT. You should find it in your c:
hidden. If you search from the Explorer−>Tools−>Find "app850.fon" it should be found in the fonts
directory. There is nothing to be done − the file exists and is in the correct location.

If you do not have this file then, you might have "appXXX.fon", or some other fixed font. You can
locate the file that you want as follows:−

Start−>Settings−>Control Panel−>Fonts

Display the font list as 'details'. Within that list you should find a "MS−DOS CPXXX" entry. It will
be a red font (if you are in monochrome then it will have a 'A' in the box rather than a 'Tt'). This is a
fixed font and will be a good alternative to "app850.fon", you can also try the "Fixedsys" font file
which has some weird name.

To be honest I do not know what Microsoft are currently shipping. Most of the Windows platforms
that I have used have been upgrades or been abused by so many people you never know what is
original !!

We would be interested in any details of other fixed fonts, which support the full OEM character set
that are better alternatives to the DOS ones.

MicroEmacs '02

FAQ(24) − Windows − Where is app850.fon ? 1807

FAQ(25) − Time; mode line is showing the date in DD/MM/YY
format how do I change ?

QUESTION (25)

Time; mode line is showing the date in DD/MM/YY format how do I change ?

ANSWER

From within your user setup, over−ride the default mode line setting with the modifications you
require. i.e. to change the date format to MM/DD/YY use:−

set−variable $mode−line "%s%r%u%k %b %l − %h:%m %M/%D/%Y (%e) − (%f) "

SEE ALSO

$mode−line(5).

MicroEmacs '02

FAQ(25) − Time; mode line is showing the date in DD/MM/YY format how do I change ? 1808

FAQ(26) − C or C++ indentation and effects; how can I turn off ?

QUESTION (26)

C or C++ indentation and effects; how can I turn off ?

ANSWER

The cmode(2m) is supposed to make editing 'C' easier, by forcing the user to follow a preset editing
convection. The layout is pretty standard, following a 4 space indent, writing either K&R or standard
'Pascal' type layout, with braces aligning vertically.

The problem most new users have is the inability of the tab key to function, or more simply do not
want to be 'forced' to write in a particular style (GNU writers will probably not like this either −
conversely they will be using GNU emacs !!). However the constrained layout can be configured to
create most styles and does help in a project situation, whereby most of the authored code roughly
adheres to the same sort of layout conventions. For C++ users then edit "hkcpp.emf" rather than
"hkc.emf".

To turn off all automatic 'C' layout

To disable ALL automatic layout then edit "hkc.emf" and turn "cmode" off. It is probably quite useful
to apply "indent", this will return the cursor to the same indentation column whenever a new line is
inserted. i.e. in "fhook−c" of hkc.emf:−

0 buffer−mode "cmode"
1 buffer−mode "indent"

If you want proper tabs then you may also want to add:−

0 buffer−mode "tab"

This inserts the <tab> character into the text, rather than translating to spaces. Alternatively disable
tab mode for all file type using user−setup(3) i.e.

Help −> User Setup −> General −> Tab

To re−enable the <tab> key

To retain the 'C' layout aid, but re−enable the tab key operation then disable the Tab To Indent
option in user−setup(3) i.e.

Help −> User Setup −> General −> Tab To Indent

MicroEmacs '02

FAQ(26) − C or C++ indentation and effects; how can I turn off ? 1809

This enables the use of the TAB key in all column positions with the exception of column 0. A <tab>
in Column 0 will still enable the automatic line re−formatting.

If you want real <Tabs> then disable the tab mode using user−setup(3) i.e.

Help −> User Setup −> General −> Tab

To change the 'C' Indentation Layout

The 'C' layout indentation is controlled from the system variables:−

$c−case(5), $c−contcomm(5), $c−continue(5), $c−margin(5), $c−brace(5), $c−statement(5).

These settings may be defined in your <user>.emf to change the default layout. Refer to the on−line
documentation for details.

MicroEmacs '02

FAQ(26) − C or C++ indentation and effects; how can I turn off ? 1810

FAQ(27) − fill−paragraph function does not fill ??

QUESTION (27)

fill−paragraph function does not fill ??

I can't seem to get the fill−paragraph function to fill the following paragraph:

This is a very
poorly formed paragraph
which refuses to fill
properly!

ANSWER

The default justification mode is Auto which tries to work out the mode required for each paragraph.
Its fairly smart at maintaining a documents indentation, e.g. consider the example right hand justified:

 This is a very
 poorly formed paragraph
 which refuses to fill
 properly!

It will maintain this indentation. The problem comes when the detected form is not the required form
as in the example. The detected paragraph justification to be used is "none" because the lines are
short. There are 2 ways to solve this problem:

You can change the $fill−mode(5) to left or both (in fhook−doc mode use C−c l or C−c b)
and then use fill−paragraph as normal.

♦

Manually concatenate the first few lines into one to create a longer first line and then use the
fill−paragraph a normal, i.e. change the paragraph to:

This is a very poorly formed paragraph which refuses to fill
properly !

and then fill. This works because the longer line will lead to a different assessment of what's
required.

♦

MicroEmacs '02

FAQ(27) − fill−paragraph function does not fill ?? 1811

FAQ(28) − Key modifier which acts as the ESC key; what is it ?

QUESTION (28)

Key modifier which acts as the ESC key; what is it ?

What is the modifier key which acts as the ESC key ? Having to type ESCAPE and then f to move
one word forward is very boring.

With Gnu Emacs (on Unix systems), there is a "meta" modifier key which is a shortcut for pressing
ESCAPE followed by the command key. The "meta" key should be the "Alt" key.

ANSWER

The "meta" key is the "Alt" key. But 'F' is the Main menu hot−key for the 'File' sub−menu so by
default 'A−f' will open the File sub−menu. This can be disabled by clearing bit 0x2000 in the $system
variable. This option can now be set using user−setup (Alt −> Main Menu).

MicroEmacs '02

FAQ(28) − Key modifier which acts as the ESC key; what is it ? 1812

FAQ(29) − find−file start location; where is it ?

QUESTION (29)

find−file start location; where is it ?

ANSWER

The find−file(2) start location is defined as follows:−

scratch is current buffer; the current working directory.♦
file is current buffer; the directory location containing file.♦

Running under Microsoft Windows or UNIX, using an icon launch, then it may become frustrating
that the start location is always C:\ProgramFiles\JASSPA\MicroEmacs (Microsoft
windows) or /usr/local/bin (UNIX) this is simply resolved by starting the executable with the
−c option, as defined by me(1). The −c option starts the editor with the last editing session, this is
typically where a user will want to commence an editing session.

If the −c approach is not acceptable, then it is worth defining the environment variable $HOME within
the start up script, or in the users environment. Using find−file with tilde (~) implies that the directory
start path is $HOME.

MicroEmacs '02

FAQ(29) − find−file start location; where is it ? 1813

FAQ(30) − Re−using a MicroEmacs session; how to ??

QUESTION (30)

Re−using a MicroEmacs session; how to ??

ANSWER

A MicroEmacs editing session may be re−used, such that the current editor is prompted to load a new
file externally. This is typically invoked from a short−cut launch from a file manager i.e. Explorer(1),
Tkdesk(1) etc.

In order to facilitate the re−use of the session, then me(1) is invoked with the −o option, this locates
the active editor session and passes the file load request. If an existing session does not exist then a
new session is started.

In order for this mechanism to operate, then the Client−Server Interface must be enabled from the
user−setup(3) i.e.

[Help −> User Setup −> Platform −> Client Server = Y]

MicroEmacs '02

FAQ(30) − Re−using a MicroEmacs session; how to ?? 1814

FAQ(31) − Microsoft Drag and Drop; is it supported ??

QUESTION (31)

Microsoft Drag and Drop; is it supported ??

ANSWER

MicroEmacs '02 supports Microsoft drag and drop interaction. Multiple files and directories may be
dragged from Microsoft Explorer (or other application) and dropped into a buffer window. The
destination buffer window is the window in which the dropped file(s) are displayed.

Note if the user is currently on the command line, then the command line operation is aborted in order
to facilitate the dropped files.

MicroEmacs '02

FAQ(31) − Microsoft Drag and Drop; is it supported ?? 1815

FAQ(32) − Cut and Paste to/from other applications; is it
supported ??

QUESTION (32)

Cut and Paste to/from other applications; is it supported ??

ANSWER

MicroEmacs '02 supports cut and paste operations on all platforms.

To copy a region from MicroEmacs '02 to another application

Select a region (with the mouse or keys) − there is no need to invoke a copy operation. All selected
text is immediately available to other applications.

Move to the new application and paste, as dictated by the platform.

To copy a region from another application to MicroEmacs '02

Select the region in the application into the clipboard, as dictated by the platform.

Move to MicroEmacs '02, position the cursor and yank(2) (C−y or typically the middle mouse
button) the clipboard text.

MicroEmacs '02

FAQ(32) − Cut and Paste to/from other applications; is it supported ?? 1816

FAQ(33) − Fonts; how can I change the font ??

QUESTION (33)

Fonts; how can I change the font ??

ANSWER

The currently selected font may be modified from the user−setup(3).

Help −> User Setup −> Platform

The font selection depends upon the platform, in all cases a fixed font should be selected, otherwise
rendering anomalies will result.

If you are running on Microsoft platforms ensure that the OEM/ANSI flag matches the settings of the
Display Font Set entry.

MicroEmacs '02

FAQ(33) − Fonts; how can I change the font ?? 1817

FAQ(34) − Colors; how can I change screen colors ??

QUESTION (34)

Colors; how can I change screen colors ??

ANSWER

The screen colors are selected from the user−setup(3).

Help −> User Setup −> Platform −> Color Scheme

The default setting is White on Black, the Black on Cream is the most popular setting.

MicroEmacs '02

FAQ(34) − Colors; how can I change screen colors ?? 1818

FAQ(35) − File Types; how do I interchange between UNIX,
Windows and DOS files ??

QUESTION (35)

File Types; how do I interchange between UNIX, Windows and DOS files ??

ANSWER

MicroEmacs '02 facilitates the editing of the standard file types on all platforms. All files retain their
line ending type through edits. i.e. if a DOS file is edited on a UNIX system, the file is still written as
a DOS file. When new files are created, they are created with the standard attributes of the host O/S.

The line ending of the file may be modified from the menu

file −> attributes

This brings up a dialog that allows the file type and attributes to be modified.

Note that the only ending that is NOT preserved are files whose lines end in <CR>'s only. The line
format is correctly interpreted on reading, but is not retained on the write.

MicroEmacs '02

FAQ(35) − File Types; how do I interchange between UNIX, Windows and DOS files ?? 1819

FAQ(36) − Non−English Languages; What font should I select ??

QUESTION (36)

Non−English Languages; What font should I select ??

ANSWER

MicroEmacs '02 has only been tested with Western Lanuguages only. Within the Microsoft Windows
environment an ANSI type font should be selected, assuming of course that the characters required
are in the ISO−Latin character set. UNIX typically supports ISO−Latin character sets.

MicroEmacs '02

FAQ(36) − Non−English Languages; What font should I select ?? 1820

FAQ(37) − MicroEmacs '99; How do I up−grade from
MicroEmacs'98 ??

QUESTION (37)

MicroEmacs '99; How do I up−grade from MicroEmacs'98 ??

ANSWER

Backup your current version!

Follow the MicroEmacs'99 installation procedure to install and get MicroEmacs'99 running.

Due to the great improvement to user−setup(3) it is advised that the user creates a new setup using
user−setup and then migrates required macro code changes from the old release into the new.

MicroEmacs '02

FAQ(37) − MicroEmacs '99; How do I up−grade from MicroEmacs'98 ?? 1821

FAQ(38) − Some keys on my foreign keyboard do not work
properly, how do I get them working ??

QUESTION (38)

Some keys on my foreign keyboard do not work properly, how do I get them working ??

ANSWER

The most common problem are with foreign keyboards where the <AltGr> key is used to generate
some characters in a similar fashion to the <Shift> key. For example, on a Belgian keyboard the '9'
key produces a '{' character when the <AltGr> key is also pressed.

The quickest and best solution is to use the Keyboard setup on the Start−Up page of user−setup(3).
This however may not provide the solution as not all keyboards are currently supported. If you are
using an unsupported keyboard please send configuration information back to JASSPA for inclusion
in the next release. The keyboard configuration information is stored in the macro file
keyboard.emf.

If user−setup does not currently support your keyboard, or you wish to remap some keys, then the
command translate−key(2) should be used. translate−key remaps generated key stroke(s) into
another key at a low level so the mapping is supported in all areas. If a macro and key binding were
used instead, while they would work in the main text windows, they would not work in the message
line. See help on translate−key for more information.

Note that some <AltGr> keys can produce 2 keys, for example on a Belgian keyboard '<AltGr>−9'
produces the key 'A−C−9' first, immediately followed by 'A−C−{'. This is an unfortunate side effect
of windows, it is better to have two keys rather than none. But this does add confusion to the problem!
Again, see translate−key for more information.

MicroEmacs '02

FAQ(38) − Some keys on my foreign keyboard do not work properly, how do I get them working ??1822

FAQ(39) − Tabs; How to change the tab width ??

QUESTION (39)

Tabs; How to change the tab width ??

ANSWER

There are two variables that change the width of the tab $tabwidth(5) and $tabsize(5) they control the
size of a displayed tab character (number of spaces) and the simulated tab character size, where the
user entered tab character is replaced by a number of space characters. The latter is only used when
tab(2m) mode is enabled (it is typically enabled by default).

To change the tab character width then the set−variable(2) command is used:

esc x set−variable

You will then be prompted for the remaining arguments. <TAB> is the completion so:−

esc x set−v<TAB>
$tabw<TAB>
2

If this is the setting that you always want to use then it is easier if you put this in your <user.emf> as:−

set−variable $tabwidth 2

then whenever you start a new session you will always have the $tabwidth defined as you want it.

We would recommend that $tabwidth(5) is not modified because it turns the all tab's to 2 so when you
read it into something like Microsoft notepad the indentation is not as you like it because it displays
tabs as 8 characters.

Instead, set the $tabsize to 2, and run with tab(2m) enabled (this is the default). This turns <TAB>'s to
spaces, hence the layout is retained. This makes the file slightly larger, but the presentation is
maintained.

If you are reading in a file with TAB's embedded then you can convert all of the <TAB>'s to spaces
using tabs−to−spaces(3):

esc x tabs−to−spaces

If these TAB's are 8 characters, and they should be displayed as 2, then prior to conversion change the
tabwidth, convert and then restore.

Change the $tabwidth to 2♦
tabs−to−spaces♦

MicroEmacs '02

FAQ(39) − Tabs; How to change the tab width ?? 1823

Restore the $tabwidth to 8♦

MicroEmacs '02

FAQ(39) − Tabs; How to change the tab width ?? 1824

FAQ(40) − Windows/DOS; Where do I get grep/diff etc. ??

QUESTION (40)

Windows/DOS; Where do I get grep/diff etc. ??

ANSWER

For windows and DOS users the UNIX tools may be obtained from:−

ftp://ftp.cdrom.com/pub/garbo/garbo_pc/unix/uxutl23a.zip (238 Kb)
ftp://ftp.cdrom.com/pub/garbo/garbo_pc/unix/uxutl23b.zip (227 Kb)
ftp://ftp.cdrom.com/pub/garbo/garbo_pc/unix/uxutl23c.zip (221 Kb)
ftp://ftp.cdrom.com/pub/garbo/garbo_pc/unix/uxutl23d.zip (160 Kb)

comments for this at:

http://www.geocities.com/SiliconValley/Lakes/1401/softlib1.htm

One awk−port; the Gnuish project has 16 bit and 32 bit versions of gawk(1) in:

ftp://mirrors.aol.com/pub/simtelnet/gnu/gnuish/gawk303x.zip (1997, 495K)

Acknowledgment: DG − 99/07/02

MicroEmacs '02

FAQ(40) − Windows/DOS; Where do I get grep/diff etc. ?? 1825

FAQ(41) − Home/End Keys; How do I change the default
bindings ??

QUESTION (41)

Home/End Keys; How do I change the default bindings ??

ANSWER

Some users prefer the HOME and END keys to map to the beginning and end of the line, rather than
beginning/end of the buffer, respectively. Within the <user>.emf the following global bindings may
be applied to re−assign the key mappings:−

global−bind−key "beginning−of−buffer" "C−home"
global−bind−key "end−of−buffer" "C−end"
global−bind−key "end−of−line" "end"
global−bind−key "beginning−of−line" "home"

Acknowledgment: DG − 99/07/02

MicroEmacs '02

FAQ(41) − Home/End Keys; How do I change the default bindings ?? 1826

FAQ(42) − tags; How do I generate a MicroEmacs compatible
tags file ??

QUESTION (42)

tags; How do I generate a MicroEmacs compatible tags file ??

ANSWER

A tags file is used by the find−tag(2) command. This is used to hypertext to the tagged definition or
variable. The standard ctags(1) format is used by MicroEmacs. The tags file itself may be generated
by MicroEmacs '02 from the menu (Tools−>XX Tools−>Create Tags File). Alternatively a tags file
may be generated by the ctags(1) utility. This is typically standard on UNIX platforms. For Windows
and DOS platforms then the Exuberant Ctags is recommended, this is available from:−

http://darren.hiebert.com

A MicroEmacs '02 compatible tags file may be generated using the command line "ctags −N
−−format=1 ." cataloging the current directory. To generate tags for a directory tree then use
"ctags −NR −−format=1 .". Refer to the Exuberant Ctags documentation for a more detailed
description of the utility.

The user variable %tag−option(5) may be used to enable find−tag(2) to locate a recursivelly generated
tags file from a parent directory.

MicroEmacs '02

FAQ(42) − tags; How do I generate a MicroEmacs compatible tags file ?? 1827

	Table of Contents
	MicroEmacs '02
	me(1)
	Acknowledgments
	Copyright
	Origins
	Contact Information
	Help!
	Installation(1)
	User Profiles(2)
	CompanyProfiles(2)
	MainMenu(3)
	Essential Commands
	Help Information
	Bindings(2)
	File Handling Commands
	Dialogs and Menus
	Cursor Movement Commands
	Insertion and Deletion Commands
	Paragraph and Text Formatting Commands
	Capitalization and Transposition Commands
	Searching and Replacing
	Macro Commands
	Buffer Manipulation Commands
	Window Commands
	Keyboard Binding Commands
	Operating Modes
	Shell and Command Controls
	Spelling Commands
	Hilighting, Color and Screen Appearance
	Comparison and Differencing
	Short Cuts and Abbreviations
	Message Line Commands
	Printing Commands
	Macro Development Commands
	Registry
	Command Line Filters
	Games
	languageTemplates(2)
	fileHooks(2)
	Editor File Types
	Compatibility(2)
	Interfacing(2)
	Supported File Types
	Client-Server(2)
	RegularExpressions(2)
	Build(2)

	Command Glossary
	Split Command Glossary
	abort-command(2)
	about(2)
	add-color(2)
	add-dictionary(2)
	add-file-hook(2)
	global-mode(2)
	buffer-mode(2)
	add-next-line(2)
	add-spell-rule(2)
	alarm(3)
	nroff(9)
	append-buffer(2)
	ascii-time(3)
	auto-spell(3)
	forward-char(2)
	forward-delete-char(2)
	backward-delete-tab(2)
	forward-kill-word(2)
	forward-line(2)
	forward-paragraph(2)
	forward-word(2)
	beginning-of-buffer(2)
	beginning-of-line(2)
	global-abbrev-file(2)
	buffer-bind-key(2)
	buffer-help(3)
	buffer-info(2)
	buffer-setup(3)
	c-hash-eval(3)
	calc(3)
	capitalize-word(2)
	change-buffer-name(2)
	change-directory(2)
	change-file-name(2)
	change-font(2)
	change-frame-depth(2)
	change-window-depth(2)
	change-window-width(2)
	charset-change(3)
	check-line-length(3)
	clean(3)
	command-apropos(2)
	command-wait(2)
	compare-windows(2)
	compile(3)
	copy-region(2)
	count-words(2)
	create-callback(2)
	create-frame(2)
	cvs(3)
	cygnus(3)
	define-help(2)
	define-macro(2)
	define-macro-file(2)
	delete-blank-lines(2)
	delete-buffer(2)
	delete-dictionary(2)
	delete-frame(2)
	delete-indentation(3)
	delete-window(2)
	delete-registry(2)
	delete-some-buffers(2)
	describe-bindings(2)
	describe-key(2)
	describe-variable(2)
	describe-word(3)
	diff(3)
	directory-tree(2)
	display-white-chars(3)
	draw(3)
	edit-dictionary(3)
	start-kbd-macro(2)
	etfinsrt(3)
	exchange-point-and-mark(2)
	execute-buffer(2)
	execute-file(2)
	execute-kbd-macro(2)
	execute-named-command(2)
	execute-string(2)
	execute-tool(3)
	exit-emacs(2)
	expand-abbrev(2)
	expand-abbrev-handle(3)
	expand-look-back(3)
	expand-word(3)
	file-attrib(3)
	file-browser(3)
	file-op(2)
	fill-paragraph(2)
	filter-buffer(2)
	find-bfile(3)
	next-buffer(2)
	find-file(2)
	find-registry(2)
	find-tag(2)
	spell-buffer(3)
	find-zfile(3)
	fold-current(3)
	ftp(3)
	gdiff(3)
	generate-tags-file(3)
	get-next-line(2)
	get-registry(2)
	global-bind-key(2)
	goto-alpha-mark(2)
	goto-line(2)
	goto-matching-fence(2)
	set-position(2)
	grep(3)
	help(2)
	hilight(2)
	hunt-forward(2)
	ifill-paragraph(3)
	indent(2)
	info(3)
	insert-file(2)
	insert-file-name(2)
	insert-macro(2)
	insert-newline(2)
	insert-space(2)
	insert-string(2)
	insert-tab(2)
	ipipe-shell-command(2)
	isearch-forward(2)
	ishell(3)
	kbd-macro-query(2)
	kill-line(2)
	kill-paragraph(2)
	kill-rectangle(2)
	kill-region(2)
	line-scheme-search(3)
	list-buffers(2)
	list-commands(2)
	list-registry(2)
	list-variables(2)
	Mahjongg(3)
	MainMenu(3)
	Match-It(3)
	Metris(3)
	vm(3)
	man(3)
	mark-registry(2)
	ml-bind-key(2)
	ml-clear(2)
	ml-write(2)
	name-kbd-macro(2)
	narrow-buffer(2)
	newline(2)
	next-frame(2)
	next-window(2)
	next-window-find-buffer(2)
	next-window-find-file(2)
	normal-tab(3)
	organizer(3)
	osd(2)
	osd-bind-key(2)
	osd-dialog(3)
	osd-help(3)
	Patience(3)
	paragraph-to-line(3)
	pipe-shell-command(2)
	popup-window(2)
	prefix(2)
	print-buffer(2)
	print-color(2)
	print-setup(3)
	query-replace-all-string(3)
	query-replace-string(2)
	quick-exit(2)
	quote-char(2)
	rcs-file(2)
	read-file(2)
	read-history(2)
	read-registry(2)
	recenter(2)
	regex-forward(3)
	replace-all-pairs(3)
	replace-all-string(3)
	replace-string(2)
	reread-file(3)
	resize-all-windows(2)
	restyle-buffer(3)
	reyank(2)
	save-all(3)
	save-buffer(2)
	save-dictionary(2)
	save-history(2)
	save-registry(2)
	save-some-buffers(2)
	scheme-editor(3)
	screen-poke(2)
	screen-update(2)
	scroll-down(2)
	scroll-left(2)
	scroll-next-window-down(2)
	search-forward(2)
	set-alpha-mark(2)
	set-char-mask(2)
	set-cursor-to-mouse(2)
	set-encryption-key(2)
	set-mark(2)
	set-scroll-with-mouse(2)
	set-variable(2)
	shell(2)
	shell-command(2)
	show-cursor(2)
	show-region(2)
	start-up(3)
	sort-lines(2)
	sort-lines-ignore-case(3)
	spell(2)
	spell-add-word(3)
	split-window-horizontally(2)
	split-window-vertically(2)
	suspend-emacs(2)
	symbol(3)
	Triangle(3)
	tab(2)
	tabs-to-spaces(3)
	time(3)
	translate-key(2)
	transpose-chars(2)
	undo(2)
	uniq(3)
	universal-argument(2)
	user-setup(3)
	view-file(2)
	void(2)
	which(3)
	wrap-word(2)
	write-buffer(2)
	yank(2)

	Variable Glossary
	info(3)
	$MENAME(5)
	$buffer-backup(5)
	$search-path(5)
	ishell(3)
	pipe-shell-command(2)
	$auto-time(5)
	$box-chars(5)
	$buffer-fhook(5)
	$buffer-bname(5)
	$buffer-fmod(5)
	$buffer-hilight(5)
	$buffer-indent(5)
	$buffer-input(5)
	$buffer-ipipe(5)
	$buffer-mask(5)
	$buffer-mode-line(5)
	$buffer-names(5)
	$buffer-scheme(5)
	$c-brace(5)
	$c-case(5)
	$c-contcomm(5)
	$c-continue(5)
	$c-margin(5)
	$c-statement(5)
	$command-names(5)
	$cursor-blink(5)
	$cursor-x(5)
	$debug(5)
	$delay-time(5)
	$file-ignore(5)
	$file-names(5)
	$file-template(5)
	$fill-bullet(5)
	$fill-col(5)
	$fill-eos(5)
	$fill-ignore(5)
	$fill-mode(5)
	$find-words(5)
	$fmatchdelay(5)
	$frame-depth(5)
	$global-scheme(5)
	$home(5)
	$idle-time(5)
	$kept-versions(5)
	$line-scheme(5)
	$line-template(5)
	$ml-scheme(5)
	$mode-line(5)
	$mode-line-scheme(5)
	$mode-names(5)
	$mouse(5)
	$mouse-pos(5)
	$mouse-x(5)
	$osd-scheme(5)
	$platform(5)
	$progname(5)
	$random(5)
	$rcs-file(5)
	$recent-keys(5)
	$result(5)
	$scroll(5)
	$scroll-bar(5)
	$scroll-bar-scheme(5)
	$show-modes(5)
	$show-region(5)
	$status(5)
	$system(5)
	$tabsize(5)
	$tabwidth(5)
	$temp-name(5)
	$time(5)
	$timestamp(5)
	$trunc-scheme(5)
	$variable-names(5)
	$version(5)
	$window-col(5)
	$window-chars(5)
	$window-depth(5)
	$window-flags(5)
	$window-mode-line(5)
	$window-x-scroll(5)
	%compile-com(5)
	cygnus(3)
	diff(3)
	%ftp-flags(5)
	gdiff(3)
	%grep-com(5)
	%http-proxy-addr(5)
	%tag-file(5)
	.calc.result(5)

	Macro Language Glossary
	&abs(4)
	&and(4)
	&atoi(4)
	&band(4)
	&cat(4)
	&cbind(4)
	&cond(4)
	&find(4)
	&rep(4)
	&sequal(4)
	&sin(4)
	&ldel(4)
	&opt(4)
	®(4)
	&set(4)
	&sprintf(4)
	&stat(4)
	!return(4)
	!bell(4)
	!while(4)
	!emacro(4)
	!if(4)
	!force(4)
	!goto(4)
	!jump(4)
	!nmacro(4)
	!repeat(4)
	MacroArguments(4)
	CommandVariables(4)
	@fs(4)
	MessageLineVariables(4)
	SearchGroups(4)
	CurrentBufferVariables(4)
	@y(4)
	Variables(4)
	MacroNumericArguments(4)

	Global Glossary
	!return(4)
	!bell(4)
	!while(4)
	!emacro(4)
	!if(4)
	!force(4)
	!goto(4)
	!jump(4)
	!nmacro(4)
	!repeat(4)
	info(3)
	$MENAME(5)
	$buffer-backup(5)
	$search-path(5)
	ishell(3)
	pipe-shell-command(2)
	$auto-time(5)
	$box-chars(5)
	$buffer-fhook(5)
	$buffer-bname(5)
	$buffer-fmod(5)
	$buffer-hilight(5)
	$buffer-indent(5)
	$buffer-input(5)
	$buffer-ipipe(5)
	$buffer-mask(5)
	$buffer-mode-line(5)
	$buffer-names(5)
	$buffer-scheme(5)
	$c-brace(5)
	$c-case(5)
	$c-contcomm(5)
	$c-continue(5)
	$c-margin(5)
	$c-statement(5)
	$command-names(5)
	$cursor-blink(5)
	$cursor-x(5)
	$debug(5)
	$delay-time(5)
	$file-ignore(5)
	$file-names(5)
	$file-template(5)
	$fill-bullet(5)
	$fill-col(5)
	$fill-eos(5)
	$fill-ignore(5)
	$fill-mode(5)
	$find-words(5)
	$fmatchdelay(5)
	$frame-depth(5)
	$global-scheme(5)
	$home(5)
	$idle-time(5)
	$kept-versions(5)
	$line-scheme(5)
	$line-template(5)
	$ml-scheme(5)
	$mode-line(5)
	$mode-line-scheme(5)
	$mode-names(5)
	$mouse(5)
	$mouse-pos(5)
	$mouse-x(5)
	$osd-scheme(5)
	$platform(5)
	$progname(5)
	$random(5)
	$rcs-file(5)
	$recent-keys(5)
	$result(5)
	$scroll(5)
	$scroll-bar(5)
	$scroll-bar-scheme(5)
	$show-modes(5)
	$show-region(5)
	$status(5)
	$system(5)
	$tabsize(5)
	$tabwidth(5)
	$temp-name(5)
	$time(5)
	$timestamp(5)
	$trunc-scheme(5)
	$variable-names(5)
	$version(5)
	$window-col(5)
	$window-chars(5)
	$window-depth(5)
	$window-flags(5)
	$window-mode-line(5)
	$window-x-scroll(5)
	etfinsrt(3)
	%compile-com(5)
	cygnus(3)
	diff(3)
	%ftp-flags(5)
	gdiff(3)
	%grep-com(5)
	%http-proxy-addr(5)
	%tag-file(5)
	&abs(4)
	&and(4)
	&atoi(4)
	&band(4)
	&cat(4)
	&cbind(4)
	&cond(4)
	&find(4)
	&rep(4)
	&sequal(4)
	&sin(4)
	&ldel(4)
	&opt(4)
	®(4)
	&set(4)
	&sprintf(4)
	&stat(4)
	.calc.result(5)
	which(3)
	nroff(9)
	MacroArguments(4)
	CommandVariables(4)
	@fs(4)
	MessageLineVariables(4)
	SearchGroups(4)
	CurrentBufferVariables(4)
	@y(4)
	abort-command(2)
	about(2)
	add-color(2)
	add-dictionary(2)
	add-file-hook(2)
	global-mode(2)
	buffer-mode(2)
	add-next-line(2)
	add-spell-rule(2)
	alarm(3)
	append-buffer(2)
	ascii-time(3)
	asm(9)
	asn.1(9)
	auto(2m)
	auto-spell(3)
	autosv(2m)
	awk(9)
	Bindings(2)
	Variables(4)
	Build(2)
	backup(2m)
	forward-char(2)
	forward-delete-char(2)
	backward-delete-tab(2)
	forward-kill-word(2)
	forward-line(2)
	forward-paragraph(2)
	forward-word(2)
	vb(9)
	bat(9)
	beginning-of-buffer(2)
	beginning-of-line(2)
	benchmrk(3f)
	binary(2m)
	bnf(9)
	global-abbrev-file(2)
	buffer-bind-key(2)
	buffer-help(3)
	buffer-info(2)
	buffer-setup(3)
	Client-Server(2)
	CompanyProfiles(2)
	Compatibility(2)
	c(9)
	c-hash-eval(3)
	calc(3)
	capitalize-word(2)
	cbl(9)
	change-buffer-name(2)
	change-directory(2)
	change-file-name(2)
	change-font(2)
	change-frame-depth(2)
	change-window-depth(2)
	change-window-width(2)
	charset-change(3)
	check-line-length(3)
	clean(3)
	cmode(2m)
	command-apropos(2)
	command-wait(2)
	comment-line(3)
	compare-windows(2)
	compile(3)
	copy-region(2)
	count-words(2)
	create-callback(2)
	create-frame(2)
	crlf(2m)
	crypt(2m)
	sh(9)
	ctags(3f)
	ctrlz(2m)
	cvs(3)
	gdb(3)
	define-help(2)
	define-macro(2)
	define-macro-file(2)
	del(2m)
	delete-blank-lines(2)
	delete-buffer(2)
	delete-dictionary(2)
	delete-frame(2)
	delete-indentation(3)
	delete-window(2)
	delete-registry(2)
	delete-some-buffers(2)
	describe-bindings(2)
	describe-key(2)
	describe-variable(2)
	describe-word(3)
	dir(2m)
	directory-tree(2)
	display-matching-fence(3)
	display-white-chars(3)
	txt(9)
	dos2unix(3f)
	draw(3)
	eaf(8)
	edf(8)
	edit(2m)
	edit-dictionary(3)
	ehf(8)
	ehf(9)
	ehftools(3f)
	emf(8)
	emf(9)
	emftags(3f)
	start-kbd-macro(2)
	erf(8)
	erf(9)
	etf(8)
	exact(2m)
	exchange-point-and-mark(2)
	execute-buffer(2)
	execute-file(2)
	execute-kbd-macro(2)
	execute-named-command(2)
	execute-string(2)
	execute-tool(3)
	exit-emacs(2)
	expand-abbrev(2)
	expand-abbrev-handle(3)
	expand-iso-accents(3)
	expand-look-back(3)
	expand-word(3)
	f(9)
	fence(2m)
	file-attrib(3)
	file-browser(3)
	file-op(2)
	fileHooks(2)
	fill-paragraph(2)
	filter-buffer(2)
	find-bfile(3)
	next-buffer(2)
	find-file(2)
	find-registry(2)
	find-tag(2)
	spell-buffer(3)
	find-zfile(3)
	fold-current(3)
	ftp(3)
	fvwm(9)
	gdiff(3f)
	generate-tags-file(3)
	get-next-line(2)
	get-registry(2)
	global-bind-key(2)
	goto-alpha-mark(2)
	goto-line(2)
	goto-matching-fence(2)
	set-position(2)
	grep(3)
	help(2)
	hide(2m)
	hilight(2)
	ini(9)
	html(9)
	hunt-forward(2)
	Installation(1)
	Interfacing(2)
	ifill-paragraph(3)
	imakefile(9)
	indent(2)
	indent(2m)
	info(9)
	insert-file(2)
	insert-file-name(2)
	insert-macro(2)
	insert-newline(2)
	insert-space(2)
	insert-string(2)
	insert-tab(2)
	ipipe-shell-command(2)
	isearch-forward(2)
	item-list(3)
	java(9)
	javatags(3f)
	justify(2m)
	kbd-macro-query(2)
	keyNames(2)
	kill-line(2)
	kill-paragraph(2)
	kill-rectangle(2)
	kill-region(2)
	languageTemplates(2)
	latex(9)
	letter(2m)
	line(2m)
	line-scheme-search(3)
	list-buffers(2)
	list-commands(2)
	list-registry(2)
	list-variables(2)
	localeSupport(2)
	lock(2m)
	MacroNumericArguments(4)
	Mahjongg(3)
	MainMenu(3)
	Match-It(3)
	MetaFont(9)
	Metris(3)
	m4(9)
	magic(2m)
	vm(3)
	makefile(9)
	man(3)
	man(9)
	mark-registry(2)
	me(1)
	me32.ini(8)
	memsdev(1)
	ml-bind-key(2)
	ml-clear(2)
	ml-write(2)
	nact(2m)
	name-kbd-macro(2)
	narrow(2m)
	narrow-buffer(2)
	newline(2)
	next-frame(2)
	next-window(2)
	next-window-find-buffer(2)
	next-window-find-file(2)
	normal-tab(3)
	ntags(3f)
	occur(3)
	organizer(3)
	osd(2)
	osd-bind-key(2)
	osd-dialog(3)
	osd-help(3)
	over(2m)
	Patience(3)
	p(9)
	paragraph-to-line(3)
	perl(9)
	perldb(3)
	pipe(2m)
	popup-window(2)
	prefix(2)
	print-buffer(2)
	print-color(2)
	print-setup(3)
	printall(3f)
	python(9)
	query-replace-all-string(3)
	query-replace-string(2)
	quick-exit(2)
	quiet(2m)
	quote-char(2)
	RegularExpressions(2)
	rbin(2m)
	rcs-file(2)
	read-file(2)
	read-history(2)
	read-registry(2)
	recenter(2)
	regex-forward(3)
	replace-all-pairs(3)
	replace-all-string(3)
	replace-string(2)
	reread-file(3)
	resize-all-windows(2)
	restyle-buffer(3)
	reyank(2)
	rul(9)
	save(2m)
	save-all(3)
	save-buffer(2)
	save-dictionary(2)
	save-history(2)
	save-registry(2)
	save-some-buffers(2)
	scheme(9)
	scheme-editor(3)
	screen-poke(2)
	screen-update(2)
	scroll-down(2)
	scroll-left(2)
	scroll-next-window-down(2)
	search-forward(2)
	set-alpha-mark(2)
	set-char-mask(2)
	set-cursor-to-mouse(2)
	set-encryption-key(2)
	set-mark(2)
	set-scroll-with-mouse(2)
	set-variable(2)
	shell(2)
	shell-command(2)
	show-cursor(2)
	show-region(2)
	start-up(3)
	sort-lines(2)
	sort-lines-ignore-case(3)
	spell(2)
	spell-add-word(3)
	split-window-horizontally(2)
	split-window-vertically(2)
	sql(9)
	suspend-emacs(2)
	symbol(3)
	Triangle(3)
	tab(2)
	tab(2m)
	tabs-to-spaces(3)
	tcl(9)
	tcltags(3f)
	texinfo(9)
	textags(3f)
	time(2m)
	time(3)
	translate-key(2)
	transpose-chars(2)
	User Profiles(2)
	undo(2)
	undo(2m)
	uniq(3)
	universal-argument(2)
	user-setup(3)
	usr(2m)
	vhdl(9)
	view(2m)
	view-file(2)
	void(2)
	vrml(9)
	wrap(2m)
	wrap-word(2)
	write-buffer(2)
	x86(9)
	yank(2)

	Frequently Asked Questions
	FAQs(0f)
	FAQ(00) - New functionality; what is useful to me as an old MicroEmacs user ??
	FAQ(01) - Languages; Are any foreign languages supported other than English ??
	FAQ(02) - C++ is not default, C is - how do I change this ??
	FAQ(03) - GNU Emacs; are there any GNU Emacs bindings. ?
	FAQ(04) - Icons are not displayed correctly in Microsoft Windows environments !!
	FAQ(05) - ipipes not working on Microsoft Windows network drives ?
	FAQ(06) - Language not supported - will it be ??
	FAQ(07) - Language file is incomplete
	FAQ(08) - Input locked up and not accepting keys; how do I unlock ?
	FAQ(09) - MicroEmacs Bindings; How do I get the original MicroEmacs bindings ?
	FAQ(10) - Microsoft Windows Locks up after killing an ipipe.
	FAQ(11) - Mouse support under Microsoft windows is strange !!
	FAQ(12) - Scroll bars too narrow !!
	FAQ(13) - Tab key; Why does the tab key not operate in some windows ??
	FAQ(14) - Termcap; On a color terminal why is there no color ??
	FAQ(15) - Termcap; Some of the keys do not work - how can I bind them ?
	FAQ(16) - Timestamp; Format incorrect, how can I change to MMDDYY.hhmm ?
	FAQ(17) - Windows; Component characters rendered incorrectly, how do I fix ?
	FAQ(18) - Windows Autosave and Backup files; are these potentially a problem ?
	FAQ(19) - Printing; Why in Windows does the output come out in a buffer ??
	FAQ(20) - Printing; On Windows which font should I use ??
	FAQ(21) - Printing; My printer is not supported ?
	FAQ(22) - Alt key maps to the Menu, how do I change ?
	FAQ(23) - me32.ini - Where does it go, how do I know it's being processed ??
	FAQ(24) - Windows - Where is app850.fon ?
	FAQ(25) - Time; mode line is showing the date in DD/MM/YY format how do I change ?
	FAQ(26) - C or C++ indentation and effects; how can I turn off ?
	FAQ(27) - fill-paragraph function does not fill ??
	FAQ(28) - Key modifier which acts as the ESC key; what is it ?
	FAQ(29) - find-file start location; where is it ?
	FAQ(30) - Re-using a MicroEmacs session; how to ??
	FAQ(31) - Microsoft Drag and Drop; is it supported ??
	FAQ(32) - Cut and Paste to/from other applications; is it supported ??
	FAQ(33) - Fonts; how can I change the font ??
	FAQ(34) - Colors; how can I change screen colors ??
	FAQ(35) - File Types; how do I interchange between UNIX, Windows and DOS files ??
	FAQ(36) - Non-English Languages; What font should I select ??
	FAQ(37) - MicroEmacs '99; How do I up-grade from MicroEmacs'98 ??
	FAQ(38) - Some keys on my foreign keyboard do not work properly, how do I get them working ??
	FAQ(39) - Tabs; How to change the tab width ??
	FAQ(40) - Windows/DOS; Where do I get grep/diff etc. ??
	FAQ(41) - Home/End Keys; How do I change the default bindings ??
	FAQ(42) - tags; How do I generate a MicroEmacs compatible tags file ??

